首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrocarbon ionomers bear the potential to significantly lower the material cost and increase the efficiency of proton‐exchange membrane water electrolyzers (PEMWE). However, no fully hydrocarbon membrane electrode assembly (MEA) with a performance comparable to Nafion‐MEAs has been reported. PEMWE‐MEAs are presented comprising sPPS as membrane and electrode binder reaching 3.5 A cm?2 at 1.8 V and thus clearly outperforming state‐of‐the‐art Nafion‐MEAs (N115 as membrane, 1.5 A cm?2 at 1.8 V) due to a significantly lower high frequency resistance (57 ± 4 mΩ cm² vs 161 ± 7 mΩ cm²). Additionally, pure sPPS‐membranes show a three times lower gas crossover (<0.3 mA cm?2) than Nafion N115‐membranes (>1.1 mA cm?2) in a fully humidified surrogate test. Furthermore, more than 80 h of continuous operation is shown for sPPS‐MEAs in a preliminary durability test (constant current hold at 1 A cm?2 at 80 °C). These results rely on the unique transport properties of sulfonated poly(phenylene sulfone) (sPPS) that combines high proton conductivity with low gas crossover.  相似文献   

2.
A simple method was developed to prepare ultra‐low Pt loading membrane electrode assembly (MEA) using vertically aligned carbon nanotubes (VACNTs) as highly ordered catalyst support for PEM fuel cells application. In the method, VACNTs were directly grown on the cheap household aluminum foil by plasma enhanced chemical vapor deposition (PECVD), using Fe/Co bimetallic catalyst. By depositing a Pt thin layer on VACNTs/Al and subsequent hot pressing, Pt/VACNTs can be 100% transferred from Al foil onto polymer electrolyte membrane for the fabrication of MEA. The whole transfer process does not need any chemical removal and destroy membrane. The PEM fuel cell with the MEA fabricated using this method showed an excellent performance with ultra‐low Pt loading down to 35 μg cm?2 which was comparable to that of the commercial Pt catalyst on carbon powder with 400 μg cm?2. To the best of our knowledge, for the first time, we identified that it is possible to substantially reduce the Pt loading one order by application of order‐structured electrode based on VACNTs as Pt catalysts support, compared with the traditional random electrode at a comparable performance through experimental and mathematical methods.  相似文献   

3.
CO2 electrochemical reduction (CO2RR) can mitigate environmental issues while providing valuable products, yet challenging in activity, selectivity, and stability. Here, a CuS-Bi2S3 heterojunction precursor is reported that can in situ reconstruct to Cu-doped Bismuth (CDB) electrocatalyst during CO2RR. The CDB exhibits an industrial-compatible current density of −1.1 A cm−2 and a record-high formate formation rate of 21.0 mmol h−1 cm−2 at −0.86 V versus the reversible hydrogen electrode toward CO2RR to formate, dramatically outperforming currently reported catalysts. Importantly, the ultrawide potential region of 1050 mV with high formate Faradaic efficiency of over 90% and superior long-term stability for more than 100 h at −400 mA cm−2 can also be realized. Experimental and theoretical studies reveal that the remarkable CO2RR performance of CDB results from the doping effect of Cu which optimizes adsorption of the *OCHO and boosts the structural stability of metallic bismuth catalyst. This study provides valuable inspiration for the design of element-doping electrocatalysts to enhance catalytic activity and durability.  相似文献   

4.
Ultrathin all-solid-state electrolytes with an excellent Li+ transport behavior are highly desirable for developing high-energy-density solid-state lithium metal batteries. However, how to balance the electrochemical performance and their mechanical properties remains a huge challenge. Herein, an ultrathin solid electrolyte membrane with a thickness of only 3 µm and a weight of 11.7 g m−2 is well constructed by integrating individual functionalized organic with inorganic modules. Impressively, the optimized hybrid electrolyte membrane shows a set of merits including a high room-temperature ionic conductivity of 1.77 × 10−4 S cm−1, large Li+ transference number of 0.65, and strong mechanical strength (strength of 29 MPa, elongation of 95%), as well as negligible thermal shrink at 180 °C. The analysis results reveal that the lithium sulfonate-functionalized mesoporous silica nanoparticles in the membrane play a crucial role in the selective transport of Li+ through anion trapping and cation exchange. The pouch full cell is further assembled with a high-voltage NCM cathode and thin lithium anode, which exhibits excellent long-term cycling stability, outstanding rate performance at room temperature, and high safety against abused conditions. The current work provides an innovative strategy for achieving lithium metal batteries with ultrathin all-solid-state electrolytes.  相似文献   

5.
Exposures to particulate matter with a diameter of 2.5 μm or less (PM2.5) may influence the risk of birth defects and make you allergic, which causes serious harm to human health. Bamboo charcoal can adsorb harmful substances,that was of benefitto people’s health. In order to figure out the optimal adsorbtion condition and the intrinsic change of bamboo charcoal, five chemicals were adsorbed by bamboo charcoal and were analyzed by FT-IR. The optimal blast time was 80 min of Na2SO3, 100 min of Na2S2O8, 20 min of Na2SO4, 120 min of Fe2(SO4)3 and 60 min or 100 min of S. FT-IR spectra showed that bamboo charcoal had five characteristic peaks of SS stretch, H2O stretch, OH stretch, CO stretch or CC stretch, and NO2 stretch at 3850 cm−1, 3740 cm−1, 3430 cm−1, 1630 cm−1 and 1530 cm−1, respectively. For Na2SO3, the peaks at 3850 cm−1, 3740 cm−1, 3430 cm−1, 1630 cm−1 and 1530 cm−1 achieved the maximum at 20 min. For Na2S2O8, the peaks at 3850 cm−1, 3740 cm−1, 3430 cm−1 and 1530 cm−1 achieved the maximum at 40 min. For Na2SO4, the peaks at 3850 cm−1, 3740 cm−1 and 1530 cm−1 achieved the maximum at 40 min. For Fe2(SO4)3, the peaks at 3850 cm−1, 3740 cm−1, 1630 cm−1 and 1530 cm−1 achieved the maximum at 120 min. For S, the peaks at 3850 cm−1 and 3740 cm−1 achieved the maximum at 40 min, the peaks at 1630 cm−1 and 1530 cm−1 achieved the maximum at 40 min. It proved that bamboo charcoal could remove sulfur powder from air to restrain sulfur allergies.  相似文献   

6.
The vanadium redox flow battery (VRFB) is a large‐scale energy storage technique and has been regarded as a promising candidate to integrate intermittent renewable energy with the grid. Its long‐term stability has so far been limited by the core component, an ion exchange membrane with low ion selectivity. Here a hybrid membrane with superhydrophilic TiO2 nanotubes dispersed in a Nafion matrix is reported. The VRFB single cell with the hybrid membrane exhibits an impressive performance with high coulombic efficiency (CE, ≈98.3%) and outstanding energy efficiency (EE, ≈84.4%) at 120 mA cm?2, which is higher than that of the commercial Nafion 212 membrane (CE, ≈94.5%; EE, ≈79.2%). More importantly, the cell maintains a discharge capacity of ≈55.7% after 1400 cycles (over 518 h), in obvious contrast to that of ≈20% after only 410 cycles for the one using commercial Nafion 212. This is attributed to the high ion selectivity of the hybrid membrane, because of, 1) the blocked and elongated ion diffusion pathway induced by the dispersed nanotubes and 2) binding and alignment of the sulfonic acid groups on nanotube surface. The high‐performance membranes may also find important applications in other fields, such as fuel cells, dialytic batteries, and water treatment.  相似文献   

7.
Recently, our group discovered an alternative titanium dioxide (TiO2) activation method that uses ultrasound irradiation (US/TiO2) instead of ultraviolet irradiation. The pre-S1/S2 protein from hepatitis B virus, which recognizes liver cells, was immobilized to the surface of TiO2 nanoparticles using an amino-coupling method. The ability of the protein-modified TiO2 nanoparticles to recognize liver cells was confirmed by surface plasmon resonance analysis and immuno-staining analyses. After uptake of TiO2 nanoparticles by HepG2 cancer cells, the cells were injured using this US/TiO2 method; significant cell injury was observed at an ultrasound irradiation intensity of 0.4 W/cm2. Together with these results, this strategy could be applied to new cell injuring systems that use ultrasound irradiation in place of photodynamic therapy in the near future.  相似文献   

8.
The development of highly active and robust non-noble-metal electrocatalysts for alkaline hydrogen evolution reaction (HER) at industrial-level current density is the key for industrialization of alkaline water electrolysis. Herein, a superhydrophilic self-supported Ni/Y2O3 heterostructural electrocatalyst is constructed by a high-temperature selective reduction method, which demonstrates excellent catalytic performance for alkaline HER at high current density. Concretely, this catalyst can drive 10 mA cm−2 at a low overpotential of 61.1 ± 3.7 mV, with a low Tafel slope of 52.8 mV dec−1. Moreover, it also shows outstanding long-term durability at high current density of 1000 mA cm−2 for 500 h in 1 m  KOH, evidently exceeding the metallic Ni and Pt/C(20%) catalysts. The superior HER activity can be attributed to the multi-interface engineering of the Ni/Y2O3 electrode. Construction of Ni/Y2O3 heterogeneous interface with dual active sites lowers the energy barrier of water dissociation and optimizes the hydrogen adsorption energy, thus synergistically accelerating the overall HER kinetics. Also, its superhydrophilic self-supported electrode structure with the firm electrocatalyst-substrate interface and weakened electrocatalyst-bubble interfacial force ensures rapid charge transfer, prevents catalyst shedding, and expedites the H2 gas bubble release timely, further enhancing the catalytic activity and stability at high current density.  相似文献   

9.
Crucial advancements in versatile catalyst systems capable of achieving high current densities under industrial conditions, bridging the gap between fundamental understanding and practical applications, are pivotal to propel the hydrogen economy forward. In this study, vertically oriented hierarchically multiscale nanoflakes of NiFeCo electrocatalysts are presented, developed by surface modification of a porous substrate with nano-structured nickel. The resulting electrodes achieve remarkably low overpotentials of 139 mV at 10 mAcm−2 and 248 mV at 500 mAcm−2. Further, scaled-up electrodes are implemented in a water-splitting electrolyser device exhibiting a stable voltage of 1.82 V to deliver a constant current density of 500 mA cm−2 for over 17 days. Moreover, the role of the unique structures on electrochemical activity is systematically investigated by fractal analysis, involving computation of structure factors such as Minkowski connectivity, fractal dimension, and porosity using scanning electron microscope images. It is found that such structures offer higher surface area than typical layered double hydroxide structures due to morphological coherence that results in a superhydrophilic surface, while the base Ni layer boosts the charge transfer. This study demonstrates a Ni/NiFeCo(OH)x heterostructure with highly porous morphology, a key to unlocking extremely efficient oxygen evolution reaction activity with exceptional stability. Moreover, fractal analysis is presented as a valuable tool to evaluate the electrochemical performance of catalysts for their structured morphology.  相似文献   

10.
New non‐PGM catalysts from the family of Fe‐N‐C pyrolyzed materials are reported. They are synthesized using a templating silica powder with iron nitrate and carbendazim (CBDZ) precursors (sacrificial support method). The synthesis involves high temperature pyrolysis, followed by etching of the sacrificial support (silica) and obtaining a “self‐supported” open frame morphology catalyst. Both the temperature of heat treatment and Fe to CBDZ ratio play a crucial role in the final catalytic activity in oxygen reduction reaction (ORR). Prepared materials have extremely high durability in RDE tests, ending up with more than 94% of initial activity (by E1/2 value) after 10 000 cycles in an oxygen atmosphere, which is the result we report for the first time. Evaluation of these new M‐N‐C catalysts in a single membrane electrode assembly (MEA) has shown an exceptionally high open circuit voltage (OCV) of 1 V and the world's second best performance with no IR correction. MEA tests have shown high current density of 700 mA cm‐2 at 0.6 V and 120 mA cm‐2 at 0.8 V. In‐depth structure‐to‐property correlation presents an evidence that Fe‐Nx centers are the active sites playing a key role in oxygen reduction reaction.  相似文献   

11.
Inverted metamorphic Ga0.3In0.7As photovoltaic converters with sub-0.60 eV bandgaps grown on InP and GaAs are presented. Threading dislocation densities are 1.3 ± 0.6 × 106 and 8.9 ± 1.7 × 106 cm−2 on InP and GaAs, respectively. The devices generate open-circuit voltages of 0.386 and 0.383 V, respectively, under irradiance producing a short-circuit current density of ≈10 A cm−2, yielding bandgap-voltage offsets of 0.20 and 0.21 V. Power and broadband reflectance measurements are used  to estimate thermophotovoltaic (TPV) efficiency. The InP-based cell is estimated to yield 1.09 W cm−2 at 1100 °C versus 0.92 W cm−2 for the GaAs-based cell, with efficiencies of 16.8 versus 9.2%. The efficiencies of both devices are limited by sub-bandgap absorption, with power weighted sub-bandgap reflectances of 81% and 58%, respectively, the majority of which is assumed to occur in the graded buffers. The 1100 °C TPV efficiencies are estimated to increase to 24.0% and 20.7% in structures with the graded buffer removed, if previously demonstrated reflectance is achieved. These devices also have application to laser power conversion in the 2.0–2.3 µm atmospheric window. Peak laser power converter efficiencies of 36.8% and 32.5% are estimated under 2.0 µm irradiances of 1.86 and 2.81 W cm−2, respectively.  相似文献   

12.
Sulfur and ammonia nitrogen are rich nutrient pollutants, after entering water can cause algal blooms, cause eutrophication of water body, the spread of them will not only pollute the environment, destroy the ecological balance, but also harm human health through food chain channels, especially drinking-water toxicosis. Acticarbon can adsorb harmful substances, it was beneficial for people’s health. In order to figure out the optimal adsorption condition and the intrinsic change of acticarbon, five chemicals were adsorbed by acticarbon and analyzed by FT-IR. The optimal adsorption condition of Fe2(SO4)3, Na2SO4, Na2S2O8, S and Na2SO3 was 9 g/1000 g at 80 min, 21 g/1000 g at 20 min, 15g/1000 g at 20 min, 21 g/1000 g at 60 min and 21 g/1000 g at 100 min, respectively. FT-IR spectra showed that acticarbon had eight characteristic peaks, such as S-S stretch, H2O stretch, OH stretch, CH stretch, CO or CC stretch, CH2 bend, CH were at 3850 cm−1, 3740 cm−1, 3435 cm−1, 2925 cm−1, 1630 cm−1, 1390 cm−1, 1115 cm−1, 600 cm−1, respectively. For FT-IR spectra of Fe2(SO4)3, the peaks at 3850 cm−1, 3740 cm−1, 2925 cm−1 achieved the maximum with 9 g/1000 g at 20 min. For Na2SO4, the peaks at 2925 cm−1, 1630 cm−1, 1390 cm−1, 1115 cm−1, 600 cm−1 achieved the maximum with 21 g/1000 g at 120 min. For ones of Na2S2O8, the peaks at 3850 cm−1, 3740 cm−1, 1390 cm−1, 1115 cm−1, 600 cm−1, achieved the maximum with 2 g/1000 g at 80 min. For ones of S, the peaks at 3850 cm−1, 3740 cm−1, 2925 cm−1 achieved the maximum with 19 g/1000 g at 100 min, the peaks at 1390 cm−1, 1115 cm−1, 600 cm−1 achieved the maximum with 19 g/1000 g at 20 min. For FT-IR spectra of Na2SO3, the peaks at 1630 cm−1, 1390 cm−1, 1115 cm−1, 600 cm−1 achieved the maximum with 2 g/1000 g at 100 min. It provided that acticarbon could adsorb and desulphurize from sulfur solution against drinking-water toxicosis.  相似文献   

13.
Conversion of air and water into valuable chemicals of ammonia (NH3) by plasma activation and electrochemical reduction is a promising approach to achieve zero carbon-emission synthesis of NH3. However, designing highly efficient electrochemical catalysts is one of the key challenges in accomplishing this strategy. Herein, a self-supported cobalt–tungsten alloy supported on cobalt foam (CoW/CF) is developed via a simple and efficient method at room temperature. Surprisingly, the catalyst exhibits ultra-high NH3 partial current density (1559 mA cm−2), superior NH3 yield rate (164.3 mg h−1 cm−2), and high Faradaic efficiency (98.1%) under the condition of 0.2 M nitrate/nitrite, outperforming most of the reported values of electrosynthesis of NH3 to the knowledge. The introduction of W makes the Co atom surface electron deficient, which can enhance the adsorption of NOx and mitigate the excessive bonding of hydroxyl radicals (OH*) generated during nitrite (NO2*) hydrogenation, thereby reducing the energy barrier of the potential-determining step. More interestingly, a scale-up reaction system is established, achieving an NH3 yield rate of 4.771 g h−1 and successfully converting the NH3 in solution into solid NH4Cl. The aforementioned progress significantly enhances the facilitation of NH3 electrosynthesis industrialization.  相似文献   

14.
Aqueous Zn-ion batteries (AZIBs) show great potential in new energy storage devices due to low cost, inherent safety, and environmental friendliness. However, the severe dendrites and side reactions on the anode greatly constrain their practical application. Herein, a novel colloidal electrolyte composed of ZnSO4 and sodium carboxymethyl cellulose (CMC-Na) has been developed for inhibiting dendrite growth on Zn anode. Molecular dynamics (MD) simulation confirms that CMC-Na alters the electric double layer (EDL) structure of Zn anode surface to reduce the content of water and SO42− and inhibit side reactions. More importantly, an organic/inorganic hybrid solid electrolyte interface (SEI) layer is in situ constructed during the cycling, which enables ultrastable Zn plating/stripping (> 2000 h) under high current density (5 mA cm−2, 5 mAh cm−2) and high coulombic efficiency (99.8%) for more than 1000 cycles. Meanwhile, zinc-ion hybrid capacitors (ZIHCs) with the colloidal electrolyte exhibit a favorable capacitance retention of 97% after 15000 cycles at the current density of 2 A g−1. Even at a high current density of 5 A g−1, it still has a capacitance retention of 96% after 30000 cycles. This study presents a novel electrolyte strategy for the formation of ultrastable electrode-electrolyte interfaces in AZIBs.  相似文献   

15.
Sulfur powder and sulfur dioxide (SO2) often floated in air, produced acid rain and algal blooms, and could cause diseases. Bamboo charcoal could have adsorption and filtration properties. In order to figure out the optimal adsorption condition and the intrinsic change of the bamboo charcoal, five chemicals were adsorbed by bamboo charcoal and were analyzed by FT-IR. Fe2(SO4)3’s, Na2SO4’s, Na2S2O8’s, S’s, and Na2SO3’s optimal adsorption condition was the concentration of 19 g/1000 g and stir time of 20 min, 21 g/1000 g and stir time of 60 min, 7 g/1000 g and stir time of 120 min, 11 g/1000 g and stir time of 120 min, 21 g/1000 g and stir time of 60 min, respectively. FT-IR spectra showed that for FT-IR spectra of Fe2(SO4)3, the transmissivity of the peaks at 3435 cm−1 and 2925 cm−1 achieved the maximum for 60 min and the concentration was 19 g/1000 g, the transmissivity of the peaks at 1630 cm−1, 1060 cm−1 and 660 cm−1 achieved the maximum for 60 min and the concentration was 7 g/1000 g. For FT-IR spectra of Na2SO4, the transmissivity of the peaks at 1630 cm−1, 1060 cm−1 and 660 cm−1 achieved the maximum for 20 min and the concentration was 13 g/1000 g. For FT-IR spectra of Na2S2O8, the transmissivity of the peaks at 3435 cm−1, 2925 cm−1, 1630 cm−1 and 1060 cm−1 achieved the maximum for 120 min and the concentration was 19 g/1000 g. For FT-IR spectra of S, the transmissivity of the peaks at 3435 cm−1, 2925 cm−1, 1630 cm−1 and 1060 cm−1 achieved the maximum for 20 min and the concentration was 11 g/1000 g, 17 g/1000 g and 21 g/1000 g. For FT-IR spectra of Na2SO3, the transmissivity of the peaks at 3435 cm−1 achieved the maximum for 120 min and the concentration was 5 g/1000 g, the transmissivity of the peaks at 2925 cm−1, 1630 cm−1 and 1060 cm−1 achieved the maximum for 120 min and the concentration was 11 g/1000 g. In these states, the number of the transmissivity of the maximum peaks is the largest.  相似文献   

16.
Traditional challenges of poor cycling stability and low Coulombic efficiency in Zinc (Zn) metal anodes have limited their practical application. To overcome these issues, this work introduces a single metal-atom design featuring atomically dispersed single copper (Cu) atoms on 3D nitrogen (N) and oxygen (O) co-doped porous carbon (CuNOC) as a highly reversible Zn host. The CuNOC structure provides highly active sites for initial Zn nucleation and further promotes uniform Zn deposition. The 3D porous architecture further mitigates the volume changes during the cycle with homogeneous Zn2+ flux. Consequently, CuNOC demonstrates exceptional reversibility in Zn plating/stripping processes over 1000 cycles at 2 and 5 mA cm−2 with a fixed capacity of 1 mAh cm−2, while achieving stable operation and low voltage hysteresis over 700 h at 5 mA cm−2 and 5 mAh cm−2. Furthermore, density functional theory calculations show that co-doping N and O on porous carbon with atomically dispersed single Cu atoms creates an efficient zincophilic site for stable Zn nucleation. A full cell with the CuNOC host anode and high loading V2O5 cathode exhibits outstanding rate-capability up to 5 A g−1 and a stable cycle life over 400 cycles at 0.5 A g−1.  相似文献   

17.

In this research work, a systematic design of a novel anti-reflective layer using embedded plasmonic nanoparticles is investigated for a thin-film GaAs solar cell. First, an anti-reflective layer that is made from ITO or SiO2 is assumed in which Al nanoparticles are embedded inside them to manipulate the absorption and hence the photocurrent of a 500-nm GaAs solar cell. It is investigated that the Al nanoparticles embedded inside the anti-reflective coating improve the photocurrent of a GaAs solar cell. For instance, the 15.37 mA photocurrent is obtained for 500-nm bare GaAs cell, and it reached to 17.25 mA/cm2 and 20.18 mA/cm2 when an ITO anti-reflection is used with Al nanoparticles on top and inside that, respectively. It increases to 21.94 mA/cm2 and 24.98 mA/cm2 in the case of the anti-reflective layer made from SiO2 and Al nanoparticles at the top side or inside that, respectively. Finally, using a double anti-reflective layer that is made from SiO2-TiO2, the maximum photocurrents of 23.79 mA/cm2 and 24.68 mA /cm2 are obtained when Al nanoparticles are at the top side or inside that, respectively. The simulation results show that the embedding Al nanoparticles in the anti-reflective layer can improve the photocurrent of a thin-film GaAs solar cell.

  相似文献   

18.
This work reports the use of the metal-support interaction strengthening through defect engineering and single atom adsorption to the supports to increase the catalytic activities of metals. Specifically, the plasma treated TiO2 nanowires with the Ir nanoparticle growth and the Sr single atom adsorption (the Ir@Sr-p-TiO2 NWs) are synthesized and demonstrated to be efficient catalysts for OER and HER. They only need overpotentials of 250 and 32 mV to drive 10 mA cm−2 for OER and HER, respectively. Their OER and HER activities are much higher than the commercial IrO2 and Pt/C. The high activities of the Ir@Sr-p-TiO2 NWs mainly arise from the strengthened metal-support interactions between the Ir nanoparticles and the p-TiO2 NWs, achieved by the plasma generated oxygen defects (Vo·) and the Sr adsorption on the p-TiO2 NWs. Analysis and DFT calculations indicate that the Vo· and Sr adsorption can promote the charge transfer from the p-TiO2 NWs to the Ir nanoparticles, optimizing the adsorptions of the OER and HER intermediates on the O- and H-covered Ir nanoparticles. Additionally, the strong metal-support interactions can increase the stabilities of the Ir NPs against the chemical corrosions, increasing the OER and HER durabilities of the Ir@Sr-p-TiO2 NWs.  相似文献   

19.
Large pore ordered mesoporous silica FDU-1 with three-dimensional (3D) face-centered cubic, Fm3m arrangement of mesopores, was synthesized under strong acid media using B-50-6600 poly(ethylene oxide)–poly(butylene oxide)–poly(ethylene oxide) triblock copolymer (EO39BO47EO39), tetraethyl orthosilicate (TEOS) and trimethyl-benzene (TMB). Large pore FDU-1 silica was obtained by using the following gel composition 1TEOS:0.00735B50-6600:0.00735TMB:6HCl:155H2O. The pristine material exhibited a BET specific surface area of 684 m2 g−1, total pore volume of 0.89 cm3 g−1, external surface area of 49 m2 g−1 and microporous volume of 0.09 cm3 g−1. The enzyme activity was determined by the Flow Injection Analysis-Chemiluminescence (FIA-CL) method. For GOD immobilized on the FDU-1 silica, GOD supernatant and GOD solution, the FIA-CL results were 9.0, 18.6 and 34.0 U, respectively. The value obtained for the activity of the GOD solution with FIA-CL method is in agreement with the 35 U, obtained by spectrophotometry.  相似文献   

20.
《Inorganica chimica acta》2006,359(7):2015-2022
The reaction of [Cu(tren)(OH2)](ClO4)2 with KCN gave a mononuclear complex [Cu(tren)(CN)](ClO4) (1) (tren = tris(2-aminoethyl)amine). Using 1 as a building block, one pentanuclear compound, [{Cu(tren)(NC)}4Ni](ClO4)6 (2) and two trinuclear complexes, [{Cu(tren)NC}2Co(tren)](ClO4)5 · 2H2O (3), [{Cu(tren)CN}2NiL](ClO4)4 (4) (L = 3,10-bis(2-hydroxyethyl)-1,3,5,8,10,12-hexaazacyclotetradecane) were prepared and characterized by single crystal X-ray analysis. In 1, Cu(II) atom adopts a distorted trigonal bipyramidal (TBP) geometry. In 2, the Ni(II) atom occupies the center of the pentanuclear compound with a square-planar coordination geometry. In 3, the six-coordinated Co(III) atom presents a distorted octahedral geometry with four nitrogen atoms from tren and two carbon atoms of bridged cyano groups in cis-positions. In 4, the nickel atom is located in an inversion center and coordinated with two [(tren)CuCN]+ moieties through cyano-bridging ligands. Magnetic susceptibility measurements of 24 show that the magnetic interactions between the heterometallic ions are antiferromagnetical coupling through the cyano bridges with g = 2.25, J = −0.142 cm−1 and J = −0.167 cm−1 for 2, g = 2.06, J = −0.094 cm−1 for 3, and g = 2.20, J = −33.133 cm−1 for 4. The correlations between the structures and the J values are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号