首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the synthesis of the Schiff base ligands, 4-[(4-bromo-phenylimino)-methyl]-benzene-1,2,3-triol (A1), 4-[(3,5-di-tert-butyl-4-hydroxy-phenylimino)-methyl]-benzene-1,2,3-triol (A2), 3-(p-tolylimino-methyl)-benzene-1,2-diol (A3), 3-[(4-bromo-phenylimino)-methyl]-benzene-1,2-diol (A4), and 4-[(3,5-di-tert-butyl-4-hydroxy-phenylimino)-methyl]-benzene-1,3-diol (A5), and their Cd(II) and Cu(II) metal complexes, stability constants and potentiometric studies. The structure of the ligands and their complexes was investigated using elemental analysis, FT-IR, UV-Vis, 1H and 13C NMR, mass spectra, magnetic susceptibility and conductance measurements. In the complexes, all the ligands behave as bidentate ligands, the oxygen in the ortho position and azomethine nitrogen atoms of the ligands coordinate to the metal ions. The keto-enol tautomeric forms of the Schiff base ligands A1-A5 have been investigated in polar and non-polar organic solvents. Antimicrobial activity of the ligands and metal complexes were tested using the disc diffusion method and the strains Bacillus megaterium and Candida tropicalis.Protonation constants of the triol and diol Schiff bases and stability constants of their Cu2+ and Cd2+ complexes were determined by potentiometric titration method in 50% DMSO-water media at 25.00 ± 0.02 °C under nitrogen atmosphere and ionic strength of 0.1 M sodium perchlorate. It has been observed that all the Schiff base ligands titrated here have two protonation constants. The variation of protonation constant of these compounds was interpreted on the basis of structural effects associated with the substituents. The divalent metal ions of Cu2+ and Cd2+ form stable 1:2 complexes with Schiff bases.The Schiff base complexes of cadmium inhibit the intense chemiluminescence reaction in dimethylsulfoxide (DMSO) solution between luminol and dioxygen in the presence of a strong base. This effect is significantly correlated with the stability constants KCdL of the complexes and the protonation constants KOH of the ligands; it also has a nonsignificant association with antibacterial activity.  相似文献   

2.
A determination method for Co(II), Fe(II) and Cr(III) ions by luminol‐H2O2 system using chelating reagents is presented. A metal ion‐chelating ligand complex with a Co(II) ion and a chelating reagent like ethylenediaminetetraacetic acid (EDTA) produced highly enhanced chemiluminescence (CL) intensity as well as longer lifetime in the luminol‐H2O2 system compared to metals that exist as free ions. Whereas free Cu(II) and Pb(II) ions had a strong catalytic effect on the luminol‐H2O2 system, significantly, the complexes of Cu(II) and Pb(II) with chelating reagents lost their catalytic activity due to the chelating reagents acting as masking agents. Based on the observed phenomenon, it was possible to determine Co(II), Fe(II) and Cr(III) ions with enhanced sensitivity and selectivity using the chelating reagents of the luminol‐H2O2 system. The effects of ligand, H2O2 concentration, pH, buffer solution and concentrations of chelating reagents on CL intensity of the luminol‐H2O2 system were investigated and optimized for the determination of Co(II), Fe(II) and Cr(III) ions. Under optimized conditions, the calibration curve of metal ions was linear over the range of 2.0 × 10‐8 to 2.0 × 10‐5 M for Co(II), 1.0 × 10‐7 to 2.0 × 10‐5 M for Fe (II) and 2.0 × 10‐7 to 1.0 × 10‐4 M for Cr(III). Limits of detection (3σ/s) were 1.2 × 10‐8, 4.0 × 10‐8 and 1.2 × 10‐7 M for Co(II), Fe(II) and Cr(III), respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
《Inorganica chimica acta》1988,149(1):139-145
The stoichiometry and kinetics of the reaction between [Cu(dien)(OH)]+ and [Fe(CN)6]3− in aqueous alkaline medium are described. The rate equation − (d[Fe(III)]/dt = {k1[OH]2[[Cu(dien)(OH)]+] + k2[OH] × [[Cu(dien)(OH)]+]2}([Fe(III)]/[Fe(II)]) (Fe(III) = [Fe(CN)6]3−; Fe(II) = [Fe(CN)6]4−, the 4:4:1 OH/Fe(III)/[Cu(dien)(OH)]+ stoichiometric ratio and the nature of the ultimate products identified in the reaction solution suggest the fast formation of a doubly deprotonated Cu(III)-diamido complex which slowly undergoes an internal redox process where the ligand is oxidised to the Schiff base H2NCH2CH2NCHCHNH.The [[Cu(dien)(OH)]+]2 term in the rate equation is explained with the formation of a transient μ-hydroxo mixed-valence Cu dimer. A two-electron internal reduction of the Cu(III) complex yielding a Cu(I) intermediate is suggested to account for the presence of monovalent copper in a precipitate which forms at relatively high reactant concentrations and in the absence of dioxygen.  相似文献   

4.
Twenty new bioactive complexes of Mn(III), Fe(III), Ni(II), Cu(II) and Zn(II) have been prepared containing Schiff bases of N,N-diethylaminodithio- carbamate as ligands. These complexes have been characterized by elemental analyses, IR and UV-Vis spectroscopy as well as by magnetic susceptibility measurements. The spectra of the complexes suggest that the ligands are coordinated to the metal ions via the sulfur atoms of the dithiocarbamato group.  相似文献   

5.
In the present study, interactions of Au(III) and Ga(III) ions on human serum albumin (HSA) were studied comparatively via spectroscopic and thermal analysis methods: UV–vis absorbance spectroscopy, fluorescence spectroscopy, Fourier transform infrared (FT-IR) spectroscopy and isothermal titration calorimetry (ITC). The potential antitumor effects of these ions were studied on MCF-7 cells via Alamar blue assay. It was found that both Au(III) and Ga(III) ions can interact with HSA, however; Au(III) ions interact with HSA more favorably and with a higher affinity. FT-IR second derivative analysis results demonstrated that, high concentrations of both metal ions led to a considerable decrease in the α-helix content of HSA; while Au(III) led to around 5% of decrease in the α-helix content at 200 μM, it was around 1% for Ga(III) at the same concentration. Calorimetric analysis gave the binding kinetics of metal–HSA interactions; while the binding affinity (Ka) of Au(III)–HSA binding was around 3.87 × 105 M−1, it was around 9.68 × 103 M−1 for Ga(III)–HSA binding. Spectroscopy studies overall suggest that both metal ions have significant effects on the chemical structure of HSA, including the secondary structure alterations. Antitumor activity studies on MCF7 tumor cell line with both metal ions revealed that, Au(III) ions have a higher antiproliferative activity compared to Ga(III) ions.  相似文献   

6.
The present study reports the development of a new 1,8‐naphthalimide‐based fluorescent sensor V for monitoring Cu(II) ions. The sensor exhibited pH independence over a wide pH range 2.52–9.58, and indicated its possible use for monitoring Cu(II) ions in a competitive pH medium. The sensor also showed high selectivity and sensitivity towards the Cu(II) ions over other competitive metal ions in DMSO–HEPES buffer (v/v, 1:1; pH 7.4) with a fluorescence ‘turn off’ mode of 79.79% observed. A Job plot indicated the formation of a 1:1 binding mode of the sensor with Cu(II) ions. The association constant and detection limit were 1.14 × 106 M–1 and 4.67 × 10–8 M, respectively. The fluorescence spectrum of the sensor was quenched due to the powerful paramagnetic nature of the Cu(II) ions. Potential application of this sensor was also demonstrated when determining Cu(II) ion levels in two different water samples.  相似文献   

7.
A linear trinuclear copper(II) complex (1), prepared from a new Schiff base ligand, namely the dianion of 4-chloro-6-(hydroxymethyl)-2-((3-aminopropylimino)methyl)-phenol, was synthesized and characterized in this paper. The X-ray structural study reveals that the geometry of the central Cu2 ion is elongated octahedral and that of the two side Cu(II) ions is distorted square pyramidal. The magnetic susceptibility measurements from 2 to 300 K reveal medium antiferromagnetic interactions between the Cu(II) ions with a J value of −64.6(1) cm−1.  相似文献   

8.
Iron(II)–dithiocarbamate complexes are used to trap nitrogen monoxide in biological samples, and the resulting nitrosyliron(II)–dithiocarbamate is detected and quantified by ESR. As the chemical properties of these compounds have been little studied, we investigated whether iron dithiocarbamate complexes can redox cycle. The electrode potentials of iron complexes of N-(dithiocarboxy)sarcosine (dtcs) and N-methyl-d-glucamine dithiocarbamate (mgd) are 56 and −25 mV at pH 7.4, respectively, as measured by cyclic voltammetry. The autoxidation and Fenton reaction of iron(II)–dtcs and iron(II)–mgd were studied by stopped-flow spectrophotometry with both iron(II) complexes and dioxygen or hydrogen peroxide in excess. In the case of excess iron(II)–dtcs and –mgd complexes, the rate constants of the autoxidation and the Fenton reaction are (1.6–3.2) × 104 and (0.7–1.1) × 105 M−1 s−1, respectively. In the presence of nitrogen monoxide, the oxidation of iron(II)–dtcs and iron(II)–mgd by hydrogen peroxide is significantly slower (ca. 10–15 M−1 s−1). The physiological reductants ascorbate, cysteine, and glutathione efficiently reduce iron(III)–dtcs and iron(III)–mgd. Therefore, iron bound to dtcs and mgd can redox cycle between iron(II) and iron(III). The ligands dtcs and mgd are slowly oxidized by hydrogen peroxide with rate constants of 5.0 and 3.8 M−1 s−1, respectively.  相似文献   

9.
Schiff base ligand (L) was obtained by condensation reaction between 4-aminopyrimidin-2(1H)-one (cytosine) with 2-hydroxybenzaldehyde. The synthesized Schiff base was used for complexation with Cu(II) and Fe(II) ions used by a molar (2 : 1 mmol ration) in methanol solvent. The structural features of ligand, Cu(II), and Fe(II) metal complexes were determined by standard spectroscopic methods (FT-IR, elemental analysis, proton and carbon NMR spectra, UV/VIS, and mass spectroscopy, magnetic susceptibility, thermal analysis, and powder X-ray diffraction). The synthesized compounds (Schiff base and its metal complexes) were screened in terms of their anti-proliferative activities in U118 and T98G human glioblastoma cell lines alone or in combination with electroporation (EP). Moreover, the human HDF (human dermal fibroblast) cell lines was used to check the bio-compatibility of the compounds. Anti-proliferative activities of all compounds were ascertained using an MTT assay. The complexes exhibited a good anti-proliferative effect on U118 and T98G glioblastoma cell lines. In addition, these compounds had a negligible cytotoxic effect on the fibroblast HDF cell lines. The use of compounds in combination with EP significantly decreased the IC50 values compared to the use of compounds alone (p<0.05). These results show that newly synthesized Cu(II) and Fe(II) complexes can be developed for use in the treatment of chemotherapy-resistant U118 and T98G glioblastoma cells and that treatment with lower doses can be provided when used in combination with EP.  相似文献   

10.
The Schiff base ligand, oxalic bis[(2-hydroxybenzylidene)hydrazide], H2L, and its Cu(II), Ni(II), Co(II), UO2(VI) and Fe(III) complexes were prepared and tested as antibacterial agents. The Schiff base acts as a dibasic tetra- or hexadentate ligand with metal cations in molar ratio 1:1 or 2:1 (M:L) to yield either mono- or binuclear complexes, respectively. The ligand and its metal complexes were characterized by elemental analyses, IR, 1H NMR, Mass, and UV-Visible spectra and the magnetic moments and electrical conductance of the complexes were also determined. For binuclear complexes, the magnetic moments are quite low compared to the calculated value for two metal ions complexes and this shows antiferromagnetic interactions between the two adjacent metal ions. The ligand and its metal complexes were tested against a Gram + ve bacteria (Staphylococcus aureus), a Gram -ve bacteria (Escherichia coli), and a fungi (Candida albicans). The tested compounds exhibited high antibacterial activities.  相似文献   

11.
A fluorescent chemosensor, Py-His, based on histidine was easily synthesized in solid phase synthesis. Py-His displayed a highly sensitive ratiometric response to Zn(II) with potent binding affinity (Ka = 1.17 × 1013 M?2) in aqueous solutions. The detection limit of Py-His for Zn(II) was calculated as 80.8 nM. Moreover, Py-His distinguished Zn(II) and Hg(II) by different ratiometric response type; the chemosensor showed a more enhanced increase of excimer emission intensity to Zn(II) than Hg(II). Upon addition of Ag(I) and Cu(II), Py-His showed a turn-off response mainly due to the quenching effect of these metal ions. The binding stoichiometry (2:1 or 1:1) of Py-His to target metal ions played a critical role in the fluorescent response type (ratiometric and turn off response) to target metal ions. The role of imidazole group of Py-His for ratiometric detection of Zn(II) was proposed by pH titration experiments.  相似文献   

12.
Sorption of Cu(II) and Cd(II) onto the extracellular polymeric substances (EPS) produced by Aspergillus fumigatus was investigated for the initial pH of the solution, EPS concentrations, contact time, NaCl concentration, initial metal ion concentration and the presence of other ions in the solution. The results showed that the adsorption of metal ions was significantly affected by pH, EPS concentrations, initial metal concentration, NaCl concentration and co-ions. The sorption of Cu(II) and Cd(II) increased with increasing pH and initial metal ion concentration but decreased with an increase in the NaCl concentration. The maximum sorption capacities of A. fumigatus EPS calculated from the Langmuir model were 40 mg g−1 EPS and 85.5 mg g−1 EPS for Cu(II) and Cd(II), respectively. The binary metal sorption experiments showed a selective metal binding affinity in the order of Cu(II) > Pb(II) > Cd(II). Both the Freundlich and Langmuir adsorption models described the sorption of Cu(II) and Cd(II) by the EPS of Afumigatus adequately. Fourier transform infrared spectroscopy (FTIR) analysis revealed that carboxyl, amide and hydroxyl functional groups were mainly correlated with the sorption of Cu(II) and Cd(II). Energy dispersive X-ray (EDX) system analysis revealed that the ion-exchange was an important mechanism involved in the Cu(II) and Cd(II) sorption process taking place on EPS.  相似文献   

13.
A simple, rapid, sensitive and inexpensive approach is described in this work based on a combination of solid-phase extraction of 8-hydroxyquinoline (8HQ), for speciation and preconcentration of Cr(III) and Cr(VI) in river water, and the direct determination of these species using a flow injection system with chemiluminescence detection (FI–CL) and a 4-diethylamino phenyl hydrazine (DEAPH)–hydrogen peroxide system. At different pH, the two forms of chromium [Cr(III) and Cr(VI)] have different exchange capacities for 8HQ, therefore two columns were constructed; the pH of column 1 was adjusted to pH 3 for retaining Cr(III) and column 2 was adjusted to pH 1 for retaining of Cr(VI). The sorbed Cr(III) and Cr(VI) species were eluted from columns using 3.0 ml of 0.1 N of HCl and 3.0 ml of 0.1 N of NaOH, respectively. The flow injection–chemiluminescence (FI–CL) method is based on light emitted due to the oxidation of DEAPH by the H2O2 in the presence of Cr(III), which catalyzes the reaction. The flow cell is a transparent coiled tube made from glass (2.0 × 4.0, inner and outer diameter) and located close to the photodetector. The flow parameters: flow rate, sample volume, flow cell length, and distance to the CL detector were studied and optimized. Under optimum flow conditions, the Cr(III) concentration can be determined over the range 5–350 μg L−1 with a limit of detection of 1.2 μg L−1, as the Cr(III) concentration is proportional to the intensity of the CL signal. The relative standard deviations (%) for 10 and 50 μg L−1 Cr(III) were 1.2% and 3.2%, respectively. The effects of Al(III), Cd(II), Zn(II), Hg(II), Pb(II), Co(II), Cu(II), Ni(II), Mn(II), Ca(II), and Fe(III) were investigated. The proposed method is highly selective and sensitive, enabling a rapid determination of the Cr(III) amount in the presence of other interfering metals. Finally, the FI–CL method was examined in five river water samples with excellent recoveries.  相似文献   

14.
[C20H17N3O2] and cobalt (II) complex [Co(L2)(MeOH)2].ClO4, (L2 = 4-((E)-1-((2-(((E)-pyridin-2-ylmethylene) amino) phenyl) imino) ethyl) benzene-1, 3-diol) novel Schiff base has been synthesiszed and chracterized by Fourier transform infrared, UV–vis, 1H-NMR spectroscopy, and elemental analysis techniques. The interaction of Co(II) complex with DNA and BSA was investigated by electronic absorption spectroscopy, fluorescence spectroscopy, circular dichroism, and thermal denaturation studies. Our experiments indicate that this complex could strongly bind to CT-DNA via minor groove mechanism. In addition, fluorescence spectrometry of BSA with the complex showed that the fluorescence quenching mechanism of BSA was of static type. The complex exhibited significant in vitro cytotoxicity against three human cancer cell lines (JURKAT, SKOV3, and U87). The molecular docking experiment effectively proved the binding of complex to DNA and BSA. Finally, antibacterial assay over gram-positive and gram-negative pathogenic bacterial strains was studied.  相似文献   

15.
The function of Mn(III) in plant acid phosphatase has been investigated by a metal-substitution study, and some properties of the Fe(III)-substituted enzyme were compared with those of the native Mn(III) enzyme and mammalian Fe(III)-containing acid phosphatases. 19F nuclear magnetic resonance (NMR) and proton relaxation rate measurements showed that inhibitors such as F and nitrilotriacetic acid interact with paramagnetic Mn(III) active site. The 31P-NMR signal of the enzyme-phosphate complex was also broadened by the paramagnetic effect of Mn(III). In the metal-substitution experiments of the Mn(III)-acid phosphatase with Fe(III), Zn(II) and Cu(II), only the iron gave satisfactory substitution. The Fe(III)-substituted plant acid phosphatase exhibited an absorption maximum at 525 nm (ε = 3000), typical high spin ferric ESR signal at g = 4.39, and lower pH optimum (pH 4.8) than the native Mn(III)-enzyme (pH 5.8). The phosphatase activity of the Fe(III)-substituted enzyme was reduced to about 53% of that of the native enzyme. The substrate specificities of both metallophosphatases were remarkably similar, but different from that of the Fe(III)-containing uteroferrin. The present results indicate that Mn(III) and Fe(IIII) in the acid phosphatase play an important role on effective binding of phosphate and acceleration of hydrolysis of phosphomonoesters at pH 4–6.  相似文献   

16.
In this study, a novel fluorescent chemosensor 1 based on chromone-3-carboxaldehyde Schiff base was synthesized and featured through nuclear magnetic resonance (NMR) and mass spectra. Spectroscopic investigation indicated that the fluorescent sensor showed high selectivity toward Zn2+ over other metal ions and that the detection limit of 1 could reach 10−7 M. These indicated that 1 acted as a highly selective and sensitive fluorescence chemosensor for Zn2+.  相似文献   

17.
《Inorganica chimica acta》1986,116(2):153-156
Complexes of Cu(II), Ni(II) and Co(II) with the Schiff base 1H-indole-3-ethylensalicylaldimine as ligand are studied. The isolated complexes correspond to the general formulae ML2 (where L= ligand).The complexes were characterized by mass spectra, IR, 1H NMR, UVVis spectra and magnetic measurements.The results indicated that the ligands coordinate through N and O with the metal ions in different stereochemistries.  相似文献   

18.
This study investigated the potential of the Fe(II)-oxidizing bacteria in removing arsenic in aqueous environment. The bacteria were isolated from the batch of tap water and rusty iron wires, and were acclimated to culture media amended with arsenic concentrations, gradually increasing from 100 μg L−1 to 100 mg L−1. Acclimated bacteria with enhanced arsenic tolerance were used to remove arsenic from the aqueous solution. These bacteria belonged to Pseudomonas species according to 16S rRNA gene sequences. Extracellular enzymes produced by these bacteria played important roles in microbial Fe(II) oxidization and Fe oxide precipitation. Moreover, these bacteria survived and propagated in high arsenic condition (100 mg L−1 As). However, after As(III/V) acclimation, morphological characteristics of the bacteria showed some changes, e.g., shrinking of long bacillus. XRD (X-ray diffraction) patterns indicated that Fe oxide precipitations by Fe(II)-oxidizing bacteria in Fe-rich culture medium were poorly-crystallized ferrihydrites. Adsorption on the biogenic ferrihydrites greatly contributed to high arsenic removal efficiency of Fe(II)-oxidizing bacteria.  相似文献   

19.
《Luminescence》2018,33(3):625-629
A simple, sensitive and efficient fluorescence method has been established for the quantitative analysis of bilirubin. The fluorometric determination method was based on the kinetic quenching of ruthenium(II) fluorescence. The quenching effect may be due to the complexation reaction of bilirubin with ruthenium(II). Therefore, the effects of ruthenium concentrations and different surfactants have been studied. Under the optimized experimental parameters, the fluorescence intensity decreased proportionally with the bilirubin concentration and linearity was established in the range of 3.3 × 10−7 to 3.0 × 10−4 M bilirubin. The detection limit calculated from the calibration graph was found to be 5.2 × 10−8 M. The relative standard deviation (RSD) of 10 consecutive measurements of 8.0 × 10−6 M bilirubin was 3.0%, while the recoveries of bilirubin in both human serum and urine samples were obtained in the range 94.0–99.5%. The interference study shows that the developed fluorescence based technique is fast, easy to carry out and shows negligible interference. The developed technique was successfully applied for the analysis of bilirubin in human urine and serum samples. All the experimental results and quality parameters confirmed the sensitivity and reproducibility of the proposed technique for bilirubin determination in human urine and serum samples .  相似文献   

20.
Preparation of the water-soluble, kinetically labile, high-spin iron(II) tetrakis(4-sulfonatophenyl)porphyrin, Fe(II)TPPS4−, has been realized in neutral or weakly acidic solutions containing acetate buffer. The buffer played a double role in these systems: it was used for both adjusting pH and, via formation of an acetato complex, trapping trace amounts of iron(III) ions, which would convert the iron(II) porphyrins to the corresponding iron(III) species. Fe(II)TPPS4− proved to be stable in these solutions even after saturation with air or oxygen. In the absence of acetate ions, however, iron(II) ions play a catalytic role in the formation of iron(III) porphyrins. While the kinetically inert iron(III) porphyrin, Fe(III)TPPS3−, is a regular one with no emission and photoredox properties, the corresponding iron(II) porphyrin displays photoinduced features which are typical of sitting-atop complexes (redshifted Soret absorption and blueshifted emission and Q absorption bands, photoinduced porphyrin ligand-to-metal charge transfer, LMCT, reaction). In the photolysis of Fe(II)TPPS4− the LMCT process is followed by detachment of the reduced metal center and an irreversible ring-opening of the porphyrin ligand, resulting in the degradation of the complex. Possible oxygen-binding ability of Fe(II)TPPS4− (as a heme model) has been studied as well. Density functional theory calculations revealed that in solutions with high acetate concentration there is very little chance for iron(II) porpyrin to bind and release O2, deviating from heme in a hydrophobic microenvironment in hemoglobin. In the presence of an iron(III)-trapping additive that is much less strongly coordinated to the iron(II) center than the acetate ion, Fe(II)TPPS4− may function as a heme model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号