首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Traditional challenges of poor cycling stability and low Coulombic efficiency in Zinc (Zn) metal anodes have limited their practical application. To overcome these issues, this work introduces a single metal-atom design featuring atomically dispersed single copper (Cu) atoms on 3D nitrogen (N) and oxygen (O) co-doped porous carbon (CuNOC) as a highly reversible Zn host. The CuNOC structure provides highly active sites for initial Zn nucleation and further promotes uniform Zn deposition. The 3D porous architecture further mitigates the volume changes during the cycle with homogeneous Zn2+ flux. Consequently, CuNOC demonstrates exceptional reversibility in Zn plating/stripping processes over 1000 cycles at 2 and 5 mA cm−2 with a fixed capacity of 1 mAh cm−2, while achieving stable operation and low voltage hysteresis over 700 h at 5 mA cm−2 and 5 mAh cm−2. Furthermore, density functional theory calculations show that co-doping N and O on porous carbon with atomically dispersed single Cu atoms creates an efficient zincophilic site for stable Zn nucleation. A full cell with the CuNOC host anode and high loading V2O5 cathode exhibits outstanding rate-capability up to 5 A g−1 and a stable cycle life over 400 cycles at 0.5 A g−1.  相似文献   

2.
A key challenge to apply aqueous zinc metal batteries (AZMBs) as next-generation energy storage device is to improve the rechargeability at high current densities, which is needed to circumvent slowly ion diffusion in anode and sluggish charge transfer of Zn2+. Herein, a zincophilic accordion array derived from MOF is developed as zinc host for simultaneously boosted ion diffusion and charge transfer. The designed host is prepared by etching and disproportionation reactions, the abundant zincophilic Sn sites with nano-size uniform disperse on accordion arrays nanosheets (Sn-AA). Then a composite Zn anode (Sn-AA@Zn) is obtained by compacting Sn-AA host with zinc power (Zn-P). The Sn-AA@Zn anode has an ultra-low activation energy (37.1 kJ mol−1) and nucleation overpotential (10 mV), achieving fast charge transfer of Zinc deposition. In addition, the cycle life of the symmetric cell with Sn-AA@Zn anode exceeds 13 000 cycles at 50 mA cm−2, which is 32 times than that of the Zn-P anode. And the full cell with Sn-AA@Zn anode and MnO2 cathode maintains a capacity of 122 mAh g−1 after 5000 cycles at 5 Ag−1. Hopefully, the 3D anode based on Sn-AA@Zn accordion array and Zn-P has significantly improved the rechargeability of AZMB at high current density.  相似文献   

3.
Hollow and hierarchical nanostructures have received wide attention in new‐generation, high‐performance, lithium ion battery (LIB) applications. Both TiO2 and Fe2O3 are under current investigation because of their high structural stability (TiO2) and high capacity (Fe2O3), and their low cost. Here, we demonstrate a simple strategy for the fabrication of hierarchical hollow TiO2@Fe2O3 nanostructures for the application as LIB anodes. Using atomic layer deposition (ALD) and sacrificial template‐assisted hydrolysis, the resulting nanostructure combines a large surface area with a hollow interior and robust structure. As a result, such rationally designed LIB anodes exhibit a high reversible capacity (initial value 840 mAh g?1), improved cycle stability (530 mAh g?1 after 200 cycles at the current density of 200 mA g?1), as well as outstanding rate capability. This ALD‐assisted fabrication strategy can be extended to other hierarchical hollow metal oxide nanostructures for favorable applications in electrochemical and optoelectronic devices.  相似文献   

4.
TiCl4 surface treatment studies of porous electrode structure of TiO2 aggregates synthesized using an acidic precursor and CTAB as a templating agent are carried out in order to understand and improve upon recombination kinetics in the photonanode film matrix, together with enhancing the intrinsic light scattering. The key beneficial features of the photoanode included high surface roughness, necessary for superior dye adsorption, nanocrystallite aggregates leading to diffuse light scattering within the film matrix, and a hierarchical macro‐ and mesopore structure allowing good access of electrolyte to the dye, thereby assisting in dye regeneration (enhanced charge transfer). Pre‐treatment of the TiO2 electrodes reduced recombination at the fluorine‐doped tin oxide (FTO)/electrolyte interface. The post‐treatment study showed enhanced surface roughness through the deposition of a thin overlayer of amorphous TiO2 on the film structure. This led to a notable improvement in both dye adsorption and inherent light scattering effects by the TiO2 aggregates, resulting in enhanced energy harvesting. The thin TiO2 overlayer also acted as a barrier in a core‐shell configuration within the porous TiO2 matrix, and thereby reduced recombination. This allowed the hierarchical macro‐ and mesoporosity of the film matrix to be utilized more effectively for enhanced charge transfer during dye regeneration. Post‐treatment of the aggregated TiO2 matrix resulted in a 36% enhancement in power conversion efficiency from 4.41% of untreated cells to 6.01%.  相似文献   

5.
The achievement of the superior rate capability and cycling stability is always the pursuit of sodium‐ion batteries (SIBs). However, it is mainly restricted by the sluggish reaction kinetics and large volume change of SIBs during the discharge/charge process. This study reports a facile and scalable strategy to fabricate hierarchical architectures where TiO2 nanotube clusters are coated with the composites of ultrafine MoO2 nanoparticles embedded in carbon matrix (TiO2@MoO2‐C), and demonstrates the superior electrochemical performance as the anode material for SIBs. The ultrafine MoO2 nanoparticles and the unique nanorod structure of TiO2@MoO2‐C help to decrease the Na+ diffusion length and to accommodate the accompanying volume expansion. The good integration of MoO2 nanoparticles into carbon matrix and the cable core role of TiO2 nanotube clusters enable the rapid electron transfer during discharge/charge process. Benefiting from these structure merits, the as‐made TiO2@MoO2‐C can deliver an excellent cycling stability up to 10 000 cycles even at a high current density of 10 A g?1. Additionally, it exhibits superior rate capacities of 110 and 76 mA h g?1 at high current densities of 10 and 20 A g?1, respectively, which is mainly attributed to the high capacitance contribution.  相似文献   

6.
Aqueous zinc ion batteries (ZIBs) exhibit great potential for next-generation energy storage devices. However, significant challenges exist, including the uncontrollable formation of Zn dendrite and side reactions during zinc stripping and plating. The mechanism of Zn dendrite nucleation has yet to be fully understood. In this work, the first principles simulations are used to investigate the Zn dendrite formation process. The unintentionally adsorbed O2− and OH ions are the inducing factors for Zn dendrite nucleation and growth on the Zn (0001) plane due to significantly increased Zn diffusion barriers. A top-down method is demonstrated to suppress the dendrite using delaminated V2CTx to capture O2− and OH ions thanks to reduced Zn diffusion barriers. The experimental results revealed significantly suppressed Zn dendrite nucleation and growth, resulting in a layer-by-layer deposit/stripping of Zn. Based on the electrochemical evaluations, the V2CTx-coated Zn composite delivers a high coulombic efficiency of 99.3% at 1.0 mAh cm−2. Furthermore, the full cell achieves excellent cyclic performance of 93.6% capacity retention after 2000 cycles at 1 A g−1. This strategy has broad scalability and can be widely applied in designing metallic anodes for rechargeable batteries.  相似文献   

7.
The energy densities of most supercapacitors (SCs) are low, hindering their practical applications. To construct SCs with ultrahigh energy densities, a porous titanium carbide (TiC)/boron‐doped diamond (BDD) composite electrode is synthesized on a titanium plate that is pretreated using a plasma electrolytic oxidation (PEO) technique. The porous and nanometer‐thick TiO2 layer formed during PEO process prevents the formation of brittle titanium hydride and enhances the BDD growth during chemical vapor deposition processes. Meanwhile, the in situ conversion of TiO2 into TiC is achieved. Combination of this capacitor electrode with soluble redox electrolytes leads to the fabrication of high‐performance SCs in both aqueous and organic solutions. In 0.05 m Fe(CN)63?/4? + 1 m Na2SO4 aqueous solution, the capacitance is as high as 46.3 mF cm?2 at a current density of 1 mA cm?2; this capacitance remains 92% of its initial value even after 10 000 charge/discharge cycles; the energy density is up to 47.4 Wh kg?1 at a power density of 2236 W kg?1. The performance of constructed SCs is superior to most available SCs and some electrochemical energy storage devices like batteries. Such a porous capacitor electrode is thus promising for the construction of high‐performance SCs for practical applications.  相似文献   

8.
A new form of TiO2 microspheres comprised of anatase/TiO2‐B ultrathin composite nanosheets has been synthesized successfully and used as Li‐ion storage electrode material. By comparison between samples obtained with different annealing temperatures, it is demonstrated that the anatase/TiO2‐B coherent interfaces may contribute additional lithium storage venues due to a favorable charge separation at the boundary between the two phases. The as‐prepared hierarchical nanostructures show capacities of 180 and 110 mAh g?1 after 1000 cycles at current densities of 3400 and 8500 mA g?1. The ultrathin nanosheet structure which provides short lithium diffusion length and high electrode/electrolyte contact area also accounts for the high capacity and long‐cycle stability.  相似文献   

9.
The engineering of anode-electrolyte interphase for highly reversible and dendrite-free Zn plating-stripping continues to pose a significant challenge in the progression of aqueous Zn-ion batteries (AZIBs). In this study, a novel approach is introduced that involves the design of a hierarchical carbon nanotube (CNT)-based host through functionalization with cetyltrimethylammonium cations (CTA+). This hierarchical host enables dynamically switchable repulsive shielding to regulate Zn plating. The CNT scaffold, featured with high flexibility and conductivity, facilitates expandable accommodation of continuous Zn plating. Concurrently, the entangled CTA+ cations, acting as manipulators to form switchable repulsive shields, dynamically suppress the growth of Zn dendrites, and result in uniform Zn plating within cationic CNT (C-CNT) hosts. The cationic shielding effect is further elucidated through density functional theory calculations. By incorporating the self-adaptive C-CNT host, Zn symmetric cells exhibit an impressively stable cycling lifespan exceeding 6500 h at 1 mA·cm−2 and achieve a cumulative capacity of 6000 mAh·cm−2 at 4 mA·cm−2. Full batteries, by coupling the C-CNT@Zn anode and MnO2 cathode, demonstrate an 88% capacity retention after 2000 cycles at 2 A·g−1. The design of the self-adaptive C-CNT host offers a promising approach in electrode-electrolyte interphase engineering toward the practical applications of Zn-based energy storage systems.  相似文献   

10.
The mechanically and electrochemically stable and ionically conducting solid electrolyte interphase (SEI) is important for the stabilization of metal anodes. Since SEIs are originally absent in aqueous zinc metal batteries (AZMBs), it is very challenging to suppress water-induced side reactions and dendrite growth of Zn metal anodes (ZMAs). Herein, a gradient-structured and robust solid gradient SEI, consisting of B,O-inner and F,O-exterior layer, in situ formed by hydrated eutectic electrolyte for the homogeneous and reversible Zn deposition, is demonstrated. Moreover, the molar ratio of acetamide to Zn salt is modulated to prohibit the water activity and the hydrolysis of BF4 as well as to achieve high ionic conductivity owing to the regulation of the solvation sheath of Zn2+. Consequently, the eutectic electrolyte allows Zn||Zn symmetric cells to achieve a cycling lifespan of over 4400 h at 0.5 mA cm−2 as well as Zn||PANI full cells to deliver a high capacity retention of 73.2% over 4000 cycles at 1 A g−1 and to demonstrate the stable operation at low temperatures. This work provides the rational design for the hydrated eutectic electrolyte and the corresponding gradient SEIs for dendrite-free and stable Zn anodes even under harsh conditions.  相似文献   

11.
Development of a simple method for preparation of stable open tubular (OT) columns for proteins separation by capillary electrochromatography is still challenging. In this work, the titanium oxide (TiO2) nanoparticles coated OT column was successfully prepared for separation of proteins by capillary electrochromatography. The polydopamine (PDA) film was first formed in the inner surface of a fused-silica capillary by the self-polymerization of dopamine under alkaline conditions. Then the TiO2 coating was deposited onto the surface of pre-modified capillary with PDA by a liquid phase deposition process. The plentifully active hydroxyl groups in PDA coating can chelate with Ti4+ to boost the nucleation and growth of TiO2 film. The as-prepared TiO2 coated OT column was characterized by scanning electron microscopy and measurement of electroosmotic flow. Furthermore, the influence of liquid phase deposition time on the TiO2 coating was investigated. The TiO2 coated OT column was used for successful separation of two variants of β-lactoglobulin and eight glycoisoforms of ovalbumin. The column demonstrated good repeatability and stability. The relative standard deviations of migration times of proteins representing run-to-run, day-to-day, and column-to-column were less than 3.7%. Moreover, the application of the column was verified by successful separation of acidic proteins in egg white.  相似文献   

12.
Superior reaction reversibility of electrode materials is urgently pursued for improving the energy density and lifespan of batteries. Tin dioxide (SnO2) is a promising anode material for alkali‐ion batteries, having a high theoretical lithium storage capacity of 1494 mAh g? based on the reactions of SnO2 + 4Li+ + 4e? ? Sn + 2Li2O and Sn + 4.4Li+ + 4.4e? ? Li4.4Sn. The coarsening of Sn nanoparticles into large particles induced reaction reversibility degradation has been demonstrated as the essential failure mechanism of SnO2 electrodes. Here, three key strategies for inhibiting Sn coarsening to enhance the reaction reversibility of SnO2 are presented. First, encapsulating SnO2 nanoparticles in physical barriers of carbonaceous materials, conductive polymers or inorganic materials can robustly prevent Sn coarsening among the wrapped SnO2 nanoparticles. Second, constructing hierarchical, porous or hollow structured SnO2 particles with stable void boundaries can hinder Sn coarsening between the void‐divided SnO2 subunits. Third, fabricating SnO2‐based heterogeneous composites consisting of metals, metal oxides or metal sulfides can introduce abundant heterophase interfaces in cycled electrodes that impede Sn coarsening among the isolated SnO2 crystalline domains. Finally, a perspective on the future prospect of the structural/compositional designs of SnO2 as anode of alkali‐ion batteries is highlighted.  相似文献   

13.
Hierarchically organized porous carbonized‐Co3O4 inverse opal nanostructures (C‐Co3O4 IO) are synthesized via complementary colloid and block copolymer self‐assembly, where the triblock copolymer Pluronic P123 acts as the template and the carbon source. These highly ordered porous inverse opal nanostructures with high surface area display synergistic properties of high energy density and promising bifunctional electrocatalytic activity toward both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). It is found that the as‐made C‐Co3O4 IO/Ketjen Black (KB) composite exhibits remarkably enhanced electrochemical performance, such as increased specific capacity (increase from 3591 to 6959 mA h g?1), lower charge overpotential (by 284.4 mV), lower discharge overpotential (by 19.0 mV), and enhanced cyclability (about nine times higher than KB in charge cyclability) in Li–O2 battery. An overall agreement is found with both C‐Co3O4 IO/KB and Co3O4 IO/KB in ORR and OER half‐cell tests using a rotating disk electrode. This enhanced catalytic performance is attributed to the porous structure with highly dispersed carbon moiety intact with the host Co3O4 catalyst.  相似文献   

14.
A facile and scalable approach is reported to stabilize the lithium‐metal anode by regulating the Li nucleation and deposition kinetics with laser‐induced graphene (LIG). By processing polyimide (PI) films on copper foils with a laser, a 3D‐hierarchical composite material is constructed, consisting of a highly conductive copper substrate, a pillared array of flexible PI, and most importantly, porous LIG on the walls of the PI pillars. The high number of defects and heteroatoms present in LIG significantly lowers the Li nucleation barrier compared to the copper foil. An overpotential‐free Li nucleation process is identified at current densities lower than 0.2 mA cm?2. Theoretical computations reveal that the defects serve as nucleation centers during the heterogeneous nucleation of lithium. By adopting such composites, ultrastable lithium‐metal anodes are obtained with high Coulombic efficiencies of ≈99%. Full lithium‐metal cells based on LiFePO4 cathodes with a material loading of ≈15 mg cm?2 and a negative/positive ratio of 5/1 could be cycled over 250 times with a capacity loss of less than 10%. The current work highlights the importance of nucleation kinetics on the stability of metallic anodes and demonstrates a practical method toward long lasting Li‐metal batteries.  相似文献   

15.
Practical applications of room temperature sodium–sulfur batteries are still inhibited by the poor conductivity and slow reaction kinetics of sulfur, and dissolution of intermediate polysulfides in the commonly used electrolytes. To address these issues, starting from a novel 3D Zn‐based metal–organic framework with 2,5‐thiophenedicarboxylic acid and 1,4‐bis(pyrid‐4‐yl) benzene as ligands, a S, N‐doped porous carbon host with 3D tubular holes for sulfur storage is fabricated. In contrast to the commonly used melt‐diffusion method to confine sulfur physically, a vapor‐infiltration method is utilized to achieve sulfur/carbon composite with covalent bonds, which can join electrochemical reaction without low voltage activation. A polydopamine derived N‐doped carbon layer is further coated on the composite to confine the high‐temperature‐induced gas‐phase sulfur inside the host. S and N dopants increase the polarity of the carbon host to restrict diffusion of sulfur, and its 3D porous structure provides a large storage area for sulfur. As a result, the obtained composite shows outstanding electrochemical performance with 467 mAh g?1 (1262 mAh g?1(sulfur)) at 0.1 A g?1, 270 mAh g?1 (730 mAh g?1(sulfur)) after 1000 cycles at 1 A g?1 and 201 mAh g?1 (543 mAh g?1(sulfur)) at 5.0 A g?1.  相似文献   

16.
Zn‐based batteries are safe, low cost, and environmentally friendly, as well as delivering the highest energy density of all aqueous battery systems. However, the application of Zn‐based batteries is being seriously hindered by the uneven electrostripping/electroplating of Zn on the anodes, which always leads to enlarged polarization (capacity fading) or even cell shorting (low cycling stability). How a porous nano‐CaCO3 coating can guide uniform and position‐selected Zn stripping/plating on the nano‐CaCO3‐layer/Zn foil interfaces is reported here. This Zn‐deposition‐guiding ability is mainly ascribed to the porous nature of the nano‐CaCO3‐layer, since similar functionality (even though relatively inferior) is also found in Zn foils coated with porous acetylene black or nano‐SiO2 layers. Furthermore, the potential application of this strategy is demonstrated in Zn|ZnSO4+MnSO4|CNT/MnO2 rechargeable aqueous batteries. Compared with the ones with bare Zn anodes, the battery with a nano‐CaCO3‐coated Zn anode delivers a 42.7% higher discharge capacity (177 vs 124 mAh g?1 at 1 A g?1) after 1000 cycles.  相似文献   

17.
The lithium–sulfur (Li–S) battery is considered a promising candidate for the next generation of energy storage system due to its high specific energy density and low cost of raw materials. However, the practical application of Li–S batteries is severely limited by several weaknesses such as the shuttle effect of polysulfides and the insulation of the electrochemical products of sulfur and Li2S/Li2S2. Here, by doping nitrogen and integrating highly dispersed cobalt catalysts, a porous carbon nanocage derived from glucose adsorbed metal–organic framework is developed as the host for a sulfur cathode. This host structure combines the reported positive effects, including high conductivity, high sulfur loading, effective stress release, fast lithium‐ion kinetics, fast interface charge transport, fast redox of Li2Sn, and strong physical/chemical absorption, achieving a long cycle life (86% of capacity retention at 1C within 500 cycles) and high rate performance (600 mAh g?1 at 5C) for a Li–S battery. By combining experiments and density functional theoretical calculations, it is demonstrated that the well‐dispersed cobalt clusters play an important role in greatly improving the diffusion dynamics of lithium, and enhance the absorption and conversion capability of polysulfides in the host structure.  相似文献   

18.
Co3O4 is investigated as a light absorber for all‐oxide thin‐film photovoltaic cells because of its nearly ideal optical bandgap of around 1.5 eV. Thin film TiO2/Co3O4 heterojunctions are produced by spray pyrolysis of TiO2 as a window layer, followed by pulsed laser deposition of Co3O4 as a light absorbing layer. The photovoltaic performance is investigated as a function of the Co3O4 deposition temperature and a direct correlation is found. The deposition temperature seems to affect both the crystallinity and the morphology of the absorber, which affects device performance. A maximum power of 22.7 μW cm?2 is obtained at the highest deposition temperature (600 °C) with an open circuit photovoltage of 430 mV and a short circuit photocurrent density of 0.2 mA cm?2. Performing deposition at 600 °C instead of room temperature improves power by an order of magnitude and reduces the tail states (Urbach edge energy). These phenomena can be explained by larger grains that grows at high temperature, as opposed to many nucleation events that occur at lower temperature.  相似文献   

19.
High energy density, fast recharging ability, and sustained cycle life are the primary requisite of supercapacitors (SCs); these necessities can be fulfilled by engineering a smart current collector with hierarchical combination of different active materials. This study reports a multicomponent design of hierarchical zinc cobalt sulfide (ZCS) hollow nanotube arrays wrapped with interlaced ultrathin Ni(OH)2 nanoflakes for high‐performance electrodes. The ZCS exhibits a unique pentagonal cross‐section and a rough surface that facilitates the deposition of Ni(OH)2 nanoflakes with a thickness of 7.5 nm. The ZCS/Ni(OH)2 hierarchical electrode exhibits a high specific capacitance of 2156 F g?1 and excellent cyclic stability with 94% retention over 3000 cycles. This is attributed to enhanced redox reactions, the direct growth of arrays on 3D porous foam acting as a “superhighway” for electron transport, and the increased availability of electrochemical active sites provided by the ultrathin Ni(OH)2 flakes that also sustain the stability of the electrode by sacrificing themselves during long charge/discharge cycles. Symmetric SCs are assembled to achieve high energy density of 74.93 W h kg?1 and exhibit superior cyclic stability of 78% retention with 81% coulombic efficiency over 10 000 cycles.  相似文献   

20.
A facile approach to synthesize porous disordered carbon layers as energy storage units coating on graphene sheets to form interconnected frameworks by one‐step pyrolysis of the mixture of graphene oxide/polyaniline and KOH is presented. As effective energy storage units, these porous carbon layers play an important role in enhancing the electrochemical performances. The obtained porous carbon material exhibits a high specific surface area (2927 m2 g?1), hierarchical interconnected pores, moderate pore volume (1.78 cm3 g?1), short ion diffusion paths, and a high nitrogen level (6 at%). It displays both unparalleled gravimetric (481 F g?1) and outstanding volumetric capacitance (212 F cm?3) in an aqueous electrolyte. More importantly, the assembled symmetrical supercapacitor delivers not only high gravimetric (25.7 Wh kg?1 based on total mass of electroactive materials) but also high volumetric energy densities (11.3 Wh L?1) in an aqueous electrolyte. Furthermore, the assembled asymmetric supercapacitor yields a maximum energy density up to 88 Wh kg?1, which is, to the best of our knowledge, the highest value so far reported for carbon//MnO2 asymmetric supercapacitors in aqueous electrolytes. Therefore, this novel carbon material holds great promise for potential applications in energy‐related technological fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号