首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Algal aquaculture worldwide is estimated to be a $5–6 billion U.S. per year industry. The largest portion of this industry is represented by macroalgal production for human food in Asia, with increasing activity in South America and Africa. The technical foundation for a shift in the last half century from wild harvest to farming of seaweeds lies in scientific research elucidating life histories and growth characteristics of seaweeds with economic interest. In several notable cases, scientific breakthroughs enabling seaweed-aquaculture advances were not motivated by aquaculture needs but rather by fundamental biological or ecological questions. After scientific breakthroughs, development of practical cultivation methods has been accomplished by both scientific and commercial-cultivation interests. Microalgal aquaculture is much smaller in economic impact than seaweed cultivation but is the subject of much research. Microalgae are cultured for direct human consumption and for extractable chemicals, but current use and development of cultured microalgae is increasingly related to their use as feeds in marine animal aquaculture. The history of microalgal culture has followed two main paths, one focused on engineering of culture systems to respond to physical and physiological needs for growing microalgae and the other directed toward understanding the nutritional needs of animals—chiefly invertebrates such as mollusks and crustaceans—that feed upon microalgae. The challenge being addressed in current research on microalgae in aquaculture food chains is to combine engineering and nutritional principles so that effective and economical production of microalgal feed cultures can be accomplished to support an expanding marine animal aquaculture industry.  相似文献   

2.
Shrimp farming accounts for more than 40% of the world shrimp production. Luminous vibriosis is a shrimp disease that causes major economic losses in the shrimp industry as a result of massive shrimp kills due to infection. Some farms in the South Asia use antibiotics to control Vibrio harveyi, a responsible pathogen for luminous vibriosis. However, the antibiotic-resistant strain was found recently in many shrimp farms, which makes it necessary to develop alternative pathogen control methods. Short-chain fatty acids are metabolic products of organisms, and they have been used as food preservatives for a long time. Organic acids are also commonly added in feeds in animal husbandry, but not in aquaculture. In this study, growth inhibitory effects of short-chain fatty acids, namely formic acid, acetic acid, propionic acid, and butyric acid, on V. harveyi were investigated. Among four acids, formic acid showed the strongest inhibitory effect followed by acetic acid, propionic acid, and butyric acid. The minimum inhibitory concentration (MIC) of 0.035% formic acid suppressed growth of V. harveyi. The major inhibitory mechanism seems to be the pH effect of organic acids. The effective concentration 50 (EC50) values at 96 h inoculation for all organic acids were determined to be 0.023, 0.041, 0.03, and 0.066% for formic, acetic, propionic, and butyric acid, respectively. The laboratory study results are encouraging to formulate shrimp feeds with organic acids to control vibrio infection in shrimp aquaculture farms.  相似文献   

3.
A current practice of marine aquaculture is to integrate fish with low-trophic-level organisms (e.g. molluscs and/or algae) during farming to minimise effects of cultivation on the surrounding environment and to potentially increase economic income. This hypothesis has been tested in the present article experimentally, by co-cultivating fish and mussels (Mytilus galloprovincialis) in the field. Integrated multi-trophic aquaculture (IMTA) experiments were started in July 2004 by transplanting mussel seed at two depths (−3 and −9 m) within 1,000 m downstream to fish cages and at 1,000 m upstream from cages. Mussels were cultured in nylon net bags for 12 months and the growth recorded biometrically. The outcome of our field experiment corroborated the idea of IMTA effectiveness. In fact, in the study area, the organic matter from fish-farm biodeposition caused changes in the chemical environment (i.e. controls and impacted sites were significantly different for organic matter availability and chlorophyll-a) and this induced changes in growth performance of co-cultivated mussels. Mussels cultivated close to cages, under direct organic emission, reached a higher total length, weight and biomass than mussel cultivated far from farms.  相似文献   

4.
Cell culturing complements recombinant DNA technology in the application of biotechnology to aquaculture. Cell cultures can be prepared from the three main groups of multicellular organisms in aquaculture: fish, shellfish, and seaweeds. These cultures can contribute indirectly to the successful farming of these organisms by providing basic insights into how their growth, reproduction, and health can be understood and manipulated. Finally, they can be a direct source of diverse biochemical products for use in aquaculture, medicine and the food industry.  相似文献   

5.
Land-based abalone aquaculture in South Africa, based on the local species Haliotis midae, started in the early 1990s and has grown rapidly in the last decade, with 13 commercial farms now producing over 850 t per annum. Over 6,000 t per annum of kelp Ecklonia maxima are now harvested for this purpose, and some kelp beds are reaching maximum sustainable limits. Research into seaweed aquaculture as feed (Ulva and some Gracilaria) for abalone started in the late 1990s on the southeast coast (where there are no kelp beds) using abalone waste water. A growing body of evidence suggests that a mixed diet of kelp plus other seaweeds can give growth rates at least as good as compound feed, and can improve abalone quality and reduce parasite loads. A pilot scale Ulva lactuca and abalone integrated recirculation unit using 25% recirculation was designed and built on the south west coast of South Africa using one 12,000-L abalone tank containing 13,200 15 ± 2.5 g abalone, connected to two 3,000-L seaweed tanks containing an initial starting biomass of 10 kg of seaweed, replicated 3 times. In an 18-month period, there were no significant differences in abalone health or growth rates, sediment build up and composition, mobile macro fauna densities and species between the recirculation or the flow-through units. Transfer of oxygen generated by the seaweeds to the abalone tanks was poor, resulting in the recirculated abalone tanks having lower (33%) dissolved oxygen concentrations than a comparable flow-through abalone unit. Seaweed nutrient content and specific growth rates in the units were comparable to seaweeds cultivated in fertilized effluent (SGR = 3.2 ± 3.4%.day−1; Yield = 0.2 ± 0.19 kg.m2.day−1). Indications were that at this low recirculation ratio the seaweeds in the units were nutrient limited and that there were no negative effects to the abalone being cultivated in such a recirculation unit at this recirculation ratio.  相似文献   

6.

Purpose

Integrated multi-trophic aquaculture (IMTA), growing different species in the same space, is a technology that may help manage the environmental impacts of coastal aquaculture. Nutrient discharges to seawater from monoculture aquaculture are conceptually minimized in IMTA, while expanding the farm economic base. In this study, we investigate the environmental trade-offs for a small-to-medium enterprise (SME) considering a shift from monoculture towards IMTA production of marine fish.

Methods

A comparative life cycle assessment (LCA), including uncertainty analysis, was implemented for an aquaculture SME in Italy. Quantification and simultaneous propagation of uncertainty of inventory data and uncertainty due to the choice of allocation method were combined with dependent sampling to account for relative uncertainties and statistical testing and interpretation to understand the uncertainty analysis results. Monte Carlo simulations were used as a propagation method. The environmental impacts per kilo of fish produced in monoculture and in IMTA were compared. Twelve impact categories were considered. The comparison is first made excluding uncertainty (deterministic LCA) and then accounting for uncertainties.

Results and discussion

Deterministic LCA results evidence marginal differences between the impacts of IMTA and monoculture fish production. IMTA performs better on all impacts studied. However, statistical testing and interpretation of the uncertainty analysis results showed that only mean impacts for climate change are significantly different for both productive systems, favoring IMTA. For the case study, technical variables such as scales of production of the species from different trophic levels, their integration (space and time), and the choice of species determine the trade-offs. Also, LCA methodological choices such as that for an allocation method and the treatment of relative uncertainties were determinant in the comparison of environmental trade-offs.

Conclusions

The case study showed that environmental trade-offs between monoculture and IMTA fish production depend on technical variables and methodological choices. The combination of statistical methods to quantify, propagate, and interpret uncertainty was successfully tested. This approach supports more robust environmental trade-off assessments between alternatives in LCAs with uncertainty analysis by adding information on the significance of results. It was difficult to establish whether IMTA does bring benefits given the scales of production in the case study. We recommend that the methodology defined here is applied to fully industrialized IMTA systems or bay-scale environments, to provide more robust conclusions about the environmental benefits of this aquaculture type in Europe.
  相似文献   

7.
Useful Species Richness, Proportion of Exotic Species, and Market Orientation on Amazonian Dark Earths and Oxisols Anthropogenic soils of Amazonia, known as Amazonian Dark Earths (ADE), are environments with elevated soil fertility that can produce crops that otherwise yield poorly on the leached and highly acidic Oxisols that dominate much of the basin. While ADE sites near urban centers often attract commercial horticultural production of nutrient–demanding exotics, these soils are also considered possibly unique reservoirs of endemic agrobiodiversity because of their relationship to pre–Columbian indigenous occupation. Through botanical surveys and interviews with smallholder farmers, this study compared useful species richness, proportion of exotic species, and market orientation of farms situated on ADE and non–anthropogenic Oxisols in the municipality of Borba in Central Brazilian Amazonia. Species richness was similar on Amazonian Dark Earth and Oxisol farms (19.6 spp vs. 18.3 spp); however, ADE farms showed significantly higher proportions of exotic species (39% vs. 26%; p = 0.025). Furthermore, ADE farms in Borba demonstrated significantly higher market orientation (61.0% vs. 47.3%; p = 0.028), likely a result of the advantage of Amazonian Dark Earths for production of crops that are nutrient–demanding or pH–sensitive crops that have higher values in the nearby regional market of Manaus.  相似文献   

8.
Thraustochytrids, the heterotrophic, marine, straminipilan protists, are now established candidates for commercial production of the omega-3 polyunsaturated fatty acid (ω-3 PUFA), docosahexaenoic acid (DHA), that is important in human health and aquaculture. Extensive screening of cultures from a variety of habitats has yielded strains that produce at least 50% of their biomass as lipids, and DHA comprising at least 25% of the total fatty acids, with a yield of at least 5 g L−1. Most of the lipids occur as triacylglycerols and a lesser amount as phospholipids. Numerous studies have been carried out on salinity, pH, temperature, and media optimization for DHA production. Commercial production is based on a fed batch method, using high C/N ratio that favors lipid accumulation. Schizochytrium DHA is now commercially available as nutritional supplements for adults and as feeds to enhance DHA levels in larvae of aquaculture animals. Thraustochytrids are emerging as a potential source of other PUFAs such as arachidonic acid and oils with a suite of PUFA profiles that can have specific uses. They are potential sources of asataxanthin and carotenoid pigments, as well as other lipids. Genes of the conventional fatty acid synthesis and the polyketide-like PUFA synthesis pathways of thraustochytrids are attracting attention for production of recombinant PUFA-containing plant oils. Future studies on the basic biology of these organisms, including biodiversity, environmental adaptations, and genome research are likely to point out directions for biotechnology explorations. Potential areas include enzymes, polysaccharides, and secondary metabolites.  相似文献   

9.
In integrated multi-trophic aquaculture (IMTA), seaweeds have the capacity to reduce the environmental impact of nitrogen-rich effluents in coastal ecosystems. To establish such bioremediation systems, selection of suitable seaweed species is important. The distribution and productivity of seaweeds vary seasonally based on water temperature and photoperiod. In Korea, candidate genera such as Pophyra, Laminaria, and Undaria grow from autumn to spring. In contrast, Codium grows well at relatively high water temperatures in summer. Thus, aquaculture systems potentially could capitalize on Codium’s capacity for rapid growth in the warm temperatures of late summer and early fall. In this study, we investigated ammonium uptake and removal efficiency by Codium fragile. In laboratory experiments, we grew C. fragile under various water temperatures (10, 15, 20, and 25°C), irradiances (dark, 10, and 100 μmol photons m−2 s−1), and initial ammonium concentrations (150 and 300 μM); in all cases, C. fragile exhausted the ammonium supply for 6 h. At 150 μM of , ammonium removal efficiency was greatest (99.5 ± 2.6%) when C. fragile was incubated at 20°C under 100 μmol photons m−2 s−1. At 300 μM of , removal efficiency was greatest (86.3 ± 2.1%) at 25°C under 100 μmol photons m−2 s−1. Ammonium removal efficiency was significantly greater at 20 and 25°C under irradiance of 100 μmol photons m−2 s−1 than under other conditions tested.  相似文献   

10.
Fish feed waste enhancement of the particulate food supply and performance of mussels Mytilus edulis suspended near salmon cages at an integrated multi-trophic aquaculture (IMTA) site was assessed using a multi-indicator approach. Dietary indicators included bulk measurements of seston quantity and nutritional quality, proximate analysis (PA), fatty acid (FA) and stable isotope (SI) composition. Mussel tissue indicators consisted of PA and FA composition. Mussel performance was assessed from physiological integrations (scope for growth, SFG), growth efficiency (K2) and condition index (CI). All measurements were made over 2 days at a commercial IMTA farm and a monoculture mussel farm in the Bay of Fundy (Canada). Significant differences detected in seston quantity and quality were within the range of natural spatial variability. The SFG of IMTA mussels was lower (28.71 J h−1) than monoculture mussels (38.71 J h−1) and reflected site differences in natural food availability and composition that affected absorption rate. PA of mussel organs didn't reflect a significant fish feed contribution to the mussel diet. However, dietary enhancement and assimilation of fish feed waste was demonstrated by significantly higher levels of feed FA biomarkers 20:1ω9, 18:2ω6, 18:1ω9 and low ω3/ω6 ratio in seston, mussel tissues and feces at the IMTA site than at the mussel farm. SI (δ13C and δ15N) in seston and mussel feces significantly differed among sites and IMTA mussels had significantly higher CI (21%) than monoculture individuals (16%). It was concluded that bulk indicators of the diet, short-term physiological integrations, and PA of mussel tissues have a limited capacity to detect dietary enhancement at IMTA sites. FA and SI tracers of fish feed waste were shown to be more sensitive for detecting the low-levels of diet enhancement within the large range of natural seston variation.  相似文献   

11.
Rapid scale growth of intensive mariculture systems can often lead to adverse impacts on the environment. Intensive fish and shrimp farming, being defined as throughput-based systems, have a continuous or pulse release of nutrients that adds to coastal eutrophication. As an alternative treatment solution, seaweeds can be used to clean the dissolved part of this effluent. Two examples of successfully using seaweeds as biofilters in intensive mariculture systems are discussed in this paper. The first example shows that Gracilaria co-cultivated with salmon in a tank system reached production rates as high as 48.9 kg m−2 a−1, and could remove 50% of the dissolved ammonium released by the fish in winter, increasing to 90–95% in spring. In the second example, Gracilaria cultivated on ropes near a 22-t fish cage farm, had up to 40% higher growth rate (specific growth rate of 7% d−1) compared to controls. Extrapolation of the results showed that a 1 ha Gracilaria culture gave an annual harvest of 34 t (d. wt), and assimilated 6.5% of the released dissolved nitrogen. This production and assimilation was more than twice that of a Gracilaria monoculture. By integrating seaweeds with fish farming the nutrient assimilating capacity of an area increases. With increased carrying capacity it will be possible to increase salmon cage densities before risking negative environmental effects like eutrophication and toxic algal blooms sometimes associated with the release of dissolved nutrients. The potential for using mangroves and/or seaweeds as filters for wastes from intensive shrimp pond farming is also discussed. It is concluded that such techniques, based on ecological engineering, seems promising for mitigating environmental impacts from intensive mariculture; however, continued research on this type of solution is required. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
The rapid development of intensive fed aquaculture (e.g. finfish and shrimp) throughout the world is associated with concerns about the environmental impacts of such often monospecific practices, especially where activities are highly geographically concentrated or located in suboptimal sites whose assimilative capacity is poorly understood and, consequently, prone to being exceeded. One of the main environmental issues is the direct discharge of significant nutrient loads into coastal waters from open-water systems and with the effluents from land-based systems. In its search for best management practices, the aquaculture industry should develop innovative and responsible practices that optimize its efficiency and create diversification, while ensuring the remediation of the consequences of its activities to maintain the health of coastal waters. To avoid pronounced shifts in coastal processes, conversion, not dilution, is a common-sense solution, used for centuries in Asian countries. By integrating fed aquaculture (finfish, shrimp) with inorganic and organic extractive aquaculture (seaweed and shellfish), the wastes of one resource user become a resource (fertilizer or food) for the others. Such a balanced ecosystem approach provides nutrient bioremediation capability, mutual benefits to the cocultured organisms, economic diversification by producing other value-added marine crops, and increased profitability per cultivation unit for the aquaculture industry. Moreover, as guidelines and regulations on aquaculture effluents are forthcoming in several countries, using appropriately selected seaweeds as renewable biological nutrient scrubbers represents a cost-effective means for reaching compliance by reducing the internalization of the total environmental costs. By adopting integrated polytrophic practices, the aquaculture industry should find increasing environmental, economic, and social acceptability and become a full and sustainable partner within the development of integrated coastal management frameworks.  相似文献   

13.
Seaweed micropropagation techniques and their potentials: an overview   总被引:1,自引:0,他引:1  
The seaweed industry worldwide uses 7.5–8.0 million tonnes of wet seaweeds annually with a majority of it derived from cultivated farms, as the demand for seaweed based-products exceeds the supply of seaweed raw material from natural stocks. The main advantage of cultivation is that it not only obviates overexploitation of natural populations but also facilitates the selection of germplasm with desired traits. To enhance the economic prospects of seaweed cultivation, varied practices, such as simple and cost effective cultivation methods, use of select germplasm as seed stock coupled with good farm management practices, etc., are adopted. Nevertheless, in vitro cell culture techniques have also been employed as they facilitate development and propagation of genotypes of commercial importance. There are more than 85 species of seaweeds for which tissue culture aspects have been reported. Although the initial aim of these techniques focuses mostly on genetic improvement and clonal propagation of seaweeds for mariculture, recently the scope of these techniques has been extended for use in bioprocess technology for production of high value chemicals of immense importance in the pharmaceutical and nutraceutical sectors. Recently, there has been a phenomenal interest in intensifying seaweed tissue and cell culture research to maximize the add-on value of seaweed resources. This paper deals with the status of seaweed micropropagation techniques and their applications in the context of the marine biotech industry. Further, it also provides an analysis of the problems to be resolved for removing the barriers that are impeding the true realization of potentials offered by these techniques for sustainable development and utilization of seaweed resources.  相似文献   

14.
The prevalence of multiple antibiotic resistant bacteria in the waste dumpsite of ten poultry farms in Southwestern Nigeria was investigated. The susceptibility of 195 organisms isolated from the study sites to eight antimicrobial agents were tested using disc diffusion method and the minimum inhibitory concentration of cloxacillin and amoxicillin determined by the agar dilution method. Resistance to the test antibiotics ranged between 0% for gentamicin and 100% for tetracycline and ampicillin among the organisms. Overall, 70 and 90% of the isolates from Okuku, 65.2 and 95.6% from Ogbomoso, and 46.1 and 84.6% from Oyo had MIC above 512 μg/ml for amoxicillin and cloxacillin. Generally, drugs used in high volumes in the studied farms are the least active against the bacterial isolates. Results of this study shows that poultry waste can serve as environmental reservoirs of multiple antibiotic resistant bacteria and their indiscriminate dumping in the environment can expose surrounding human populations to health risks from drug resistant zoonotic pathogens. Part of the data presented in this paper was the subject of a presentation at the World Congress of Pharmacy and Pharmaceutical Sciences/67TH International Congress of the International Pharmaceutical Federation (FIP), 31 August—6 September 2007, Beijing, People’s Republic of China.  相似文献   

15.
The contamination of cow’s milk at the farm level with aflatoxin M1 was investigated in South Africa. Samples of feeds, forage, maize and milk were taken at nine dairy farms, and at the same time samples of the processed milk (retail milk) were collected from the respective dairies to which the farms delivered their milk. The feeds were analysed for aflatoxin B1 and the milk samples for aflatoxin M1 using high performance liquid chromatography (HPLC) and fluorescence detection. All milk samples from the dairy farms were positive for aflatoxin M1, ranging from 0.02 μg/l to 1.5 μg/l. Retail milk was also frequently contaminated with AFM1, at levels of 0.01-3.1 μg/l. High AFB1 levels in feed materials on the farms supplying the raw milk indicate that various sources account for this contamination frequency in milk.  相似文献   

16.
Aquaculture is one of the fastest developing growth sectors in the world and Asia presently contributes about 90% to the global production. However, disease outbreaks are constraint to aquaculture production thereby affects both economic development of the country and socio-economic status of the local people in many countries of Asia-Pacifi c region. Disease control in aquaculture industry has been achieved by following different methods using traditional ways, synthetic chemicals and antibiotics. However, the use of such expensive chemotherapeutants for controlling diseases has been widely criticized for their negative impacts like accumulation of residues, development of drug resistance, immunosuppressants and reduced consumer preference for aqua products treated with antibiotics and traditional methods are ineffective against controlling new diseases in large aquaculture systems. Therefore, alternative methods need to be developed to maintain a healthy microbial environment in the aquaculture systems there by to maintain the health of the cultured organisms. Use of probiotics is one of such method that is gaining importance in controlling potential pathogens. This review provides a summary of the criteria for the selection of the potential probiotics, their importance and future perspectives in aquaculture industry.  相似文献   

17.
Macrobenthic organisms, sediment and water characteristics were analysed in two fish farms in the Ria Formosa at control sites, near the outflows and inside the decantation ponds, in winter and summer 2001. Both farms operate under semi-intensive and intensive regimes. Statistical analysis reveals a very localised effect of fish farms near the outflow of the semi-intensive ponds, with an increase of density of small-sized organisms. The fish farms released high concentrations of nutrients and relatively low quantities of suspended solids. The effects of the effluents on the sediment were significant in the immediate vicinity of discharge point-source. The effects were localized mainly because all farms operate near the sea inlets, where water renewal rates are higher to ensure good fish production, thus permitting a important flushing of waste water. The effects of the effluents were more pronounced in summer because of the farms’ higher productivity at that time of the year. The decantation ponds, obligatory for the intensive regime, were apparently efficient in removing part of the solid waste. However, semi-intensive fish farms represent important sources of dissolved nutrients in the Ria Formosa and the joint effect of several fish farms in a semi-enclosed coastal system may be considerable.  相似文献   

18.
Freshwater fish culture is generally considered the largest sector in world aquaculture. Several of the leading species consume “green water” plankton. This plankton—mostly microalgae (phytoplankton) and also bacteria, protozoa and zooplankton—grows in man-made fertilized water impoundments. The quantity of “green water” microalgae consumed by fish and shrimp is estimated here at a quarter billion ton fresh weight a year, about three and a half times as much as the entire recognized aquaculture. This estimate is based on the quantities of the microalgae consumed and the efficiencies of their use for growth by the main species in aquaculture. The cost of producing “green water” microalgae by the aquaculturists—mostly in SE Asia—is low. The populations in “green water” are biologically managed by the cultured fish themselves. The fish with their different feeding habits help “manage” the composition of the plankton and the overall water quality as they grow. The aquaculturists further manage “green water” through simple means, including water exchange and fertilization. Cost is remunerated partially by the income from sales of the fish and partially by bio mitigation services that “green water” polyculture ponds provide the aquaculturists in treating farm and household waste. A comprehension of the scale and importance of the microalgae sector to world aquaculture should lead to more research to improve understanding of algal population dynamics, growth factors, and efficiency of food chains. The consequent improved control of the plankton’s interaction with fish and shrimp production in “green water” will undoubtedly contribute much to the expansion in production of seafood.  相似文献   

19.
Human population growth has increased demand for food products, which is expected to double in coming decades. Until recently, this demand has been met by expanding agricultural area and intensifying agrochemical-based monoculture of a few species. However, this development pathway has been criticised due to its negative impacts on the environment and other human activities. Therefore, new production practices are needed to meet human food requirements sustainably in the future. Herein, we assert that polyculture practices can ensure the transition of aquaculture towards sustainable development. We review traditional and recent polyculture practices (ponds, recirculated aquaculture systems, integrated multi-trophic aquaculture, aquaponics, integrated agriculture–aquaculture) to highlight how they improve aquaculture through the coexistence and interactions of species. This overview highlights the importance of species compatibility (i.e. species that can live in the same farming environment without detrimental interactions) and complementarity (i.e. complementary use of available resources and/or commensalism/mutualism) to achieve efficient and ethical aquaculture. Overall, polyculture combines aspects of productivity, environmental protection, resource sharing, and animal welfare. However, several challenges must be addressed to facilitate polyculture development across the world. We developed a four-step conceptual framework for designing innovative polyculture systems. This framework highlights the importance of (i) using prospective approaches to consider which species to combine, (ii) performing integrated assessment of rearing environments to determine in which farming system a particular combination of species is the most relevant, (iii) developing new tools and strategies to facilitate polyculture system management, and (iv) implementing polyculture innovation for relevant stakeholders involved in aquaculture transitions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号