首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
JARVIS  S. C. 《Annals of botany》1981,48(2):147-158
The effect of changes in nitrate-nitrogen supply on the absorptionand distribution of copper was examined in grasses grown inflowing solution culture with a maintained concentration ofcopper. Absorption by roots (µg Cu g–1 dry root)decreased markedly when nitrogen had been depleted or was maintainedat 0.1 mg l–1 N, but there was an immediate increase whennitrogen was maintained at 1.0 or 10.0 mg l–1. There werealso large increases in the concentration of copper in the shootsof plants grown with 1.0 and 10.0 mg 1–1 N. The rootsof plants grown with 0.1 or 1.0 mg 1–1 N retained similarproportions of uptake, but a lower proportion was retained whenthe plants were grown with 10.0 mg 1–1. Although a lowerproportion of the copper was associated with cell walls in theplants grown at 10.0 mg 1–1 N this was the result of alower content of cell walls rather than an effect on copperitself. In a longer-term experiment in conventional solutionculture with a range of nitrogen concentration, the concentrationof copper in shoots was largely determined by shoot growth. Dactylis glomerata, Festuca arundinacea, Lolium perenne, cell walls, copper absorption, copper distribution, flowing solution culture, nitrate-nitrogen  相似文献   

2.
Net copper uptake by cellulose discs, isolated root cell walls,and by live and dead roots of whole ryegrass seedlings, werestudied using 64Cu as a tracer. Uptake by cellulose discs stoppedafter around 10 h while uptake by isolated root cell walls continuedfor up to 50 h. An initial fast phase of uptake consisting predominantlyof cell wall adsorption was similar in live and dead tissuefor up to 19 h. A slower phase of uptake continued for up to50 h, greater in live than in dead tissue, the slower phaseof uptake in live tissue consisting of both a living and a deadcomponent. Based on these results, an alternative to the desorptionmethod for estimating the apoplastic contribution to total copperuptake is presented. Time-course studies with seedlings givena variety of growing solution/uptake solution regimes, and therelationship between copper uptake and external copper concentration,for short (4.8 h) and long (42.4 h) term uptakes, suggest thatdiffering contributions of cell wall adsorption and symplasmicabsorption may be responsible for differing effects of externalcopper concentration on uptake being expressed by the same tissue.Water flux had little effect on total uptake of copper althougha possible effect on absorption could not be ruled out. Key words: Copper uptake, cell wall adsorption, ryegrass seedlings  相似文献   

3.
Tilstone  G.H.  Macnair  M.R. 《Plant and Soil》1997,191(2):173-180
Previous work on M. guttatus suggested that nickel tolerance in copper mine populations may also be given by the genes for copper tolerance. It has been shown that copper tolerance in M. guttatus is controlled by a single major gene, plus a number of minor genes (or modifiers) which elevate copper tolerance. Crosses between nickel tolerant individuals from three families and non - tolerants showed that nickel tolerance in M. guttatus is heritable. In order to study the effects of the major copper tolerance gene on copper - nickel co - tolerance in M. guttatus, homozygous copper tolerant and non - tolerant lines were screened against nickel. Significant differences occur between these lines for copper, but were not found when analysed for nickel, indicating that copper - nickel tolerance is not governed by the major gene for copper tolerance. To test whether the minor genes for copper have a pleiotropic effect on nickel tolerance, five selection lines derived from three copper mines (Copperopolis, Penn and Quail) in Calaveras county, California, which vary in degree of tolerance to copper, by the presence or absence of minor copper genes, were also screened against nickel. Two out of three of the lines from Copperopolis showed elevated tolerance to nickel, but two further selection lines derived from Penn and Quail copper mines gave no indication of increased nickel tolerance. These results suggest that the minor genes for copper do not give tolerance to nickel. This was confirmed by the screening of modifier lines, in which modifiers for differing degrees of copper tolerance were inserted into a non - tolerant background. Genotypes possessing fewer copper modifiers yielded higher nickel tolerance than those genotypes which have a greater number of modifiers. Thus nickel tolerance in this species is heritable and under the control of different genes to those producing copper tolerance.  相似文献   

4.
Sugarbeet (Beta vulgaris L.) plants were grown in refined sandat graded levels of copper ranging from acute deficiency (0.000325µg Cu cm–3) to excess (65 µg Cu cm–3).Visible effects of copper deficiency appeared up to 0-00065µg Cu cm–3and depression in growth up to 00065µCucm–3. Copper deficiency decreased the concentrations ofDNA and RNA and the activities of polyphenol oxidase, cytochrome-coxidase, catalase and aldolase; and it increased the activitiesof peroxidase, ribonuclease and acid phosphatase in leaves.The maximum sucrose concentration in roots was obtained at 0-65µCucm–3 Twenty four h after infiltration of a solution of 65µCucm–3into copper deficient leaves, the activities of cytochrome-coxidase and peroxidase had increased even in the presence ofcycloheximide but that of polyphenol oxidase increased onlyin the absence of this inhibitor. Key words: Beta vulgaris, Cu deficiency: Enzymes  相似文献   

5.
Rengel  Z. 《Annals of botany》2000,86(6):1119-1126
Genotypes tolerant to zinc (Zn) toxicity, if they accumulateZn in their roots, may grow better than Zn-sensitive genotypes,even in Zn-deficient soil. In the present study, Holcus lanatusL. ecotypes differing in tolerance to Zn toxicity were grownin Zn-deficient Laffer soil which was amended with Zn to createa range of conditions from Zn deficiency to Zn toxicity. IncreasingZn additions to the soil, up to the sufficiency level, improvedgrowth of all ecotypes. At toxic levels of added Zn, the Zn-sensitiveecotype suffered a greater decrease in growth than the Zn-tolerantecotypes. All ecotypes accumulated more Zn in roots than inshoots, with root concentrations exceeding 8 g Zn kg-1dry weightin extreme cases. When grown in Zn-deficient or Zn-sufficientsoil (up to 0.5 mg Zn kg-1soil added), ecotypes tolerant toZn toxicity took up more Zn, grew better and had greater rootand shoot Zn concentration than the control (Zn-sensitive ecotype).Zn-tolerant ecotypes transported more Zn, copper (Cu) and iron(Fe) from roots to shoots in comparison with the Zn-sensitiveecotype. The average Zn uptake rate from Zn-deficient soil (noZn added) was greater in the Zn-tolerant ecotypes than in theZn-sensitive ecotype. In conclusion, ecotypes of H. lanatusthat are tolerant to Zn toxicity also tolerate Zn deficiencybetter than the Zn-sensitive ecotype because of their greatercapacity for taking up Zn from Zn-deficient soil. This is thefirst report of the coexistence of traits for tolerance to Zntoxicity and Zn deficiency in a single plant genotype. Copyright2000 Annals of Botany Company Copper, heavy metal, Holcus lanatus, iron, zinc deficiency, zinc toxicity  相似文献   

6.
The capacity of roots to accumulate and retain copper was examinedin two clones of Agrostis gigantea which differ in their toleranceto excess copper. Root elongation growth in the non-tolerantclone was completely inhibited by 16 mmol m–3 Cu whereas40 mmol m–3 was required for inhibition in the tolerantclone. The amount of readily exchangeable copper was greaterin roots of the tolerant clone than in the non-tolerant clone.The higher capacity for binding copper did not prevent the entryof copper into the cells of intact or excised roots of the tolerantclone. Roots of both clones contained similar amounts of copperafter removal of the readily exchangeable fraction. More copperwas translocated to the shoots of the tolerant than the non-tolerantclone. The explanation of copper tolerance in Agrostis giganteamust be sought in areas other than those of differences in grosscopper absorption and retention by roots.  相似文献   

7.
Nitrate ion uptake by the roots of hydroponically grown maizeseedlings was measured using the short-lived isotope 13N. Itis shown to be described by a four compartment model, recognizablynitrogen in the root bathing solution, nitrogen which is readilyexchangeable from the root, nitrogen bound in the root, andnitrogen transported from the root. Some of the absorbed activity leaks back into the root bathingsolution with the efflux from the root, as a fraction of theinflux, increasing with concentration to be greater than 0–8at external nitrate ion concentrations above about 1.0 mol m–3.The capacity of the exchangeable root pool increases with externalnitrate ion concentration, approaching the expected cytoplasmicnitrate ion content at the highest external nitrate ion concentrationsstudied (70 mol m–3). The investigation has highlighted the problems of interpretinguptake profiles in experiments for which the 10 min half-lifeof 13N dictates experimental times that are comparable withthe times for saturation of root pools. Key words: Zea mays, 13N, Compartmental model, Nitrate uptake  相似文献   

8.
GRAVES  C. J. 《Annals of botany》1978,42(1):117-125
The effects of various levels of copper on the uptake and distributionof copper in Chrysanthemum morifolium grown in solution cultureand peat-sand have been examined. Whole plants growing in shortdays were sampled at regular intervals, divided into roots,stem, leaves and lateral shoots, and analysed for copper. Thepartitioning of copper between these tissues showed that a relativelylarge proportion (30–40 per cent) of the total plant copperwas accumulated in the roots of normal plants during the harvestingperiod, compared with approximately 10 per cent in the rootsof copper deficient plants. Whilst the copper content (ug g–1) of leaves and stemfrom normal plants was negatively correlated with the amountof dry matter produced (P < 0·001), the correspondingcopper deficient tissues showed little variation in copper contentwith increases in tissue dry weight. A more detailed investigationof the copper content of leaves from normal plants showed thatgradients existed within the plant with respect to both leafposition and time of harvest which could be described by a singlecubic surface equation (P < 0·001).  相似文献   

9.
Fatty acid synthesis from [14C]acetate was studied in the brownalgae, Fucus serratus and Fucus vesiculosus, which had beencollected from sites polluted by run-off from old copper mines.Algae collected from areas exposed to copper in situ showedchanges in the pattern of fatty acids labelled in vitro withan increase in oleate labelling and a decrease in palmitatelabelling in both species. The endogenous fatty acid patternsfor algae from polluted sites also differed from those fromunpolluted sites. Algae from sites polluted by copper containedmore oleate than samples from non-polluted sites. In addition,there were decreases in the polyunsaturated fatty acids -linolenate,octadecatetraenoate and docosapentaenoate for copper-exposedalgae. These differences are discussed with regard to the possiblemetabolic site of copper's action and to the relative toleranceof Fucus spp. to high environmental dissolved copper levels. Key words: Fucus spp., Copper pollution, Fatty acid synthesis  相似文献   

10.
Three clones of Agrostis tenuis Sibth. were studied with respectto the effects of Zn and Cu on the growth of root segments excisedfrom the zone of cell elongation. Elongation growth in segmentsfrom a Cu-tolerant and a Zn-tolerant clone was inhibited toa lesser extent by Cu and Zn respectively than was the growthof a clone which was not tolerant to these metals. Concentrationsof Cu2+ which inhibited root growth also caused leakage of K+from the cells but toxic concentrations of Zn2+ did not induceK+ leakage. Copper induced a higher rate of K+ leakage at 25than at 0 °C. The impllcations of these results for thesite of the toxic effects of Zn and Cu and the nature of theresistance mechanisms are discussed.  相似文献   

11.
Copper resistance mechanisms are crucial for many pathogenic bacteria, including Mycobacterium tuberculosis, during infection because the innate immune system utilizes copper ions to kill bacterial intruders. Despite several studies detailing responses of mycobacteria to copper, the pathways by which copper ions cross the mycobacterial cell envelope are unknown. Deletion of porin genes in Mycobacterium smegmatis leads to a severe growth defect on trace copper medium but simultaneously increases tolerance for copper at elevated concentrations, indicating that porins mediate copper uptake across the outer membrane. Heterologous expression of the mycobacterial porin gene mspA reduced growth of M. tuberculosis in the presence of 2.5 μM copper by 40% and completely suppressed growth at 15 μM copper, while wild-type M. tuberculosis reached its normal cell density at that copper concentration. Moreover, the polyamine spermine, a known inhibitor of porin activity in Gram-negative bacteria, enhanced tolerance of M. tuberculosis for copper, suggesting that copper ions utilize endogenous outer membrane channel proteins of M. tuberculosis to gain access to interior cellular compartments. In summary, these findings highlight the outer membrane as the first barrier against copper ions and the role of porins in mediating copper uptake in M. smegmatis and M. tuberculosis.  相似文献   

12.
The specific growth rates of suspension cultured Loblolly pine(Pinus taeda) cells were used as a physiological response tocopper deficiency, thereby circumventing difficulties incurredthrough cell wall copper adsorption and trace background contaminationwhich complicate alternative experimental approaches. Variation in specific growth rate with copper concentrationis assumed to be hyperbolic, a behaviour consistent with theoreticallyderived models. Growth response data are thereby interpretedto estimate background copper contamination, plus the copperdissociation constant of the uptake system, and the inhibitionconstant for competition by a combination of transition metalions. Analysis of the time course of growth when cells are transferredfrom copper sufficiency to deficiency conditions indicates aninsignificant endogenous pool of copper. Similar considerationof growth under toxicity conditions indicates that no diffusionalbarrier to copper influx exists. These results are interpretedto indicate that copper uptake is not mediated by a membranecarrier, but freely diffuses across the plasmalemma to binddirectly to a high affinity intracellular acceptor. Key words: Copper uptake, Growth analysis, Copper nutrition, Loblolly pine, Pinus taeda, Suspension culture, Cellular nutrition, Endogenous pool  相似文献   

13.
Here we report on the analysis of two aquatic plant species, Azolla caroliniana and Lemna minor, with respect to tolerance and uptake of co-occurring arsenic, copper, and silicon for use in engineered wetlands. Plants were cultured in nutrient solution that was amended with arsenic (0 or 20 μM), copper (2 or 78 μM), and silicon (0 or 1.8 mM) either singly or in combination. We hypothesized that arsenic and copper would negatively affect the uptake of metals, growth, and pigmentation and that silicon would mitigate those stresses. Tolerance was assessed by measuring growth of biomass and concentrations of chlorophyll and anthocyanins. Both plant species accumulated arsenic, copper, and silicon; L. minor generally had higher levels on a per biomass basis. Arsenic negatively impacted A. caroliniana, causing a 30% decrease in biomass production and an increase in the concentration of anthocyanin. Copper negatively impacted L. minor, causing a 60% decrease in biomass production and a 45% decrease in chlorophyll content. Silicon augmented the impact of arsenic on biomass production in A. caroliniana but mitigated the effect of copper on L. minor. Our results suggest that mixtures of plant species may be needed to maximize uptake of multiple contaminants in engineered wetlands.  相似文献   

14.
The relationship of copper supply to the content and movementof copper among organs of wheat plants was examined at sevenstages in their growth from seedlings to maturity on a copperdeficient sand. In the absence of copper (Cu0), plants becameseverely copper deficient and produced no grain; developmentof tillers, leaves, stems, and inflorescences was delayed andgrowth of roots strongly depressed; leaf senescence was retardedand tiller growth was prolonged. Application of a marginal supplyof copper (Cu1) overcame all symptoms and promoted growth andgrain production. Increasing copper supply eightfold (Cu2) didnot change vegetative or grain production. Copper concentrations in stems, individual leaves, and wholetops were highest and responded most strongly to copper supplywhen they were young. As they aged, Cu1 and Cu2 leaves lostcopper rapidly; the first Cu0 leaves retained their copper andremained healthy for more than 7 weeks even though younger leavesdeveloped severe copper deficiency. In all treatments, lossof copper from the oldest leaf paralleled senescence and theloss of nitrogen. It is suggested that copper does not move out of plant leavesuntil they lose organic nitrogen compounds. As a result, copperbehaves in non-senescent leaves as if it is not mobile in plantphloem. But under conditions favouring senescence, copper ishighly mobile: in the present experiment, 67 per cent of thecopper present in vegetative organs of the Cu2 primary shootat flowering moved from them during grain development and thiscould account for all of the copper found in the grain at maturity. The retention of copper by leaves before senescence, its rapidloss during senescence, and the effect of copper deficiencyin delaying senescence resulted in the oldest leaf of severelydeficient Cu0 plants in the present experiment having a highercopper concentration than that of copper adequate Cu1 and Cu2plants. This behaviour could account for the many reports ofanomalous C-shaped ‘Piper-Steenbjerg’ curves inthe relationship of yield to copper concentrations in planttops. The coupling of copper movement from leaves to nitrogenmovement can also account for the unusually high values reportedfor critical concentrations of copper in tops of plants givenhigh levels of nitrogen fertilizers. Old organs should not be included in samples for diagnosis ofcopper deficiency. Only young organs should be used. In thepresent experiment, the copper concentration of young leavesgave a good indication of the copper status of wheat: a valueof 1 µg g–1 in young leaves indicated copper deficiency. copper, nitrogen, phloem transport, mineral transport, deficiency diagnosis, wheat, Triticum aestivum L.  相似文献   

15.
Tall fescue (Festuca arundinacea Schreb.) and white clover (Trifoliumrepens L.) were examined for Se assimilation and nutrient elementuptake. Substantial Se tolerance difference was found betweenthe two species. An inverse relationship between Se accumulationand Se tolerance suggests an exclusion mechanism that restrictsSe uptake by the plant with greater Se tolerance. A positiverelationship between the increase of protein Se concentrationand growth inhibition in the plants suggests that assimilationof Se into proteins is responsible for the Se toxic effect andthis study indicates that the antagonistic effect of sulphateis responsible for reducing Se toxicity at the protein level.No evidence that a Se exclusion mechanism which excludes Sefrom incorporating into protein, such as that found in Astragalusspecies, plays any major role of Se tolerance in these two species. Under Se treatment, plant tissue Ca concentration was increased,but P concentration was decreased. A higher Fe concentrationwas found in white clover which increased with increasing tissueSe concentration. Copper, Mn, and Zn concentrations only increasedin the white clover under conditions of severe growth inhibition. Key words: Tall fescue, white clover, selenium assimilation, selenium exclusion, tolerance, nutrient uptake  相似文献   

16.
We examined the effect of pretreatments (18 h at 5 µmoldm–3) with abscisic acid, the ethylene-releasing substance‘Ethephon’, gibberellic acid, indoleacetic acid,kinetin and zeatin on nitrate uptake and in vivo nitrate reductaseactivity (NRA) in roots of nitrogen-depleted Phaseolus vulgarisL. Nitrate uptake showed an apparent induction pattern witha steady state after about 6 h, in all treatments. The nitrateuptake rate after 6 h was unaffected or at most 30% lower aftertreatments with the plant growth regulators. Gibberellic acid, kinetin and zeatin induced substantial NRAin roots in the absence of nitrate, whereas Ethephon enhancedNRA only during nitrate nutrition. Kinetin-induced NRA (Ki-NRA)was maximal after a pretreatment at 1 µmol dm–3,and showed a lag phase of 6–8 h. Ki-NRA was additive tonitrate-induced NRA (NO3-NRA) for at least 24 h, independentof the induction sequence. After full induction, Ki-NRA approximated20% of NO-3-NRA. Abscisic acid counteracted the developmentof Ki-NRA, but not of NO3-NRA. Cycloheximide and tungstatewere equally effective to suppress the development of nitratereductase activity after supply of kinetin or NO3. Our data are consistent with the operation of two independentenzyme fractions (Ki-NRA and NO3-NRA) with apparentlyidentical properties but with separate control mechanisms. Theabsence of major effects of plant growth regulators on the time-courseand rate of nitrate uptake suggests that exogenous regulators,and possibly endogenous phytohormones are of minor importancefor initial nitrate uptake. The differential effect of someregulators on nitrate uptake and root NRA furthermore indicatesthat the processes of uptake and reduction of NO3 arenot obligatory or exclusively coupled to each other.  相似文献   

17.
The metabolism of proline-14C was examined in vernalized (LT)and unvernalized (HT) barley shoots. The content of prolinein cytoplasmic and cell wall protein fractions was a littlehigher in HT, against the accumulation of free proline in LT.Proline-14C was more heavily incorporated into HT and the cytoplasmicprotein had a higher radioactivity than the cell wall protein.In LT, the activity in the cytoplasmic protein was lower thanthat in the cell wall. The time course of incorporated proline-14Cshowed no distinct changes in HT. but decreased remarkably inthe LT cell wall. The distribution of proline-14C in hydroxyproline and otheramino acids in the two proteins was examined. In the cytoplasmicproteins, the conversion pattern of proline-14C was very similarin both treatments. The highest hydroxyproline activity wasfound at the beginning of incubation and was maintained at acomparatively high level in the HT cell wall. The LT cell wallshowed a gradual increase in radioactivity due to hydroxyprolineand reached maximum conversion at the last incubation period.Distribution of radioactivity due to incorporated proline-14Cwas examined by separating barley shoot tissues into three sections. (Received December 5, 1972; )  相似文献   

18.
Barley plants (Hordewn vulgare L. cv. Atem) were grown fromseed for 28 d in flowing solution culture, during which timeroot temperature was lowered decrementally to 5?C. Plants werethen subjected to root temperatures of 3, 5, 7, 9, 11, 13, 17or 25 ?C, with common air temperature of 25/15 ?C (day/night).Changes in growth, plant total N, and NO3 levels, andnet uptake of NH4+ and NO3 from a maintained concentrationof 10 mmol m–3 NH4NO3 were measured over 14 d. Dry matterproduction increased 6-fold with increasing root temperaturebetween 3–25 ?C. The growth response was biphasic followingan increase in root temperature. Phase I, lasting about 5 d,was characterized by high root specific growth rates relativeto those of the shoot, particularly on a fresh weight basis.During Phase I the shoot dry weight specific growth rates wereinversely related to root temperature between 3–13 ?C.Phase 2, from 5–14 d, was characterized by the approachtowards, and/or attainment of, balanced exponential growth betweenshoots and roots. Concentrations of total N in plant dry matterincreased with root temperature between 3–25 ?C, moreso in the shoots than roots and most acutely in the youngestfully expanded leaf (2?l–6?9% N). When N contents wereexpressed on a tissue fresh weight basis the variation withtemperature lessened and the highest concentration in the shootwas at 11 ?C. Uptake of N increased with root temperature, andat all temperatures uptake of NH4+, exceeded that of NO3,irrespective of time. The proportions of total N uptake over14 d absorbed in the form of NH4+ were (%): 86, 91, 75, 77,76, 73, 77, and 80, respectively, at 3, 5, 7, 9, Il, 13, 17,and 25 ?C. At all temperatures the preference for NH4+ overNO3 uptake increased with time. An inverse relationshipbetween root temperature (3–11 ?C) and the uptake of NH4+as a proportion of total N uptake was apparent during PhaseI. The possible mechanisms by which root temperature limitsgrowth and influences N uptake are discussed. Key words: Hordeum vulgare, root temperature, ammonium, nitrate, ion uptake, growth rate  相似文献   

19.
Apparent uptake and transport of H232PO4 from nutrientsolutions containing 100 mmol m–3 phosphate were characterizedasfunctions of time, concentration and pH in ryegrass seedlings.On a log/log plot, concentration versus uptake to the root resolvedintotwo linear phases, suggesting a change in uptake mechanism orefflux at the break. These results were compared with thosefor 32P uptake and transport in solutions containing Al rangingfrom 0–185 mmol m–3. Al addition depressed pH, butbecauseuptake of P was unaffected by pH below 5–0, noadjustments were attempted. Uptake time-courses revealed clearlythe usualinitial adsorption shoulder in the uptake curve, increasingwith Al concentration up to 37 mmol m–3. Beyond about2 h, P uptaketo the root became linear, at rates increasingwith external Al concentration up to 37 mmol m–3. Concentrationsof Al muchabove 100 mmol m–3 were toxic. Al treatmentsdid not affect P transport to the shoot and absorbed Al wasconfined to the root.The quantities of P and Al taken up intothe root indicated storage in cortex cell vacuoles, lockingup significant amounts of P.Experiments with tillering plantsshowed similar characteristics to those with seedlings. Sequesteringof P with Al within the rootcortex cells was evident, particularlyin plants which had been grown in nutrient containing Al fromsoon after germination. Aland P solution chemistry is discussedin the context of this work and the consequences of effectson P uptake for the economy ofphosphate poor upland soils wereconsidered. Key words: Phosphate, aluminium, adsorption, uptake, Lolium perenne L  相似文献   

20.
Cellular plasmolysis with l M solutions of mannitol appearedto sever plasmodesmatal interconnections between all cells ofthe stems of Phaseolus vulgaris plants except the sieve element-companioncell (se—cc) complexes. Phloem loading and uptake of [14C]sucroseby the storage cells of the stems was unimpaired by cellularplasmolysis followed by rehydration of the stem tissues. Accumulationof phloem-transported 14C-photosynthates of the treated stemswas inhibited in summer-grown plants and unaffected in winter-grownplants indicating that phloem unloading follows a symplasticand a free-space route respectively depending on growth season.At a concentration that did not interfere with cellular metabolism,p-chloromercuribenzene sulphonic acid (PCMBS) applied to thestems blocked [14C]sucrose loading into the phloem and storagecells of the stem, but had no effect on the pool size of free-spacesugars. This latter response is consistent with a facilitatedmechanism of sugar unloading to the stem free-space. Accumulationof phloem-transported 14C-photosynthates was stimulated by PCMBSand this effect was most pronounced in winter-grown plants.Cellular plasmolysis followed by rehydration abolished the PCMBSaction on 14C-photosynthate accumulation. This effect is consistentwith a PCMBS induction of phloem unloading through the stemsymplast. It is proposed that phloem unloading in bean stemsmay follow either a free-space or symplastic route and thatthe latter route is entrained under sink-limited conditions. Phaseolus vulgaris, french bean, stem, phioem unloading, free-space, symplast  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号