首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background  

CUP-5 is a Transient Receptor Potential protein in C. elegans that is the orthologue of mammalian TRPML1. Loss of TRPML1 results in the lysosomal storage disorder Mucolipidosis type IV. Loss of CUP-5 results in embryonic lethality and the accumulation of enlarged yolk granules in developing intestinal cells. The embryonic lethality of cup-5 mutants is rescued by mutations in mrp-4, which is required for gut granule differentiation. Gut granules are intestine-specific lysosome-related organelles that accumulate birefringent material. This link between CUP-5 and gut granules led us to determine the roles of CUP-5 in lysosome and gut granule biogenesis in developing intestinal cells.  相似文献   

2.
Mutations in MCOLN1, which encodes the protein h-mucolipin-1, result in the lysosomal storage disease Mucolipidosis Type IV. Studies on CUP-5, the human orthologue of h-mucolipin-1 in Caenorhabditis elegans, have shown that these proteins are required for lysosome biogenesis. We show here that the lethality in cup-5 mutant worms is due to two defects, starvation of embryonic cells and general developmental defects. Starvation leads to apoptosis through a CED-3-mediated pathway. We also show that providing worms with a lipid-soluble metabolite partially rescues the embryonic lethality but has no effect on the developmental defects, the major cause of the lethality. These results indicate that supplementing the metabolic deficiency of Mucolipidosis Type IV patients mat not be sufficient to alleviate the symptoms due to tissue degeneration.  相似文献   

3.
BRCA1 is a checkpoint and DNA damage repair gene that secures genome integrity. We have previously shown that mice lacking full-length Brca1 (Brca1(delta11/delta11)) die during embryonic development. Haploid loss of p53 completely rescues embryonic lethality, and adult Brca1(delta11/delta11)p53+/- mice display cancer susceptibility and premature aging. Here, we show that reduced expression and/or the absence of Chk2 allow Brca1(delta11/delta11) mice to escape from embryonic lethality. Compared to Brca1(delta11/delta11)p53+/- mice, lifespan of Brca1(delta11/delta11)Chk2-/- mice was remarkably extended. Analysis of Brca1(delta11/delta11)Chk2-/- mice revealed that p53-dependent apoptosis and growth defect caused by Brca1 deficiency are significantly attenuated in rapidly proliferating organs. However, in later life, Brca1(delta11/delta11)Chk2-/- female mice developed multiple tumors. Furthermore, haploid loss of ATM also rescued Brca1 deficiency-associated embryonic lethality and premature aging. Thus, in response to Brca1 deficiency, the activation of the ATM-Chk2-p53 signaling pathway contributes to the suppression of neoplastic transformation, while leading to compromised organismal homeostasis. Our data highlight how accurate maintenance of genomic integrity is critical for the suppression of both aging and malignancy, and provide a further link between aging and cancer.  相似文献   

4.
Suppressor of cytokine signaling 3 (SOCS3) binds cytokine receptors and thereby suppresses cytokine signaling. Deletion of SOCS3 causes an embryonic lethality that is rescued by a tetraploid rescue approach, demonstrating an essential role in placental development and a non-essential role in embryo development. Rescued SOCS3-deficient mice show a perinatal lethality with cardiac hypertrophy. SOCS3-deficient placentas have reduced spongiotrophoblasts and increased trophoblast secondary giant cells. Enforced expression of SOCS3 in a trophoblast stem cell line (Rcho-1) suppresses giant cell differentiation. Conversely, SOCS3-deficient trophoblast stem cells differentiate more readily to giant cells in culture, demonstrating that SOCS3 negatively regulates trophoblast giant cell differentiation. Leukemia inhibitory factor (LIF) promotes giant cell differentiation in vitro, and LIF receptor (LIFR) deficiency results in loss of giant cell differentiation in vivo. Finally, LIFR deficiency rescues the SOCS3-deficient placental defect and embryonic lethality. The results establish SOCS3 as an essential regulator of LIFR signaling in trophoblast differentiation.  相似文献   

5.
Loss-of-function mutations in TRPML1 (transient receptor potential mucolipin 1) cause the lysosomal storage disorder, mucolipidosis type IV (MLIV). Here, we report that flies lacking the TRPML1 homolog displayed incomplete autophagy and reduced viability during the pupal period-a phase when animals rely on autophagy for nutrients. We show that TRPML was required for fusion of amphisomes with lysosomes, and its absence led to accumulation of vesicles of significantly larger volume and higher luminal Ca(2+). We also found that trpml(1) mutant cells showed decreased TORC1 (target of rapamycin complex 1) signaling and a concomitant upregulation of autophagy induction. Both of these defects in the mutants were reversed by genetically activating TORC1 or by feeding the larvae a high-protein diet. The high-protein diet?also reduced the pupal lethality and the increased volume of acidic vesicles. Conversely, further inhibition of TORC1 activity by rapamycin exacerbated the mutant phenotypes. Finally, TORC1 exerted reciprocal control on TRPML function. A high-protein diet caused cortical localization of TRPML, and this effect was blocked by rapamycin. Our findings delineate the interrelationship between the TRPML and TORC1 pathways and raise the intriguing possibility that a high-protein diet might reduce the severity of MLIV.  相似文献   

6.
Mullen JR  Das M  Brill SJ 《Genetics》2011,187(1):73-87
Saccharomyces cerevisiae cells lacking the Slx5-Slx8 SUMO-targeted Ub ligase display increased levels of sumoylated and polysumoylated proteins, and they are inviable in the absence of the Sgs1 DNA helicase. One explanation for this inviability is that one or more sumoylated proteins accumulate to toxic levels in sgs1Δ slx5Δ cells. To address this possibility, we isolated a second-site suppressor of sgs1Δ slx5Δ synthetic lethality and identified it as an allele of the ULP2 SUMO isopeptidase. The suppressor, ulp2-D623H, behaved like the ulp2Δ allele in its sensitivity to heat, DNA replication stress, and DNA damage. Surprisingly, deletion of ULP2, which is known to promote the accumulation of poly-SUMO chains, suppressed sgs1Δ slx5Δ synthetic lethality and the slx5Δ sporulation defect. Further, ulp2Δ's growth sensitivities were found to be suppressed in ulp2Δ slx5Δ double mutants. This mutual suppression indicates that SLX5-SLX8 and ULP2 interact antagonistically. However, the suppressed strain sgs1Δ slx5Δ ulp2-D623H displayed even higher levels of sumoylated proteins than the corresponding double mutants. Thus, sgs1Δ slx5Δ synthetic lethality cannot be due simply to high levels of bulk sumoylated proteins. We speculate that the loss of ULP2 suppresses the toxicity of the sumoylated proteins that accumulate in slx5Δ-slx8Δ cells by permitting the extension of poly-SUMO chains on specific target proteins. This additional modification might attenuate the activity of the target proteins or channel them into alternative pathways for proteolytic degradation. In support of this latter possibility we find that the WSS1 isopeptidase is required for suppression by ulp2Δ.  相似文献   

7.
Calreticulin is an endoplasmic reticulum resident Ca(2+)-binding chaperone. The importance of the protein is illustrated by embryonic lethality because of impaired cardiac development in calreticulin-deficient mice. The molecular details underlying this phenotype are not understood. In this study, we show that overexpression of activated calcineurin reverses the defect in cardiac development observed in calreticulin-deficient mice and rescues them from embryonic lethality. The surviving mice show no defect in cardiac development but exhibited growth retardation, hypoglycemia, increased levels of serum triacylglycerols, and cholesterol. Reversal of embryonic lethality because of calreticulin deficiency by activated calcineurin underscores the impact of the calreticulin-calcineurin functions on the Ca(2+)-dependent signaling cascade during early cardiac development. These findings show that calreticulin and calcineurin play fundamental roles in Ca(2+)-dependent pathways essential for normal cardiac development and explain the molecular basis for the rescue of calreticulin-deficient phenotype.  相似文献   

8.
Sun T  Wang X  Lu Q  Ren H  Zhang H 《Autophagy》2011,7(11):1308-1315
The process of macroautophagy (herein referred to as autophagy) involves the formation of a closed double-membrane structure, called the autophagosome, and its subsequent fusion with lysosomes to form an autolysosome. Lysosomes are regenerated from autolysosomes after degradation of the sequestrated materials. In this study, we showed that mutations in cup-5, encoding the C. elegans Mucolipin 1 homolog, cause defects in the autophagy pathway. In cup-5 mutants, a variety of autophagy substrates accumulate in enlarged vacuoles that display characteristics of late endosomes and lysosomes, indicating defective proteolytic degradation in autolysosomes. We further revealed that lysosomes in coelomocytes (scavenger cells located in the body cavity) are smaller in size and more numerous in mutants with loss of autophagy activity. Furthermore, the enlarged vacuole accumulation abnormality and embryonic lethality of cup-5 mutants are partially suppressed by reduced autophagy activity. Our results indicate that the basal constitutive level of autophagy activity regulates the size and number of lysosomes and provides insights into the molecular mechanisms underlying mucolipidosis type IV disease.  相似文献   

9.
ProBMP4 is initially cleaved at a site adjacent to the mature ligand (the S1 site) allowing for subsequent cleavage at an upstream (S2) site. Mature BMP4 synthesized from a precursor in which the S2 site cannot be cleaved remains in a complex with the prodomain that is targeted for lysosomal degradation, and is thus less active when overexpressed in Xenopus. Here we report that mice carrying a point mutation that prevents S2 processing show severe loss of BMP4 activity in some tissues, such as testes and germ cells, whereas other tissues that are sensitive to Bmp4 dosage, such as the limb, dorsal vertebrae and kidney, develop normally. In a haploinsufficient background, inability to cleave the S2 site leads to embryonic and postnatal lethality due to defects in multiple organ systems including the allantois, placental vasculature, ventral body wall, eye and heart. These data demonstrate that cleavage of the S2 site is essential for normal development and, more importantly, suggest that this site might be selectively cleaved in a tissue-specific fashion. In addition, these studies provide the first genetic evidence that BMP4 is required for dorsal vertebral fusion and closure of the ventral body wall.  相似文献   

10.
Peroxisome biogenesis disorders (PBDs) are metabolic disorders caused by the loss of peroxisomes. The majority of PBDs result from mutation in one of 3 genes that encode for the peroxisomal AAA ATPase complex (AAA-complex) required for cycling PEX5 for peroxisomal matrix protein import. Mutations in these genes are thought to result in a defect in peroxisome assembly by preventing the import of matrix proteins. However, we show here that loss of the AAA-complex does not prevent matrix protein import, but instead causes an upregulation of peroxisome degradation by macroautophagy, or pexophagy. The loss of AAA-complex function in cells results in the accumulation of ubiquitinated PEX5 on the peroxisomal membrane that signals pexophagy. Inhibiting autophagy by genetic or pharmacological approaches rescues peroxisome number, protein import and function. Our findings suggest that the peroxisomal AAA-complex is required for peroxisome quality control, whereas its absence results in the selective degradation of the peroxisome. Thus the loss of peroxisomes in PBD patients with mutations in their peroxisomal AAA-complex is a result of increased pexophagy. Our study also provides a framework for the development of novel therapeutic treatments for PBDs.  相似文献   

11.
The developmental accumulation of lysosomal alpha-mannosidase-1 activity in Dictyostelium discoideum is controlled at the level of de novo enzyme precursor biosynthesis. Aggregation-deficient mutants are defective with regard to the accumulation of alpha-mannosidase-1 activity beyond 8-16 h of development. We used enzyme-specific monoclonal antibodies to show that the activity defect in aggregation-deficient strains is not due to a lack of alpha-mannosidase-1-precursor synthesis or processing, or to preferential degradation of the mature enzyme protein. Instead, the defect is a result of enzyme inactivation: cells of aggregation-deficient strains contain significant amounts of inactive alpha-mannosidase-1 protein late in development. The alpha-mannosidase-1 inactivation phenotype is associated with a more general defect in lysosomal enzyme modification. A change in the post-translational modification system occurs during normal slime-mold development, as shown by differences in enzyme isoelectric point, antigenicity, and thermolability. We found that this change in modification does not occur in mutant strains blocked early in development. We propose a model in which pleiotropic mutations in early aggregation-essential genes can indirectly affect the accumulation of alpha-mannosidase-1 activity by preventing the expression of a developmentally controlled change in the post-translational modification system, a change which is required for the stability of several lysosomal enzymes late in development.  相似文献   

12.
13.
Transport of newly synthesized proteins from the endoplasmic reticulum (ER) to the Golgi is mediated by the coat protein complex COPII. The inner coat of COPII is assembled from heterodimers of SEC23 and SEC24. Though mice with mutations in one of the four Sec24 paralogs, Sec24b, exhibit a neural tube closure defect, deficiency in humans or mice has not yet been described for any of the other Sec24 paralogs. We now report characterization of mice with targeted disruption of Sec24d. Early embryonic lethality is observed in mice completely deficient in SEC24D, while a hypomorphic Sec24d allele permits survival to mid-embryogenesis. Mice haploinsufficient for Sec24d exhibit no phenotypic abnormality. A BAC transgene containing Sec24d rescues the embryonic lethality observed in Sec24d-null mice. These results demonstrate an absolute requirement for SEC24D expression in early mammalian development that is not compensated by the other three Sec24 paralogs. The early embryonic lethality resulting from loss of SEC24D in mice contrasts with the previously reported mild skeletal phenotype of SEC24D deficiency in zebrafish and restricted neural tube phenotype of SEC24B deficiency in mice. Taken together, these observations suggest that the multiple Sec24 paralogs have developed distinct functions over the course of vertebrate evolution.  相似文献   

14.
Stem cells have important clinical and experimental potentials. Trophoblast stem (TS) cells possess the ability to differentiate into trophoblast subtypes in vitro and contribute to the trophoblast lineage in vivo. Suppressor of cytokine signaling 3 (SOCS3) is a negative regulator of cytokine signaling. Targeted disruption of SOCS3 revealed embryonic lethality on E12.5; it was caused by placental defect with enhanced leukemia inhibitory factor receptor signaling. A complementation of the wild-type (WT) placenta by using tetraploid rescue technique showed that the embryonic lethality in SOCS3-deficient embryo was due to the placental defect. Here we demonstrate that TS cells supplementation rescues placental defect in SOCS3-deficient embryos. In the rescued placenta, TS cells were integrated into the placental structure, and a substantial structural improvement was observed in the labyrinthine layer that was disrupted in the SOCS3-deficient placenta. Importantly, by supplying TS cells, living SOCS3-deficient embryos were detected at term. These results indicate a functional contribution of TS cells in the placenta and their potential application.  相似文献   

15.
《Autophagy》2013,9(11):1308-1315
The process of macroautophagy (herein referred to as autophagy) involves the formation of a closed double-membrane structure, called the autophagosome, and its subsequent fusion with lysosomes to form an autolysosome. Lysosomes are regenerated from autolysosomes after degradation of the sequestrated materials. In this study, we showed that mutations in cup-5, encoding the C. elegans Mucolipin 1 homolog, cause defects in the autophagy pathway. In cup-5 mutants, a variety of autophagy substrates accumulate in enlarged vacuoles that display characteristics of late endosomes and lysosomes, indicating defective proteolytic degradation in autolysosomes. We further revealed that lysosomes in coelomocytes (scavenger cells located in the body cavity) are smaller in size and more numerous in mutants with loss of autophagy activity. Furthermore, the enlarged vacuole accumulation abnormality and embryonic lethality of cup-5 mutants are partially suppressed by reduced autophagy activity. Our results indicate that the basal constitutive level of autophagy activity regulates the size and number of lysosomes and provides insights into the molecular mechanisms underlying mucolipidosis type IV disease.  相似文献   

16.
Charged MVB protein 5 (CHMP5) is a coiled coil protein homologous to the yeast Vps60/Mos10 gene and other ESCRT-III complex members, although its precise function in either yeast or mammalian cells is unknown. We deleted the CHMP5 gene in mice, resulting in a phenotype of early embryonic lethality, reflecting defective late endosome function and dysregulation of signal transduction. Chmp5-/- cells exhibit enlarged late endosomal compartments that contain abundant internal vesicles expressing proteins that are characteristic of late endosomes and lysosomes. This is in contrast to ESCRT-III mutants in yeast, which are defective in multivesicular body (MVB) formation. The degradative capacity of Chmp5-/- cells was reduced, and undigested proteins from multiple pathways accumulated in enlarged MVBs that failed to traffic their cargo to lysosomes. Therefore, CHMP5 regulates late endosome function downstream of MVB formation, and the loss of CHMP5 enhances signal transduction by inhibiting lysosomal degradation of activated receptors.  相似文献   

17.
Biogenesis of lysosome-related organelles complex-1 (BLOC-1) is a component of the molecular machinery required for the biogenesis of specialized organelles and lysosomal targeting of cargoes via the endosomal to lysosomal trafficking pathway. BLOS1, one subunit of BLOC-1, is implicated in lysosomal trafficking of membrane proteins. We found that the degradation and trafficking of epidermal growth factor receptor (EGFR) were delayed in BLOS1 knockdown cells, which were rescued through BLOS1 overexpression. A key feature to the delayed EGFR degradation is the accumulation of endolysosomes in BLOS1 knockdown cells or BLOS1 knock-out mouse embryonic fibroblasts. BLOS1 interacted with SNX2 (a retromer subunit) and TSG101 (an endosomal sorting complex required for transport subunit-I) to mediate EGFR lysosomal trafficking. These results suggest that coordination of the endolysosomal trafficking proteins is important for proper targeting of EGFR to lysosomes.  相似文献   

18.
Overexpression of the mammalian proapoptotic protein Bax induces cell death in plant and yeast cells. The Bax inihibitor-1 (BI-1) gene rescues yeast and plant from Bax-mediated lethality. Using the Arabidopsis BI-1 (AtBI-1) gene controlled by the GAL1 promoter as a cell death suppressor in yeast, Cdf1 (cell growth defect factor-1) was isolated from Arabidopsis cDNA library. Overexpression of Cdf1 caused cell death in yeast, whereas such an effect was suppressed by co-expression of AtBI-1. The Cdf1 protein fused with a green fluorescent protein was localized in the mitochondria and resulted in the loss of mitochondrial membrane potential in yeast. The Bax-resistant mutant BRM1 demonstrated tolerance against Cdf1-mediated lethality, whereas the Deltaatp4 strain was sensitive to Cdf1. Our results suggest that Cdf1 and Bax cause mitochondria-mediated yeast lethality through partially overlapped pathways.  相似文献   

19.
DDRGK domain-containing protein 1 (DDRGK1) is an important component of the newly discovered ufmylation system and its absence has been reported to induce extensive endoplasmic reticulum (ER) stress. Recently, emerging evidence indicates that the ufmylation system is correlated with autophagy, although the exact mechanism remains largely unknown. To explore the regulation mechanism of DDRGK1 on autophagy, in this study, we established an immortalized mouse embryonic fibroblast (MEF) cell lines harvested from the DDRGK1F/F:ROSA26-CreERT2 mice, in which DDRGK1 depletion can be induced by 4-hydroxytamoxifen (4-OHT) treatment. Here, we show that DDRGK1 deficiency in MEFs has a dual effect on autophagy, which leads to a significant accumulation of autophagosomes. On one hand, it promotes autophagy induction by impairing mTOR signaling; on the other hand, it blocks autophagy degradation by inhibiting autophagosome–lysosome fusion. This dual effect of DDRGK1 depletion on autophagy ultimately aggravates apoptosis in MEFs. Further studies reveal that DDRGK1 loss is correlated with suppressed lysosomal function, including impaired Cathepsin D (CTSD) expression, aberrant lysosomal pH, and v-ATPase accumulation, which might be a potential trigger for impairment in autophagy process. Hence, this study confirms a crucial role of DDRGK1 as an autophagy regulator by controlling lysosomal function. It may provide a theoretical basis for the treatment strategies of various physiological diseases caused by DDRGK1 deficiency.Subject terms: Macroautophagy, Apoptosis, Endoplasmic reticulum  相似文献   

20.
The lysosomal membrane proteins LAMP-1 and LAMP-2 are estimated to contribute to about 50% of all proteins of the lysosome membrane. Surprisingly, mice deficient in either LAMP-1 or LAMP-2 are viable and fertile. However, mice deficient in both LAMP-1 and LAMP-2 have an embryonic lethal phenotype. These results show that these two major lysosomal membrane proteins share common functions in vivo. However, LAMP-2 seems to have more specific functions since LAMP-2 single deficiency has more severe consequences than LAMP-1 single deficiency. Mutations in LAMP-2 gene cause a lysosomal glycogen storage disease, Danon disease, in humans. LAMP-2 deficient mice replicate the symptoms found in Danon patients including accumulation of autophagic vacuoles in heart and skeletal muscle. In embryonic fibroblasts, mutual disruption of both LAMPs is associated with an increased accumulation of autophagic vacuoles and unesterified cholesterol, while protein degradation rates are not affected. These results clearly show that the LAMP proteins fulfil functions far beyond the initially suggested roles in maintaining the structural integrity of the lysosomal compartment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号