首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, we reported that isoflavones exert a protective effect against the endoplasmic reticulum (ER) stress-mediated neuronal degeneration, and ER stress-mediated homocysteine toxicity may play an important role in the pathogenesis of neurodegeneration. Therefore, in this study we investigated the effects of isoflavones (genistein and daidzein) against homocysteine-mediated neurotoxicity in SH-SY5Y human neuroblastoma cells. The treatment of cells with either 17β-estradiol or isoflavones significantly protected the cells against homocysteine-mediated apoptosis. Isoflavones repressed homocysteine-mediated ER stress, reflected in the reduced expression of the immunoglobin heavy chain-binding protein mRNA, spliced X-box-protein-1 mRNA and the phosphorylated form of eukaryotic translation initiation factor 2α protein. Homocysteine caused significant increases in intracellular S-adenosylhomocysteine (SAH) and DNA damage. Isoflavones significantly alleviated DNA damage, but did not change SAH levels. Furthermore, the treatment of cells with isoflavones significantly reduced the microtubule-associated protein tau hyperphosphorylation by inactivating glycogen synthase kinase-3β and activating serine/threonine-protein phosphatase 2A. These results clearly demonstrate that isoflavones alleviate the ER stress- and DNA damage-mediated neurodegeneration caused by homocysteine.  相似文献   

2.
Doppel (Dpl) is a prion (PrP)-like protein due to the structural and biochemical similarities; however, the natural functions of Dpl and PrP remain unclear. In this study, a 531-bp human PRND gene sequence encoding Dpl protein was amplified from human peripheral blood leucocytes. Furl-length and various truncated human Dpl and PrP proteins were expressed and purified from Escherichia coil Supplement of the full-length Dpl onto human neuroblastoma cell SH-SY5Y induced remarkable cytotoxicity, and the region responsible for its cytotoxicity was mapped at the middle segment of Dpl [amino acids (aa) 81-122]. Interestingly, DpMnduced cytotoxicity was antagonized by the presence of full- length wild-type PrP. Analysis on fragments of PrP mutants showed that the N-terminal fragment (aa 23- 90) of PrP was responsible for the protective activity. A truncated PrP (PrPA32-121) with similar secondary structure as Dpl induced DpMike cytotoxicity on SH- SY5Y cells. Furthermore, binding of copper ion could enhance the antagonizing effect of PrP on Dpi-induced cytotoxicity. Apoptosis assays revealed that cytotoxicity induced by Dpl occurred through an apoptotic mechanism. These results suggested that the function of Dpl is antagonistic to PrP rather than synergistic.  相似文献   

3.
Cell differentiation is associated with changes in metabolism and function. Understanding these changes during differentiation is important in the context of stem cell research, cancer, and neurodegenerative diseases. An early event in neurodegenerative diseases is the alteration of mitochondrial function and increased oxidative stress. Studies using both undifferentiated and differentiated SH-SY5Y neuroblastoma cells have shown distinct responses to cellular stressors; however, the mechanisms remain unclear. We hypothesized that because the regulation of glycolysis and oxidative phosphorylation is modulated during cellular differentiation, this would change bioenergetic function and the response to oxidative stress. To test this, we used retinoic acid (RA) to induce differentiation of SH-SY5Y cells and assessed changes in cellular bioenergetics using extracellular flux analysis. After exposure to RA, the SH-SY5Y cells had an increased mitochondrial membrane potential, without changing mitochondrial number. Differentiated cells exhibited greater stimulation of mitochondrial respiration with uncoupling and an increased bioenergetic reserve capacity. The increased reserve capacity in the differentiated cells was suppressed by the inhibitor of glycolysis 2-deoxy-d-glucose. Furthermore, we found that differentiated cells were substantially more resistant to cytotoxicity and mitochondrial dysfunction induced by the reactive lipid species 4-hydroxynonenal or the reactive oxygen species generator 2,3-dimethoxy-1,4-naphthoquinone. We then analyzed the levels of selected mitochondrial proteins and found an increase in complex IV subunits, which we propose contributes to the increase in reserve capacity in the differentiated cells. Furthermore, we found an increase in MnSOD that could, at least in part, account for the increased resistance to oxidative stress. Our findings suggest that profound changes in mitochondrial metabolism and antioxidant defenses occur upon differentiation of neuroblastoma cells to a neuron-like phenotype.  相似文献   

4.
Tianma (Rhizoma gastrodiae) is the dried rhizome of the plant Gastrodia elata Blume (Orchidaceae family). As a medicinal herb in traditional Chinese medicine (TCM) its functions are to control convulsions, pain, headache, dizziness, vertigo, seizure, epilepsy and others. In addition, tianma is frequently used for the treatment of neurodegenerative disorders though the mechanism of action is widely unknown. Accordingly, this study was designed to examine the effects of tianma on the proteome metabolism in differentiated human neuronal SH-SY5Y cells to explore its specific effects on neuronal signaling pathways. Using an iTRAQ (isobaric tags for relative and absolute quantitation)-based proteomics research approach, we identified 2390 modulated proteins, out of which 406 were found to be altered by tianma in differentiated human neuronal SH-SY5Y cells. Based on the observed data, we hypothesize that tianma promotes neuro-regenerative signaling cascades by controlling chaperone/proteasomal degradation pathways (e.g. CALR, FKBP3/4, HSP70/90) and mobilizing neuro-protective genes (such as AIP5) as well as modulating other proteins (RTN1/4, NCAM, PACSIN2, and PDLIM1/5) with various regenerative modalities and capacities related to neuro-synaptic plasticity.  相似文献   

5.
Paraquat is a widely used herbicide that is structurally similar to the known dopaminergic neurotoxicant 1-methyl-4-phenyl-pyridine and acts as a potential etiologic factor for the development of Parkinson's disease. In this study, we investigated the protective roles of lipocalin-type prostaglandin (PG) D synthase (L-PGDS) against paraquat-mediated apoptosis of human neuronal SH-SY5Y cells. The treatment of SH-SY5Y cells with paraquat decreased the intracellular GSH level, and enhanced the cell death with elevation of the caspase activities. L-PGDS was expressed in SH-SY5Y cells, and its expression was enhanced with the peak at 2?h after the initiation of the treatment with paraquat. Inhibition of PGD? synthesis and exogenously added PGs showed no effects regarding the paraquat-mediated apoptosis. SiRNA-mediated suppression of L-PGDS expression in the paraquat-treated cells increased the cell death and caspase activities. Moreover, over-expression of L-PGDS suppressed the cell death and caspase activities in the paraquat-treated cells. The results of a promoter-luciferase assay demonstrated that paraquat-mediated elevation of L-PGDS gene expression occurred through the NF-κB element in the proximal promoter region of the L-PGDS gene in SH-SY5Y cells. These results indicate that L-PGDS protected against the apoptosis in the paraquat-treated SH-SY5Y cells through the up-regulation of L-PGDS expression via the NF-κB element. Thus, L-PGDS might potentially serve as an agent for prevention of human neurodegenerative diseases caused by oxidative stress and apoptosis.  相似文献   

6.

Background  

Opiate addiction reflects plastic changes that endurably alter synaptic transmission within relevant neuronal circuits. The biochemical mechanisms of these adaptations remain largely unknown and proteomics-based approaches could lead to a broad characterization of the molecular events underlying adaptations to chronic drug exposure.  相似文献   

7.
SH—SY5Y细胞的钙缓冲研究   总被引:2,自引:0,他引:2  
目的:研究SH-SY5Y神经杂交瘤细胞的钙缓冲能力。方法:通过膜片钳手段,测量未分化的SH-SY5Y细胞钙离子通道电流;并应用显微荧光测量游离钙离子浓度和高钾去极化的方法,研究胞内Ca^2 浓度上升后浓度恢复的动力学过程。结果:未分化的SH-SY5Y细胞存在钙离子通道电流,在刺激时间间隔较短时(<150s),胞内钙浓度的恢复过程会由于缓冲机制的饱和而变慢;而时间间隔>150s时,缓冲物质则可以基本恢复使得胞内钙的恢复过程基本保持不变。结论:钙缓冲蛋白在细胞内钙浓度的调节中起重要作用。  相似文献   

8.
9.
10.
Neuroblastomas are pediatric tumors originating from immature neuroblasts in the developing peripheral nervous system. Differentiation therapies could help lowering the high mortality due to rapid tumor progression to advanced stages. Oleic acid has been demonstrated to promote neuronal differentiation in neuronal cultures. Herein we report on the effects of oleic acid and of a specific synthetic PPARbeta agonist on cell growth, expression of differentiation markers and on parameters responsible for the malignancy such as adhesion, migration, invasiveness, BDNF, and TrkB expression of SH-SY5Y neuroblastoma cells. The results obtained demonstrate that many, but not all, oleic acid effects are mediated by PPARbeta and support a role for PPARbeta in neuronal differentiation strongly pointing towards PPAR ligands as new therapeutic strategies against progression and recurrences of neuroblastoma.  相似文献   

11.

Background

Morphine, the principal active agent in opium, is not restricted to plants, but is also present in different animal tissues and cell types, including the mammalian brain. In fact, its biosynthetic pathway has been elucidated in a human neural cell line. These data suggest a role for morphine in brain physiology (e.g., neurotransmission), but this hypothesis remains a matter of debate. Recently, using the adrenal neuroendocrine chromaffin cell model, we have shown the presence of morphine-6-glucuronide (M6G) in secretory granules and their secretion products, leading us to propose that these endogenous alkaloids might represent new neuroendocrine factors. Here, we investigate the potential function of endogenous alkaloids in the central nervous system.

Methodology and Principal Findings

Microscopy, molecular biology, electrophysiology, and proteomic tools were applied to human neuroblastoma SH-SY5Y cells (i) to characterize morphine and M6G, and (ii) to demonstrate the presence of the UDP-glucuronyltransferase 2B7 enzyme, which is responsible for the formation of M6G from morphine. We show that morphine is secreted in response to nicotine stimulation via a Ca2+-dependent mechanism involving specific storage and release mechanisms. We also show that morphine and M6G at concentrations as low as 10−10 M are able to evoke specific naloxone-reversible membrane currents, indicating possible autocrine/paracrine regulation in SH-SY5Y cells. Microscopy and proteomic approaches were employed to detect and quantify endogenous morphine in the mouse brain. Morphine is present in the hippocampus, cortex, olfactory bulb, and cerebellum at concentration ranging from 1.45 to 7.5 pmol/g. In the cerebellum, morphine immunoreactivity is localized to GABA basket cells and their termini, which form close contacts on Purkinje cell bodies.

Conclusions/Significance

The presence of morphine in the brain and its localization in particular areas lead us to conclude that it has a specific function in neuromodulation and/or neurotransmission. Furthermore, its presence in cerebellar basket cell termini suggests that morphine has signaling functions in Purkinje cells that remain to be discovered.  相似文献   

12.
13.
It has been suggested that baicalein, a flavonoid obtained from the Scutellaria root, exerts a protective role on neurons against several neuronal insults. However, the protective mechanisms underlying this protective effect remain largely unknown. Our results indicate that baicalein protects SH-SY5Y cells, a dopaminergic neuronal cell line, from 6-hydroxydopamine (6-OHDA)-induced damage by the attenuation of reactive oxygen species (ROS). In order to determine the effects of baicalein on mitochondrial events, mitochondrial membrane potentials (deltapsim) and caspase cascades downstream of mitochondria were assessed. Baicalein inhibited the collapse of deltapsim, suggesting that baicalein reduces the mitochondrial dysfunction associated with 6-OHDA treatment. Baicalein also inhibited caspase-9 and caspase-3 activation, which can be triggered by mitochondrial malfunctions. Furthermore, baicalein induced a significant reduction in the level of phospho-JNK, which is known as an apoptotic mediator in 6-OHDA-induced neuronal cell death. Our results indicate that baicalein protects neurons from the deleterious effects of 6-OHDA via the attenuation of oxidative stress, mitochondrial dysfunction, caspase activity, and JNK activation.  相似文献   

14.
Ca2+ transport by sarco/endoplasmic reticulum, tightly coupled with the enzymatic activity of Ca2+-dependent ATPase, controls the cell cycle through the regulation of genes operating in the critical G1 to S checkpoint. Experimental studies demonstrated that acylphosphatase actively hydrolyses the phosphorylated intermediate of sarco/endoplasmic reticulum calcium ATPase (SERCA) and therefore enhances the activity of Ca2+ pump. In this study we found that SH-SY5Y neuroblastoma cell division was blocked by entry into a quiescent G0-like state by thapsigargin, a high specific SERCA inhibitor, highlighting the regulatory role of SERCA in cell cycle progression. Addition of physiological amounts of acylphosphatase to SY5Y membranes resulted in a significant increase in the rate of ATP hydrolysis of SERCA. In synchronized cells a concomitant variation of the level of acylphosphatase isoenzymes opposite to that of intracellular free calcium during the G1 and S phases occurs. Particularly, during G1 phase progression the isoenzymes content declined steadily and hit the lowest level after 6 h from G0 to G1 transition with a concomitant significant increase of calcium levels. No changes in free calcium and acylphosphatase levels upon thapsigargin inhibition were observed. Moreover, a specific binding between acylphosphatase and SERCA was demonstrated. No significant change in SERCA-2 expression was found. These findings suggest that the hydrolytic activity of acylphosphatase increase the turnover of the phosphoenzyme intermediate with the consequences of an enhanced efficiency of calcium transport across endoplasmic reticulum and a subsequent decrease in cytoplasmic calcium levels. A hypothesis about the modulation of SERCA activity by acylphosphatase during cell cycle in SY5Y cells in discussed.  相似文献   

15.
16.
A series of mercaptoethylleonurine and mercaptoethylguanidine derivatives were designed and synthesized. Their neuroprotective effects toward H2O2-induced apoptosis were investigated in human SH-SY5Y cells. The results from these studies identified several potent compounds, with compound 8k emerging as the most effective. Further investigation demonstrated that 8k reduced H2O2-induced activation of mitochondrial apoptosis by inhibiting the expression of Bax and elevating the expression of Bcl-2. Moreover, the molecular mechanism underlying the observed neuroprotective effects of 8k was exerted via the Akt and JNK pathways. Compound 8k can be a lead compound for further discovery of neuroprotective medicine.  相似文献   

17.
Reactive carbonyl compounds contribute to aging, Alzheimer's disease (AD) and other neurodegenerative diseases. Among these compounds, methylglyoxal (MG) can yield advanced glycation end products (AGEs), which are crucial in AD pathogenesis. However, the molecular and biochemical mechanisms of MG neurotoxicity are not completely understood. In the present study, SH-SY5Y cells were treated with MG to induce cell death. 2-D Fluorescence Difference Gel Electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry were employed to determine the changes in protein levels in these cells compared with vehicle-treated cells. Proteomics analysis revealed that 49 proteins were differentially expressed in MG-treated SH-SY5Y cells, of which 16 were upregulated and 33 were downregulated. Among them, eight proteins were identified unambiguously. The significant changes in protein levels of actin, immunoglobulin lambda light chain and protein phosphatase 2 were noteworthy given their functional roles in AD pathogenesis. Taken together, our results suggest that multiple pathways are potentially involved in MG-induced neuron death.  相似文献   

18.
Cui WY  Wang J  Wei J  Cao J  Chang SL  Gu J  Li MD 《Amino acids》2012,43(3):1157-1169
Although nicotine has a broad impact on both the central and peripheral nervous systems, the molecular mechanisms remain largely unknown, especially at the signaling pathway level. To investigate that aspect, we employed both conventional molecular techniques, such as quantitative real-time PCR and Western blotting analysis, and high-throughput microarray approach to identify the genes and signaling pathways that are modulated by nicotine. We found 14 pathways significantly altered in SH-SY5Y neuroblastoma cells. Of these, the Toll-like receptor pathway (TLR; p?=?2.57?×?10(-4)) is one of the most important innate immune pathways. The death receptor pathway (DR; p?=?8.71?×?10(-4)), whose transducers coordinate TLR signals and help conduct the host immune response to infection, was also significantly changed by nicotine. Furthermore, we found that several downstream pathways of TLR and DR signaling, such as PI3K/AKT signaling (p?=?9.55?×?10(-6)), p38 signaling (p?=?2.40?×?10(-6)), and ERK signaling (p?=?1.70?×?10(-4)), were also significantly modulated by nicotine. Interestingly, most of the differentially expressed genes in these pathways leading to nuclear factor κB (NF-κB) activation and those important inhibitors of pathways leading to apoptosis, including FLIP and Bcl-2, were up-regulated by nicotine. Taken together, our findings demonstrate that nicotine can regulate multiple innate immune-related pathways, and our data thus provide new clues to the molecular mechanisms underlying nicotine's regulatory effects on neurons.  相似文献   

19.
For better understanding of functions of the Calcyclin Binding Protein (CacyBP) and exploring its possible roles in neuronal differentiation, the subcellular localization of human CacyBP was examined in retinoic acid(RA)-induced and uninduced neuroblastoma SH-SY5Y cells. Immunostaining indicated that CacyBP was present in the cytoplasm of uninduced SH-SY5Y cells, in which the resting Ca(2+) concentration was relatively lower than that of RA-induced cells. After the RA induction, immunostaining was seen in both the nucleus and cytoplasm. In the RA-induced differentiated SH-SY5Y cells, CacyBP was phosphorylated on serine residue(s), while it existed in a dephosphorylated form in normal (uninduced) cells. Thus, the phosphorylation of CacyBP occurs when it is translocated to the nuclear region. The translocation of CacyBP during the RA-induced differentiation of SH-SY5Y cells suggested that this protein might play a role in neuronal differentiation.  相似文献   

20.
Summary Toluene diisocyanate (TDI) is widely used as a chemical intermediate in the production of polyurethane products such as foams, coatings, and elastomers. In exposed workers, chronic inhalation of TDI has resulted in significant decreases in lung function. TDI-induced asthma is related to its disturbance of acetylcholine in most affected workers but the actions of TDI on nicotinic acetylcholine receptors (nAChR) are unclear. In order to understand the role of TDI acting on nAChR, we used human neuroblastoma SH-SY5Y cells to investigate the effects of TDI on cytosolic free calcium concentration ([Ca ) changes under the stimulation of nAChR. The results showed that TDI was capable of inhibiting the [Ca rise induced by nicotinic ligands, epibatidine, DMPP and nicotine. The inhibition was remained, even increased after chronic treatment of TDI. Our study of TDI acting on human nAChR suggests a possibility that the human nerve system plays some role in the toxicity of TDI in the pulmonary system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号