首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The uptake of glutamate in rat glioma C-6 cells and cultured astrocytes derived from rat cerebral hemispheres was found to be mediated by a Na(+)-dependent and a Na(+)-independent system. The Na(+)-dependent system was inhibited by aspartate and was consistent with the commonly occurring system designated system X-AG. The Na(+)-independent system was inhibited by cystine and was consistent with system x-c described in various types of cells in the periphery. It was also found that quisqualate selectively and competitively interfered with the Na(+)-independent glutamate uptake. In C-6 cells, the glutamate uptake via systems X-AG and x-c accounted for approximately 35% and 55% of the total uptake, respectively, at 0.05 mM glutamate. In cultured astrocytes, the glutamate uptake via system X-AG was very potent, whereas the uptake via system xc- was relatively weak and its contribution to the total uptake of glutamate seemed almost negligible. However, in both C-6 cells and astrocytes, system xc- was necessary for the uptake of cystine, another substrate of system xc-. Cystine in the culture medium was an essential precursor of glutathione, and the inhibition of the cystine uptake by excess glutamate as a competitor led to a severe deficiency in glutathione, followed by cell degeneration.  相似文献   

2.
EAAT glutamate transporters do not only function as secondary-active glutamate transporters but also as anion channels. EAAT anion channel activity depends on transport substrates. For most isoforms, it is negligible without external Na(+) and increased by external glutamate. We here investigated gating of EAAT4 anion channels with various cations and amino acid substrates using patch clamp experiments on a mammalian cell line. We demonstrate that Li(+) can substitute for Na(+) in supporting substrate-activated anion currents, albeit with changed voltage dependence. Anion currents were recorded in glutamate, aspartate, and cysteine, and distinct time and voltage dependences were observed. For each substrate, gating was different in external Na(+) or Li(+). All features of voltage-dependent and substrate-specific anion channel gating can be described by a simplified nine-state model of the transport cycle in which only amino acid substrate-bound states assume high anion channel open probabilities. The kinetic scheme suggests that the substrate dependence of channel gating is exclusively caused by differences in substrate association and translocation. Moreover, the voltage dependence of anion channel gating arises predominantly from electrogenic cation binding and membrane translocation of the transporter. We conclude that all voltage- and substrate-dependent conformational changes of the EAAT4 anion channel are linked to transitions within the transport cycle.  相似文献   

3.
Excitatory amino acid transporters (EAATs) are structurally related plasma membrane proteins known to mediate the Na(+)/K(+)-dependent uptake of the amino acids l-glutamate and dl-aspartate. In the nervous system, these proteins contribute to the clearance of glutamate from the synaptic cleft and maintain excitatory amino acid concentrations below excitotoxic levels. Two homologues exist in Drosophila melanogaster, dEAAT1 and dEAAT2, which are specifically expressed in the nervous tissue. We previously reported that dEAAT2 shows unique substrate discrimination as it mediates high affinity transport of aspartate but not glutamate. We now show that dEAAT2 can also transport the amino acid taurine with high affinity, a property that is not shared by two other transporters of the same family, Drosophila dEAAT1 and human hEAAT2. Taurine transport by dEAAT2 was efficiently blocked by an EAAT antagonist but not by inhibitors of the structurally unrelated mammalian taurine transporters. Taurine and aspartate are transported with similar K(m) and relative efficacy and behave as mutually competitive inhibitors. dEAAT2 can mediate either net uptake or the heteroexchange of its two substrates, both being dependent on the presence of Na(+) ions in the external medium. Interestingly, heteroexchange only occurs in one preferred substrate orientation, i.e. with taurine transported inwards and aspartate outwards, suggesting a mechanism of transinhibition of aspartate uptake by intracellular taurine. Therefore, dEAAT2 is actually an aspartate/taurine transporter. Further studies of this protein are expected to shed light on the role of taurine as a candidate neuromodulator and cell survival factor in the Drosophila nervous system.  相似文献   

4.
The neuronal glutamate transporter EAAC1 contains several conserved acidic amino acids in its transmembrane domain, which are possibly important in catalyzing transport and/or binding of co/countertransported cations. Here, we have studied the effects of neutralization by site-directed mutagenesis of three of these amino acid side chains, glutamate 373, aspartate 439, and aspartate 454, on the functional properties of the transporter. Transport was analyzed by whole-cell current recording from EAAC1-expressing mammalian cells after applying jumps in voltage, substrate, or cation concentration. Neutralization mutations in positions 373 and 454, although eliminating steady-state glutamate transport, have little effect on the kinetics and thermodynamics of Na(+) and glutamate binding, suggesting that these two positions do not constitute the sites of Na(+) and glutamate association with EAAC1. In contrast, the D439N mutation resulted in an approximately 10-fold decrease of apparent affinity of the glutamate-bound transporter form for Na(+), and an approximately 2,000-fold reduction in the rate of Na(+) binding, whereas the kinetics and thermodynamics of Na(+) binding to the glutamate-free transporter were almost unchanged compared to EAAC1(WT). Furthermore, the D439N mutation converted l-glutamate, THA, and PDC, which are activating substrates for the wild-type anion conductance, but not l-aspartate, into transient inhibitors of the EAAC1(D439) anion conductance. Activation of the anion conductance by l-glutamate was biphasic, allowing us to directly analyze binding of two of the three cotransported Na(+) ions as a function of time and [Na(+)]. The data can be explained with a model in which the D439N mutation results in a dramatic slowing of Na(+) binding and a reduced affinity of the substrate-bound EAAC1 for Na(+). We propose that the bound substrate controls the rate and the extent of Na(+) interaction with the transporter, depending on the amino acid side chain in position 439.  相似文献   

5.
Active transport of glutamate by Escherichia coli K-12 requires both Na(+) and K(+) ions. Increasing the concentration of Na(+) in the medium results in a decrease in the K(m) of the uptake system for glutamate; the capacity is not affected. Glutamate uptake by untreated cells is not stimulated by K(+). K(+)-depleted cells show a greatly reduced capacity for glutamate uptake. Preincubation of such cells in the presence of K(+) fully restores their capacity for glutamate uptake when Na(+) ions are also present in the uptake medium. Addition of either K(+) or Na(+) alone restores glutamate uptake to only about 20% of its maximum capacity in the presence of both cations. Changes in K(+) concentration affect the capacity for glutamate uptake but have no effect on the K(m) of the glutamate transport system. Ouabain does not inhibit the (Na(+)-K(+))-stimulated glutamate uptake by intact cells or spheroplasts of E. coli K-12.  相似文献   

6.
The hypothesis was tested that oxidative metabolism, mainly fueled by glutamate itself, provides the energy for active, Na(+),K(+)-ATPase-catalyzed Na(+) extrusion following glutamate uptake in conjunction with Na(+). This hypothesis was supported by the following observations: (i) glutamate had either no effect or caused a slight reduction in glycolytic rate, measured as deoxyglucose phosphorylation; (ii) D-aspartate, which is accumulated by the L-glutamate carrier, but cannot be metabolized by the cells, caused an increase in glycolytic rate; (iii) monensin which, like D-aspartate, stimulates the intracellular, Na(+)-activated site of the Na, K-ATPase and thus energy metabolism, but provides no metabolic substrate, stimulated both glycolysis and glucose oxidation; and (iv) oxidation of glucose was potently inhibited by glutamate, although glutamate is known to stimulate oxygen consumption in primary cultures of astrocytes, a combination showing that oxidation of a non-glucose substrate is increased in the presence of glutamate. These findings should be considered in attempts to understand metabolic interactions between neurons and astrocytes and regulation of energy metabolism in brain.  相似文献   

7.
In the brain, transporters of the major excitatory neurotransmitter glutamate remove their substrate from the synaptic cleft to allow optimal glutamatergic neurotransmission. Their transport cycle consists of two sequential translocation steps, namely cotransport of glutamic acid with three Na(+) ions, followed by countertransport of K(+). Recent studies, based on several crystal structures of the archeal homologue Glt(Ph), indicate that glutamate translocation occurs by an elevator-like mechanism. The resolution of these structures was not sufficiently high to unambiguously identify the sites of Na(+) binding, but functional and computational studies suggest some candidate sites. In the Glt(Ph) structure, a conserved aspartate residue (Asp-390) is located adjacent to a conserved tyrosine residue, previously shown to be a molecular determinant of ion selectivity in the brain glutamate transporter GLT-1. In this study, we characterize mutants of Asp-440 of the neuronal transporter EAAC1, which is the counterpart of Asp-390 of Glt(Ph). Except for substitution by glutamate, this residue is functionally irreplaceable. Using biochemical and electrophysiological approaches, we conclude that although D440E is intrinsically capable of net flux, this mutant behaves as an exchanger under physiological conditions, due to increased and decreased apparent affinities for Na(+) and K(+), respectively. Our present and previous data are compatible with the idea that the conserved tyrosine and aspartate residues, located at the external end of the binding pocket, may serve as a transient or stable cation binding site in the glutamate transporters.  相似文献   

8.
Excitatory amino-acid transporters (EAATs) are structurally related plasma membrane proteins that mediate the high-affinity uptake of the acidic amino acids glutamate and aspartate released at excitatory synapses, and maintain the extracellular concentrations of these neurotransmitters below excitotoxic levels [1] [2] [3] [4]. Several members of the EAAT family have been described previously. So far, all known EAATs have been reported to transport glutamate and aspartate with a similar affinity. Here, we report that dEAAT2 - a nervous tissue-specific EAAT homologue that we recently identified in the fruit fly Drosophila [5] - is a selective Na(+)-dependent high-affinity aspartate transporter (K(m) = 30 microM). We found that dEAAT2 can also transport L-glutamate but with a much lower affinity (K(m) = 185 microM) and a 10- to 15-fold lower relative efficacy (V(max)/K(m)). Competition experiments showed that the binding of glutamate to this transporter is much weaker than the binding of D- or L-aspartate. As dEAAT2 is the first known EAAT to show this substrate selectivity, it suggests that aspartate may play a specific role in the Drosophila nervous system.  相似文献   

9.
Chinese hamster ovary cells show endogenous high-affinity Na^+ -dependent glutamate transport activity. This transport activity is kinetically similar to a glutamate transporter family strategically expressed in the central nervous system and is pharmacologically unlike glutamate transporter- 1 or excitatory amino acid carrier 1. The cDNA of a glutamate/aspartate transporter (GLAST)-like transporter was obtained and analyzed. The deduced amino acid sequence showed high similarity to human, mouse, and rat GLAST. We concluded that a GLAST-like glutamate transporter exists in Chinese hamster ovary cells that might confer the endogenous high-affinity Na^+ -dependent glutamate transport activity evident in these cells.  相似文献   

10.
Based on kinetic arguments, we have recently proposed the existence of two distinct Na+/D-glucose cotransporters in brush-border membrane vesicles isolated from the human fetal jejunum (Biochim. Biophys. Acta 938 (1988) 181-188). In order to further test this hypothesis, inhibition studies of the zero-trans influx of substrate have been performed under Na(+)-gradient and voltage-clamped conditions. Initial rates of D-glucose uptake were totally abolished by D-glucose, D-galactose, alpha-methylglucose and phlorizin while 3-O-methylglucose and phloretin induced only a 65% inhibition even at the highest concentrations used. The residual activity of D-glucose uptake is thus compatible with substrate flux through a low-affinity transport system which is insensitive to phloretin and does not accept 3-O-methylglucose as substrate. This substrate specificity has been used to separate kinetically the two putative pathways for glucose transport. The data obtained are compatible with the existence of the following two systems: (i) a low-affinity, high-capacity system with a Km of 4.7 mM and a Vmax of 22 nmol/min per mg of protein, and; (ii) a high-affinity, low-capacity system with a Km of 0.57 mM and a Vmax of 10.7 nmol/min per mg of protein. These data thus demonstrate clearly the existence of two distinct Na(+)-dependent D-glucose carriers in the human jejunum during the early gestation period since these systems can be differentiated not only by their kinetic properties but also by their differences in both substrate and inhibitor specificities.  相似文献   

11.
L-glutamate was transported into mammary tissue via Na(+)-dependent system XAG- that strongly interacted with both D- and L-isomers of aspartate but only with L-isomer of glutamate. Replacement of Cl- by gluconate from the extracellular medium did not affect the uptake of L-glutamate. Although neutral amino acids weakly inhibited the uptake of L-glutamate, there was no evidence for the heterogeneity of anionic amino acid transport system. The XAG- system was inhibited by sulfhydryl group blocking reagent N-ethylmalemide. Low pH (6) partially inhibited the uptake by L-glutamate by mammary tissue. Prior loading of mammary tissue with L-glutamate slightly down regulated its uptake. Culturing pregnant mouse mammary tissue explants in vitro in the presence of lactogenic hormones (insulin plus cortisol plus prolactin) did not affect appreciably the uptake of L-glutamate.  相似文献   

12.
Electrogenic glutamate transport by the excitatory amino acid carrier 1 (EAAC1) is associated with multiple charge movements across the membrane that take place on time scales ranging from microseconds to milliseconds. The molecular nature of these charge movements is poorly understood at present and, therefore, was studied in this report in detail by using the technique of laser-pulse photolysis of caged glutamate providing a 100-micros time resolution. In the inward transport mode, the deactivation of the transient component of the glutamate-induced coupled transport current exhibits two exponential components. Similar results were obtained when restricting EAAC1 to Na(+) translocation steps by removing potassium, thus, demonstrating (1) that substrate translocation of EAAC1 is coupled to inward movement of positive charge and, therefore, electrogenic; and (2) the existence of at least two distinct intermediates in the Na(+)-binding and glutamate translocation limb of the EAAC1 transport cycle. Together with the determination of the sodium ion concentration and voltage dependence of the two-exponential charge movement and of the steady-state EAAC1 properties, we developed a kinetic model that is based on sequential binding of Na(+) and glutamate to their extracellular binding sites on EAAC1 explaining our results. In this model, at least one Na(+) ion and thereafter glutamate rapidly bind to the transporter initiating a slower, electroneutral structural change that makes EAAC1 competent for further, voltage-dependent binding of additional sodium ion(s). Once the fully loaded EAAC1 complex is formed, it can undergo a much slower, electrogenic translocation reaction to expose the substrate and ion binding sites to the cytoplasm.  相似文献   

13.
The uptake of L-glutamate into BHK21-C13 cells in culture has been studied. This amino acid appears to be transported via a relatively high affinity, low capacity, Na+-dependent transport system capable of the rapid accumulation of substrate amino acids. Kinetic studies of the inhibition of L-glutamate uptake has provided information as to the substrate and the molecular configuration required for transport via the glutamate transport system. This system exhibited marked substrate specificity and was only capable of transporting L-glutamate and aspartate and certain closely related acidic amino acid analogues.  相似文献   

14.
Recent studies have shown that N(6),2'-O-dibutyryladenosine 3':5' cyclic monophosphate (dbcAMP) increases the expression of specific subtypes of Na(+)-dependent glutamate transporters in cultured astrocytes. Our group also found that treatment of astrocytes with dbcAMP for several days increases the Na(+)-independent accumulation of L-[3H]glutamate. In this study, the properties of this Na(+)-independent accumulation were characterized, and the mechanism by which dbcAMP up-regulates this process was investigated. This accumulation was markedly reduced in the absence of Cl(-) and was also inhibited by several anion-exchange inhibitors, including 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid, 4,4'-dinitrostilbene-2,2'-disulfonic acid and 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid, suggesting that this activity is mediated by a Cl(-)-dependent transporter. In addition, this activity was inhibited by micromolar concentrations of several inhibitors of another Cl(-)-dependent (Na(+)-independent) transport activity frequently referred to as system xc(-) (L-cystine, L-alpha-aminoadipate, L-homocysteate, quisqualate, beta-N-oxalyl-l-alpha,beta-diaminopropionate, ibotenate). This activity was competitively inhibited by several phenylglycine derivatives previously characterized as inhibitors of metabotropic glutamate receptor activation. The concentration-dependence for Na(+)-independent, Cl(-)-dependent L-[3H]glutamate uptake activity was compared for dbcAMP-treated and untreated astrocytes. Treatment with dbcAMP increased the V(max) of this Cl(-)-dependent transport activity by sixfold but had no effect on the K(m) value. System xc(-) requires two subunits, xCT and 4F2hc/CD98, to reconstitute functional activity. We found that dbcAMP caused a twofold increase in the levels of xCT mRNA and a sevenfold increase in the levels of 4F2hc/CD98 protein. This study indicates that dbcAMP up-regulates Cl(-)-dependent L-[3H]glutamate transport activity in astrocytes and suggests that this effect is related to increased expression of both subunits of system xc(-). Because this activity is thought to be important for the synthesis of glutathione and protection from oxidant injury, understanding the regulation of system xc(-) may provide alternate approaches to limit this form of injury.  相似文献   

15.
Glutamate and monoamine transporters: new visions of form and function   总被引:4,自引:0,他引:4  
Neurotransmitters are rapidly removed from the extracellular space primarily through the actions of plasma membrane transporters. This uptake process is not only essential in the termination of neurotransmission but also serves to replenish intracellular levels of transmitter for further release. Neurotransmitter transporters couple the inward movement of substrate to the movement of Na(+) down a concentration gradient and, in addition to their transport function, some carriers also display channel-like activities. Five Na(+)/K(+)-dependent glutamate transporter subtypes belong to the solute carrier 1 (SLC1) family and a second family, SLC6, encompasses the Na(+)/Cl(-)-dependent transporters for dopamine, 5-hydroxytryptamine (serotonin), noradrenaline, GABA and glycine. Recent advances, including high-resolution structures from both families, are now providing new insights into the molecular determinants that contribute to substrate translocation and ion channel activities. Other influential studies have explored how cellular regulatory mechanisms modulate transporter function, and how the different functions of the carrier shape the patterns of neurotransmitter signaling. This review focuses on recent studies of glutamate and monoamine transporters as prototypes of the two carrier families.  相似文献   

16.
Glutamate transporters regulate excitatory amino acid neurotransmission across neuronal and glial cell membranes by coupling the translocation of their substrate (aspartate or glutamate) into the intracellular (IC) medium to the energetically favorable transport of sodium ions or other cations. The first crystallographically resolved structure of this family, the archaeal aspartate transporter, Glt(Ph), has served as a structural paradigm for elucidating the mechanism of substrate translocation by these transporters. Two helical hairpins, HP2 and HP1, at the core domains of the three subunits that form this membrane protein have been proposed to act as the respective extracellular and IC gates for substrate intake and release. Molecular dynamics simulations using the outward-facing structure have confirmed that the HP2 loop acts as an EC gate. The mechanism of substrate release at atomic scale, however, remained unknown due to the lack of structural data until the recent determination of the inward-facing structure of Glt(Ph). In the present study, we use this recently resolved structure to simulate the release of substrate to the cytoplasm and the roles of HP1 and HP2 in this process. The highly flexible HP2 loop is observed to serve as an activator (or initiator) prompting the release of a gatekeeper Na(+) to the cytoplasm and promoting the influx of water molecules from the cytoplasm, which effectively disrupt substrate-protein interactions and drive the dislodging of the substrate from its binding site. The completion of substrate release and exit, however, entails the opening of the highly stable HP1 loop as well. Overall, the unique conformational flexibility of the HP2 loop, the dissociation of a Na(+), the hydration of binding pocket, and final yielding of the HP1 loop 3-Ser motif emerge as the successive events controlling the release of the bound substrate to the cell interior by glutamate transporters.  相似文献   

17.
A series of six different mutants (D804A, D804E, D804G, D804N, D804Q, and D804S) of aspartate 804 present in transmembrane segment 6 of the rat Na(+),K(+)-ATPase alpha(1)-subunit were prepared and expressed in Sf9 cells by use of the baculovirus expression system. In contrast to the wild-type enzyme all mutants except D804Q showed a very high Na(+)-ATPase activity, which was hardly further stimulated by the addition of K(+). The ATPase activity of the mutants was already nearly maximal at 10 microM ATP and most of them could be phosphorylated in the absence of Na(+) at pH 6.0 and 21 degrees C, suggesting that they strongly prefer the E(1) over the E(2) conformation. However, Na(+) dose-dependently lowered the steady-state phosphorylation level, as a consequence of the increased affinity for Na(+) in the dephosphorylation reaction of the mutants compared to the wild-type enzyme. Conversely, the affinity for K(+) in the dephosphorylation reaction was decreased for the mutants as compared to that for the wild-type enzyme. When the pH was increased or the temperature was decreased, the phosphorylation level of the mutants decreased and the Na(+) activation in the phosphorylation reaction became apparent. It is concluded that upon mutation of aspartate 804 the affinity of the cation-binding pocket is changed relatively in favor of Na(+) instead of K(+), as a consequence of which the enzyme has obtained a preference for the E(1) conformation.  相似文献   

18.
Transporters of the major excitatory neurotransmitter glutamate play a crucial role in glutamatergic neurotransmission by removing their substrate from the synaptic cleft. The transport mechanism involves co-transport of glutamic acid with three Na(+) ions followed by countertransport of one K(+) ion. Structural work on the archeal homologue Glt(Ph) indicates a role of a conserved asparagine in substrate binding. According to a recent proposal, this residue may also participate in a novel Na(+) binding site. In this study, we characterize mutants of this residue from the neuronal transporter EAAC1, Asn-451. None of the mutants, except for N451S, were able to exhibit transport. However, the K(m) of this mutant for l-aspartate was increased ~30-fold. Remarkably, the increase for d-aspartate and l-glutamate was 250- and 400-fold, respectively. Moreover, the cation specificity of N451S was altered because sodium but not lithium could support transport. A similar change in cation specificity was observed with a mutant of a conserved threonine residue, T370S, also implicated to participate in the novel Na(+) site together with the bound substrate. In further contrast to the wild type transporter, only l-aspartate was able to activate the uncoupled anion conductance by N451S, but with an almost 1000-fold reduction in apparent affinity. Our results not only provide experimental support for the Na(+) site but also suggest a distinct orientation of the substrate in the binding pocket during the activation of the anion conductance.  相似文献   

19.
In the central nervous system (CNS), extracellular concentrations of amino acids (e.g., aspartate, glutamate) and divalent metals (e.g., zinc, copper, manganese) are primarily regulated by astrocytes. Adequate glutamate homeostasis and control over extracellular concentrations of these excitotoxic amino acids are essential for the normal functioning of the brain. Not only is glutamate of central importance for nitrogen metabolism but, along with aspartate, it is the primary mediator of excitatory pathways in the brain. Similarly, the maintenance of proper Mn levels is important for normal brain function. Brain glutamate is removed from the extracellular fluid mainly by astrocytes via high affinity astroglial Na+-dependent excitatory amino acid transporters, glutamate/aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1). The effects of Mn on specific glutamate transporters have yet to be determined. As a first step in this process, we examined the effects of Mn on the transport of [D-2, 3-3H]D-aspartate, a non-metabolizable glutamate analog, in Chinese hamster ovary cells (CHO) transfected with two glutamate transporter subtypes, GLAST (EAAT1) or GLT-1 (EAAT2). Mn-mediated inhibition of glutamate transport in the CHO-K1 cell line DdB7 was pronounced in both the GLT-1 and GLAST transfected cells. This resulted in a statistically significant inhibition (p<0.05) of glutamate uptake compared with transfected control in the absence of Mn treatment. These studies suggest that Mn accumulation in the CNS might contribute to dysregulation of glutamate homeostasis.  相似文献   

20.
A cDNA encoding a Na(+)-dependent glutamate transporter has been cloned from the brain of the cockroach Diploptera punctata. The cDNA encodes a transporter protein of 481 amino acids, designated DipEAAT1, which when expressed in baculovirus infected insect cells, resulted in a 40-50 fold increase in [(3)H]L-glutamate uptake. DipEAAT1 mRNA is expressed in the brain, as is the RNA encoding TrnEAAT1, a related transporter recently isolated from the caterpillar Trichoplusia ni. The affinity of these transporters for L-glutamate and several structural analogues was compared. Both have a high affinity for L-glutamate, their presumed primary substrate, but quite different affinities for D-aspartate. TrnEAAT1 was found to be similar to other glutamate transporters in that its ability to transport [(3)H]L-glutamate into cells was inhibited strongly by D- and L- isomers of aspartate and its analogues. DipEAAT1, by contrast, was inhibited weakly by all D- isomers tested. The affinity of DipEAAT1 for [(3)H]D-aspartate was found to be an order of magnitude lower than that of TrnEAAT1, revealing an unusual stereoselectivity for aspartate substrates by the cockroach transporter. The activity of DipEAAT1 was also unaffected by the presence of Zn(++) in the bathing solution, despite the presence of a putative Zn(++)-binding motif conferring Zn(++)-sensitivity on some mammalian glutamate transporters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号