首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Myxococcus xanthus multicellular fruiting body development is initiated by nutrient limitation at high cell density. Five clustered point mutations (sasB5, -14, -15, -16, and -17) can bypass the starvation and high-cell-density requirements for expression of the 4521 developmental reporter gene. These mutants express 4521 at high levels during growth and development in an asgB background, which is defective in generation of the cell density signal, A signal. A 1.3-kb region of the sasB locus cloned from the wild-type chromosome restored the SasB+ phenotype to the five mutants. DNA sequence analysis of the 1.3-kb region predicted an open reading frame, designated SasN. The N terminus of SasN appears to contain a strongly hydrophobic region and a leucine zipper motif. SasN showed no significant sequence similarities to known proteins. A strain containing a newly constructed sasN-null mutation and Ω4521 Tn5lac in an otherwise wild-type background expressed 4521 at a high level during growth and development. A similar sasN-null mutant formed abnormal fruiting bodies and sporulated at about 10% the level of wild type. These data indicate that the wild-type sasN gene product is necessary for normal M. xanthus fruiting body development and functions as a critical regulator that prevents 4521 expression during growth.  相似文献   

2.
Initiation of Myxococcus xanthus multicellular development requires integration of information concerning the cells' nutrient status and density. A gain-of-function mutation, sasB7, that bypasses both the starvation and high cell density requirements for developmental expression of the 4521 reporter gene, maps to the sasS gene. The wild-type sasS gene was cloned and sequenced. This gene is predicted to encode a sensor histidine protein kinase that appears to be a key element in the transduction of starvation and cell density inputs. The sasS null mutants express 4521 at a basal level, form defective fruiting bodies, and exhibit reduced sporulation efficiencies. These data indicate that the wild-type sasS gene product functions as a positive regulator of 4521 expression and participates in M. xanthus development. The N terminus of SasS is predicted to contain two transmembrane domains that would locate the protein to the cytoplasmic membrane. The sasB7 mutation, an E139K missense mutation, maps to the predicted N-terminal periplasmic region. The C terminus of SasS contains all of the conserved residues typical of the sensor histidine protein kinases. SasS is predicted to be the sensor protein in a two-component system that integrates information required for M. xanthus developmental gene expression.  相似文献   

3.
H B Kaplan  A Kuspa    D Kaiser 《Journal of bacteriology》1991,173(4):1460-1470
Progression through the early stages of Myxococcus xanthus fruiting body development requires the cell-to-cell transmission of soluble material called A signal. During these early stages, expression from the gene identified by Tn5 lac insertion omega 4521 increases. A DNA probe of the omega 4521 gene was constructed. Use of this probe showed that accumulation of mRNA corresponding to the omega 4521 gene depends upon A signal. A-signal-deficient (asg) mutants fail to accumulate this RNA, and the external addition of A signal restores accumulation. To identify links between A signal and its responsive gene, omega 4521, suppressors of an asg mutation were generated. All of the suppressor alleles restored lacZ expression from omega 4521 in the absence of A signal, and they were demonstrated to be neither reversions of the asgB mutation nor mutations in the promoter of omega 4521. Fifteen suppressor mutations map to two loci, sasA and sasB (for suppressor of asg). sasA and sasB mutants differ phenotypically during growth and development. Mid-logarithmic-phase sasA asgB double mutants, like sas+ asg+ strains, express low levels of lacZ, whereas sasB asgB double mutants express high levels. sasA asg+ mutants form abnormal colonies, are less cohesive than wild type, and are defective in fruiting body formation and sporulation. In contrast, sasB asg+ mutants form normal colonies, are as cohesive as wild type, and appear to develop normally. The characteristics of sasA suppressors implicate the sasA+ product as a negative regulator in the A-signal-dependent regulation of omega 4521.  相似文献   

4.
The gliding bacterium Myxococcus xanthus aggregates to form spore-filled fruiting bodies when nutrients are limiting. Defective fruiting-body formation and sporulation result from mutations in the sasA locus, which encodes the wzm wzt wbgA (formerly rfbABC ) lipopolysaccharide (LPS) O-antigen biosynthesis genes. Mutants carrying these same sasA mutations are defective in social motility and form small glossy colonies. We report here that the developmental and motility phenotypes of four mutants each containing different Tn 5 insertions in LPS O-antigen biosynthesis genes are similar to those of the original sasA locus mutants. All of the LPS O-antigen mutants tested exhibited defective developmental aggregation and sporulated at only 0.02–15% of the wild-type level. In addition, all of the LPS O-antigen mutants were determined by genetic analyses to be wild type for adventurous motility and defective in social motility, indicating that the LPS O-antigen is necessary for normal development and social motility. The two previously identified cell-surface components required for social motility, type IV pili and the protein-associated polysaccharide material termed fibrils, were detected on the surfaces of all of the LPS O-antigen mutants. This indicates that LPS O-antigen is a third cell-surface component required for social motility.  相似文献   

5.
6.
Myxococcus xanthus utilizes extracellular signals during development to coordinate cell movement, differentiation, and changes in gene expression. One of these signals, the C signal, regulates the expression of many genes, including Omega4400, a gene identified by an insertion of Tn5 lac into the chromosome. Expression of Tn5 lac Omega4400 is reduced in csgA mutant cells, which fail to perform C signaling, and the promoter region has several sequences similar to sequences found in the regulatory regions of other C-signal-dependent genes. One such gene, Omega4403, depends absolutely on the C signal for expression, and its promoter region has been characterized previously by mutational analysis. To determine if the similar sequences within the Omega4400 and Omega4403 regulatory regions function in the same way, deletion analysis and site-directed mutagenesis of the Omega4400 promoter region were performed. A 7-bp sequence centered at -49 bp, termed a C box, is identical in the Omega4400 and Omega4403 promoter regions, yet mutations in the individual base pairs affected expression from the two promoters very differently. Also, a single-base-pair change within a similar 5-bp element, which is centered at -61 bp in both promoter regions, had very different effects on the activities of the two promoters. Further mutational analysis showed that two regions are important for Omega4400 expression; one region, from -63 to -31 bp, is required for Omega4400 expression, and the other, from -86 to -81 bp, exerts a two- to fourfold effect on expression and is at least partially responsible for the C signal dependence of the Omega4400 promoter. Mutations in sigD and sigE, which are genes that encode sigma factors, abolished and reduced Omega4400 expression, respectively. Expression of Omega4400 in actB or actC mutants correlated well with the altered levels of C signal produced in these mutants. Our results provide the first detailed analysis of an M. xanthus regulatory region that depends partially on C signaling for expression and indicate that similar DNA sequences in the Omega4400 and Omega4403 promoter regions function differently.  相似文献   

7.
Certain developmental mutants of Myxococcus xanthus can be complemented (extracellularly) by wild-type cells. Insertions of Tn5 lac (a transposon which couples beta-galactosidase expression to exogenous promoters) into developmentally regulated genes were used to investigate extracellular complementation of the A group mutations. A- mutations reduced developmental beta-galactosidase expression from 18 of 21 Tn5 lac insertions tested and that expression was restored to A- Tn5 lac cells by adding wild-type cells. The earliest A-dependent Tn5 lac normally expresses beta-galactosidase at 1.5 hr of development indicating a developmental block at 1-2 hr in A- mutants. A substance which can rescue the expression of this early Tn5 lac is released by wild-type (A+) but not by A- cells. This substance appears in a cell-free wash of wild-type cells or in starvation buffer conditioned by wild-type cells 1-2 hr after development is initiated. The conditioned starvation buffer also restores normal morphological development to an A- mutant.  相似文献   

8.
9.
10.
Myxococcus xanthus is a gram-negative soil bacterium that initiates a complex developmental program in response to starvation. A transposon insertion (Tn5-lac omega109) mutant with developmental deficiencies was isolated and characterized in this study. A strain containing this insertion mutation in an otherwise wild-type background showed delayed developmental aggregation for about 12 h and sporulated at 1-2% of the wild-type level. Tn5-lac omega109 was found to have disrupted the M. xanthus wbgB gene, which is located 2.1 kb downstream of the M. xanthus lipopolysacharide (LPS) O-antigen biosynthesis genes wzm wzt wbgA. The deduced polypeptide sequence of WbgB shares significant similarity with bacterial glycosyltransferases including M. xanthus WbgA. The wbgB::Tn5-lac omega109 mutant was found to be defective in LPS O-antigen synthesis by immunochemical analysis. Further mutational analysis indicated that the defects of the wbgB::Tn5-lac omega109 mutant were not the result of polar effects on downstream genes. Various motility assays demonstrated that the Tn5-lac omega109 mutation affected both social (S) and adventurous (A) gliding motility of M. xanthus cells. The pleiotrophic effects of wbgB mutations indicate the importance of LPS O-antigen biosynthesis for various cellular functions in M. xanthus.  相似文献   

11.
The Aspergillus nidulans brlA gene is a primary regulator of development-specific gene expression during conidiation. Forced activation of brlA in vegetative cells leads to inappropriate induction of conidiophore formation and causes growth to stop. In fact, when conidia containing a nutritionally inducible brlA gene fusion are placed on inducing medium, they fail to germinate. We used this phenotype to select 174 mutants that continue growing following such forced brlA activation. Forty-six of these mutants also produced abnormal developmental structures during air-induced conidiation as expected if the mutations resulted in an altered response to BrlA (designated sbr mutants for suppressors of brlA response). The predominant mutant class identified was defective in a known developmental regulatory gene, abaA. We also identified mutants with defects in the previously characterized early acting developmental regulatory genes flbB and flbD and in four previously undescribed loci designated sbrA-D. sbrA mutants represent the second largest group and are characterized by production of conidiophore stalks that lack a normal vesicle and form branching sterigmata that rarely make spores. Because abaA expression could not be detected in sbrA mutants following brlA activation we propose that sbrA functions as a developmental modifier, participating in brlA-dependent activation of other developmental regulators.  相似文献   

12.
Signature-tagged mutagenesis (STM) is a widely used technique for identification of virulence genes in bacterial pathogens. While this approach often generates a large number of mutants with a potential reduction in virulence a major task is subsequently to determine the mechanism by which the mutations influence virulence. Presently, we have characterised a Salmonella enterica serovar Dublin STM mutant that, in addition to having reduced virulence, was also impaired when growing under various stress conditions. The mutation mapped to the manC (rfbM) gene of the O-antigen gene cluster involved in O-antigen synthesis. The O-antigen is a component of the lipopolysaccharide (LPS) forming a unique constituent of the outer membrane of Gram-negative bacteria. While mutations in the O-antigen genes usually eliminate the entire O-antigen side chain we found that the transposon mutant produced intact O-antigen, however, the mutation reduced the amount of LPS.  相似文献   

13.
14.
15.
A wild-type sasA locus is critical for Myxococcus xanthus multicellular development. Mutations in the sasA locus cause defective fruiting body formation, reduce sporulation, and restore developmental expression of the early A-signal-dependent gene 4521 in the absence of A signal. The wild-type sasA locus has been located on a 14-kb cloned fragment of the M. xanthus chromosome. The nucleotide sequence of a 7-kb region containing the complete sasA locus was determined. Three open reading frames encoded by the genes, designated rfbA, B and C were identified. The deduced amino acid sequences of rfbA and rfbB show identity to the integral membrane domains and ATPase domains, respectively, of the ATP-binding cassette (ABC) transporter family. The highest identities are to a set of predicted ABC transporters required for the biosynthesis of lipopolysaccharide O-antigen in certain gram-negative bacteria. The rfbC gene encodes a predicted protein of 1,276 amino acids. This predicted protein contains a region of 358 amino acids that is 33.8% identical to the Yersinia enterocolitica O3 rfbH gene product, which is also required for O-antigen biosynthesis. Immunoblot analysis revealed that the sasA1 mutant, which was found to encode a nonsense codon in the beginning of rfbA, produced less O-antigen than sasA+ strains. These data indicate that the sasA locus is required for the biosynthesis of O-antigen and, when mutated, results in A-signal-independent expression of 4521.  相似文献   

16.
17.
18.
19.
The proU locus in Escherichia coli encodes an osmotically inducible transport system for two substrates, glycine betaine and L-proline, whose intracellular accumulation represents an important component in the physiology of osmoregulation. Several osmoresponsive proU::lac mutants were isolated and tested for complementation with plasmids carrying different functional regions of proU. Three classes of mutations were identified which were physically mapped to distinct regions of DNA from this locus. Tn1000-insertion mutagenesis of cloned proU DNA also yielded three phenotypic classes of mutations whose physical distribution approximately corresponded with those of the chromosomal mutants above. Three proteins, of Mr 44,000, 35,000, and 33,000, were shown to be products of proU, and the last of these was localized to the periplasmic space. The data indicate that proU is an operon with three genes, designated in order proV, proW, and proX, encoding respectively the gene products above. All three genes were shown to be necessary for exhibition of the proU-mediated osmoprotective effects of both glycine betaine and L-proline in E. coli.  相似文献   

20.
The synthesis of the Escherichia coli capsular polysaccharide varies with growth medium, temperature of growth, and genetic background. lac fusions to genes necessary for capsule synthesis (cps) demonstrated that these genes are regulated negatively in vivo by the lon gene product. We have now isolated, characterized, and mapped mutations in three new regulatory genes (rcs, for regulator of capsule synthesis) that control expression of these same fusions. rcsA and rcsB are positive regulators of capsule synthesis. rcsA is located at min 43 on the E. coli map, whereas rcsB lies at 47 min. rcsC, a negative regulator of capsule synthesis, is located at min 47, close to rcsB. All three regulatory mutations are unlinked to either the structural genes cpsA-F or lon. Mutations in all three rcs genes are recessive to the wild type. We postulate that lon may regulate capsule synthesis indirectly, by regulating the availability of one of the positive regulators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号