首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Sickle cell disease (SCD) is a group of inherited blood disorders in which clinical illness results from the presence of erythrocytes with sickled haemoglobin (HbS). Blood vessel occlusion is a fundamental pathological process in SCD. Sickle cell haemoglobin C (HbSC) disease and sickle cell anaemia (HbSS) share some pathophysiology and clinical manifestations. However, the former is generally less severe. Erythrocytes of HbSC patients have longer life span, reduced haemolysis, and lower propensity to adhere to vascular endothelium than those of their HbSS counterparts. The structure and function of erythrocytes are strongly modulated by membrane long chain polyunsaturated fatty acids (LCPUFA). We have tested the possibility that HbSC and HbSS patients have different membrane fatty acid composition consistent with the difference in their clinical severity. Steady-state patients, 9 HbSC and 28 HbSS, and 15 HbAA were studied. The HbSC patients had a higher level of linoleic (LA, P<0.05) and docosahexaenoic (DHA, P<0.05) acids, and lower arachidonic acid (AA, P<0.01) and AA/eicosapentaenoic acid (EPA) ratio (P<0.05) in erythrocyte choline phosphoglycerides (CPG) compared with the HbSS group. Similarly, the level of EPA was higher and AA/EPA ratio (P<0.01) lower in serine phosphoglycerides of the HbSC patients. In contrast to the HbSC, the HbSS group had lower levels of EPA (P<0.001), DHA (P<0.05), total n-3 metabolites and total n-3 fatty acids (P<0.001) in erythrocyte CPG compared with the healthy HbAA controls. Moreover, the HbSS patients with disease complications compared with those without complications had reduced DHA and total n-3 fatty acids (P<0.005) in erythrocyte CPG. The abnormalities in erythrocyte in LCPUFA which is manifested by an increase in AA and a decrease in EPA and DHA in HbSS relative to HbSC disease observed in this study are consistent with the contrast in clinical severity between the two entities.  相似文献   

2.
The aim of the study was to investigate, whether (a) patients with homozygous sickle cell disease (SCD, HbSS) have abnormal blood fatty acids; (b) the abnormality, if it exists, affects all the plasma and erythrocyte lipids or it is restricted to a particular lipid moiety; (c) there is an association between levels of membrane n-3 or n-6 long-chain polyunsaturated fatty acids (LCPUFA) and the degree of anaemia. Fatty acids of erythrocyte choline (CPG), serine (SPG) and ethanolamine (EPG) phosphoglycerides and sphingomyelin (SPM); and plasma CPG, triglycerides and cholesterol esters of 43 steady-state HbSS patients and 43 ethnically matched, healthy, HbAA controls were analysed. The levels of the n-6 LCPUFA, arachidonic (AA), adrenic and docosapentaenoic acids in erythrocyte CPG (P<0.001) and EPG (P<0.01) were higher in the patients compared with the controls. In contrast, the proportions of eicosapentaenoic acid (EPA) in CPG and EPG (P<0.001) and docosahexaenoic acid (DHA) and total n-3 metabolites in CPG (P<0.001) were lower in the patients. The steady-state haemoglobin level of the patients correlated with erythrocyte DHA (r=0.55, P<0.01), EPA (r=0.38, P<0.05) and total n-3 metabolites (r=0.51, P<0.001) in CPG. Also, it correlated with erythrocyte EPA (r=0.64, P<0.01) and total n-3 metabolites (r=0.42, P<0.01) in EPG. The study revealed an imbalance between n-3 and n-6 LCPUFA in erythrocyte and plasma lipid moieties of the HbSS group. Furthermore, it suggested that correction of the imbalance by supplementation with EPA and DHA could ameliorate anaemia in the patients. This observation is consistent with the results of pilot studies, which demonstrated that treatment with n-3 fatty acids confers clinical benefit to sickle cell patients.  相似文献   

3.
4.
We investigated whether supplementation with arachidonic acid (20:4 omega 6; AA), or a combination of AA and docosahexaenoic acid (22:6 omega 3; DHA) would affect human milk polyunsaturated fatty acid (PUFA) composition. Ten women were daily supplemented with 300 mg AA, eight with 300 mg AA, 110 mg eicosapentaenoic acid (20:5 omega 3; EPA) and 400 mg DHA, for one week and eight women served as unsupplemented controls. Milk samples were collected on days 0, 1 and 7. The fatty acid composition of the milk was analyzed by capillary gas chromatography with flame ionisation detection. Supplementation with AA alone had no effect on breastmilk AA, but tended to reduce EPA and DHA levels. Administration of a combination of AA, EPA and DHA tended to increase both milk AA and long chain PUFA (LCPUFA)omega 3 content. A larger simultaneous increase of milk AA, DHA and EPA than observed in the present study can probably be accomplished by the use of a combination of a lower LCPUFA omega 6/LCPUFA omega 3 ratio and higher AA, EPA and DHA dosages.  相似文献   

5.
Our earlier studies, in preeclamptic women have shown altered levels of long chain polyunsaturated fatty acids (LCPUFA), essential constituents of the cell membrane lipids responsible for membrane stability as one of the key factors contributing to the pathophysiology of preeclampsia. We have also reported elevated levels of sFlt-1 in preeclampsia. The present study examines the levels of LCPUFA and their association with sFlt-1 levels in 69 pre-eclamptic women and 40 normotensive women. DHA and omega 3 fatty acid levels were lower (p<0.001) while arachidonic acid and omega 6 fatty acid levels were higher (p<0.05) in preeclamptic women as compared to normotensive women. Maternal plasma sFlt-1 levels were higher (p<0.05) in preeclamptic women and were negatively associated with DHA (p=0.008) and omega 3 fatty acids concentrations (p=0.031). Our results suggest that altered placental LCPUFA may result in altered membrane lipid fatty acid composition leading to increased release of sFlt-1 in circulation.  相似文献   

6.
Omega-3 and omega-6 long-chain polyunsaturated fatty acids (LCPUFA) are critical for infant and childhood brain development, but levels of the omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are often low in the Western diet. Increasing evidence from both epidemiological and intervention studies, reviewed here, indicates that DHA supplementation, during pregnancy, lactation, or childhood plays an important role in childhood neurodevelopment. Arachidonic acid (ARA) is also important for infant growth and development. Several studies have demonstrated positive associations between blood DHA levels and improvements on tests of cognitive and visual function in healthy children. Controlled trials also have shown that supplementation with DHA and EPA may help in the management of childhood psychiatric disorders, and improve visual and motor functions in children with phenylketonuria. In all studies, DHA and EPA supplementation is typically well tolerated. Further research is needed to determine optimal doses for efficacy at different developmental ages. The potential long-term benefits of early LCPUFA supplementation also require consideration.  相似文献   

7.
The molecular pathways by which long chain polyunsaturated fatty acids (LCPUFA) influence skeletal health remain elusive. Both LCPUFA and parathyroid hormone type 1 receptor (PTH1R) are known to be involved in bone metabolism while any direct link between the two is yet to be established. Here we report that LCPUFA are capable of direct, PTH1R dependent activation of extracellular ligand-regulated kinases (ERK). From a wide range of fatty acids studied, varying in chain length, saturation, and position of double bonds, eicosapentaenoic (EPA) and docosahexaenoic fatty acids (DHA) caused the highest ERK phosphorylation. Moreover, EPA potentiated the effect of parathyroid hormone (PTH(1–34)) in a superagonistic manner. EPA or DHA dependent ERK phosphorylation was inhibited by the PTH1R antagonist and by knockdown of PTH1R. Inhibition of PTH1R downstream signaling molecules, protein kinases A (PKA) and C (PKC), reduced EPA and DHA dependent ERK phosphorylation indicating that fatty acids predominantly activate G-protein pathway and not the β-arrestin pathway. Using picosecond time-resolved fluorescence microscopy and a genetically engineered PTH1R sensor (PTH-CC), we detected conformational responses to EPA similar to those caused by PTH(1–34). PTH1R antagonist blocked the EPA induced conformational response of the PTH-CC. Competitive binding studies using fluorescence anisotropy technique showed that EPA and DHA competitively bind to and alter the affinity of PTH1 receptor to PTH(1–34) leading to a superagonistic response. Finally, we showed that EPA stimulates protein kinase B (Akt) phosphorylation in a PTH1R-dependent manner and affects the osteoblast survival pathway, by inhibiting glucocorticoid-induced cell death. Our findings demonstrate for the first time that LCPUFAs, EPA and DHA, can activate PTH1R receptor at nanomolar concentrations and consequently provide a putative molecular mechanism for the action of fatty acids in bone.  相似文献   

8.
The aim of this study was to assess relationships between the fatty acid contents of plasma and erythrocyte phospholipids and those in liver, heart, brain, kidney and quadriceps muscle in rats. To obtain a wide range of tissue omega-3 (n-3) long chain polyunsaturated fatty acids (LCPUFA) we subjected weanling rats to dietary treatment with the n-3 LCPUFA precursor, alpha linolenic acid (ALA, 18:3 n-3) for 3 weeks. With the exception of the brain, we found strong and consistent correlations between the total n-3 LCPUFA fatty acid content of both plasma and erythrocyte phospholipids with fatty acid levels in all tissues. The relationships between eicosapentaenoic acid (EPA, 20:5 n-3) and docosapentaenoic acid (DPA, 22:5 n-3) content in both blood fractions with levels in liver, kidney, heart and quadriceps muscle phospholipids were stronger than those for docosahexaenoic acid (DHA, 22:6 n-3). The strong correlations between the EPA+DHA (the Omega-3 Index), total n-3 LCPUFA and total n-3 PUFA contents in both plasma and erythrocyte phospholipids and tissues investigated in this study suggest that, under a wide range of n-3 LCPUFA values, plasma and erythrocyte n-3 fatty acid content reflect not only dietary PUFA intakes but also accumulation of endogenously synthesised n-3 LCPUFA, and thus can be used as a reliable surrogate for assessing n-3 status in key peripheral tissues.  相似文献   

9.
IntroductionAlthough omega (n)-3 long-chain polyunsaturated fatty acids (LCPUFA), particularly docosahexaenoic acid (DHA), intakes are important during infancy, the optimal method of increasing infant status remains unclear. We hypothesized that high-dose infant fish oil supplementation would have greater relative effects upon n-3 LCPUFA status at six months of age than breast milk fatty acids.Patients and methodsInfants (n=420) were supplemented daily from birth to six months with fish oil or placebo. In a subset of infants, LCPUFA levels were measured in cord blood, breast milk and in infant blood at 6 months.ResultsDHA levels increased in the fish oil group relative to placebo (p<05). Breast milk DHA was the strongest predictor of infant erythrocyte DHA levels (p=<001). This remained significant after adjustment for cord blood DHA, supplementation group and adherence.ConclusionIn this cohort, breast milk DHA was a greater determinant of infant erythrocyte n?3 LCPUFA status, than direct supplementation with fish oil.  相似文献   

10.
Women with gestational diabetes mellitus (GDM) and their neonates have lower levels of arachidonic (AA) and docosahexaenoic (DHA) acids in red cell membranes. It is not clear if this abnormality is restricted to red cells or is a generalised problem. We have investigated plasma fatty acids of neonates (venous cord) of GDM (n=37), and non-diabetic (n=31) women. The GDMs had lower levels of dihomogamma-linolenic (20:3n-6, DHGLA) acid, summation operator n-6 metabolites, DHA and summation operator n-3 metabolites (p<0.05) in choline phosphoglycerides (CPG). They also had lower levels of AA (-4.5%), adrenic acid (22:4n-6, -13%), osbond acid (22:5n-6, -7%) and summation operator n-6 (-2.5%). There was a similar pattern in triglycerides (TG) and cholesterol esters (CE). Mead acid, a marker of generalised shortage of derived and parent essential fatty acids, was higher in CPG and TG of the GDM group by 73% and 76%. The adrenic/osbond acid (22:4n-6/22:5n-6) ratio, a biochemical marker of DHA insufficiency, was reduced in CPG (-4.5%), TG (-63%) and CE (-75%) of the GDM group. These findings, which are consistent with the previous red cell data, suggest that the neuro-visual and vascular development and function of the offspring of GDM women may be adversely affected if the levels of AA and DHA are compromised further by other factors, pre- or post-natally. Studies are required to elucidate the underlying mechanism for the reduction of the two fatty acids and to evaluate the developmental and health implications.  相似文献   

11.
This study investigated the effects of a moderate dose of long-chain n-3 polyunsaturated fatty acids (1.8 g eicosapentaenoic acid (EPA) plus 0.3g docosahexaenoic acid (DHA) per day) given for 8 weeks to healthy middle-aged males on cardiovascular risk factors, particularly plasma lipids and inflammatory markers. The study was double-blind and placebo-controlled. The proportion of EPA was significantly increased in plasma phosphatidylcholine (from 1.4% to 5.0% of total fatty acids; P<0.001), cholesteryl esters (from 1.2% to 4.5%; P<0.001) and triacylglycerols (from 0.3% to 1.8%; P<0.001). In contrast, the more modest increases in DHA in these lipid fractions were not significant. There was very little effect of n-3 fatty acids on the risk factors measured, apart from a reduction in plasma soluble intercellular adhesion molecule (sICAM)-1 concentration compared with placebo (P=0.05). The change in plasma sICAM-1 concentration was significantly inversely related to the change in DHA in plasma phosphatidylcholine (r=-0.675; P=0.001), but less so to the change in EPA (r=-0.406; P=0.076). Data from the present study suggest that marine oil providing 1.8 g of EPA plus 0.3g DHA/day is not sufficient to demonstrate marked effects on cardiovascular risk factors (plasma lipids and inflammatory markers) in healthy middle-aged men, although there may be a slight anti-inflammatory effect as indicated by the decrease in sICAM-1. The stronger association between changes in DHA than EPA and sICAM-1 concentrations suggest that DHA may be more anti-inflammatory than EPA. Thus, one reason why only limited effects were seen here may be that the dose of DHA provided was insufficient.  相似文献   

12.
Two studies tested the hypothesis that eicosapentaenoic (20:5omega3; EPA), docosahexaenoic acids (22:6omega3; DHA) or linoleic acid (C18:2omega6; LIN) reduced bovine endometrial and trophoblast prostaglandin F(2alpha) (PGF(2alpha)) and prostaglandin E(2) (PGE(2)) release during short-term culture. In Study 1, endometrial tissues were collected from non-lactating, non-pregnant cows and endometrial plus trophoblast tissues from pregnant cows 16 days post-insemination. In Study 2, endometrial and trophoblast tissues were collected on day 17 of pregnancy, from cows synchronised using a double prostaglandin (PG) or Ovagentrade mark synchronisation. Tissues were incubated in medium only (M) or media supplemented with fatty acids: eicosapentaenoic (20:5omega3; EPA), docosahexaenoic acids (22:6omega3; DHA) or linoleic acid (C18:2omega6; LIN). In Study 1, PGE(2) release from 'pregnant' endometria was higher (P=0.094) than from 'non-pregnant' endometria, while PGF(2alpha) concentrations were similar. Fatty acids treatment had no effect on PGF(2alpha) or PGE(2) release from either pregnant or non-pregnant endometria. Individual fatty acid treatments had no effect on the ratio of PGF(2alpha) to PGE(2) from trophoblast tissues, but when the data from the 3 fatty acid treatments were combined (EPA, DHA and LIN treatment groups) the ratio of PGF(2alpha) to PGE(2) was reduced (P=0.026) when compared to medium only. In Study 2, PGE(2) concentrations were higher (P=0.013) from the trophoblast collected from Ovagentrade mark cows as compared to that of the PG synchrony group. When the data from the 3-omega fatty acids were combined (DHA and EPA treatment groups), the 3-omega treatments decreased (P<0.05) PGE(2) biosynthesis from both endometrial and trophoblast tissues from animals synchronised following PG synchrony but not Ovagentrade mark synchrony. Short-term culture with low concentrations of 3-omega fatty acids tended to reduce prostaglandin release from trophoblast collected 16 days after insemination, with the type of synchrony modifying PGE(2) production from the trophoblast tissues collected 17 days after insemination. The ability of exogenous fatty acids to modify embryonic prostaglandin release needs to be examined in the context of supplementing dairy cows with different sources of fats. Synchronisation method altered trophoblast PGE(2) release, highlighting the importance of the hormonal environment in modifying embryonic prostaglandin synthesis and release.  相似文献   

13.
We investigated whether formulae with evening primrose and fish oils raise long chain polyunsaturated fatty acids (LCPUFA) in plasma cholesterol esters (CE), erythrocytes (RBC) and platelets (PLT) to levels encountered in breast-fed infants. Low birthweight infants (< or =2500 g) received LCP1 formula (n = 16; 0.31% 18:3 omega6, 0.17% 20:5 omega3 and 0.20% 22:6 omega3) or LCP2 formula (n = 13; 0.32% 18:3 omega6, 0.34% 20:5 omega3 and 0.43% 22:6 omega3). Fatty acids were measured days 10+/-2, 20+/-3 and 42+/-3. The formulae raised CE, RBC and PLT 20:5 omega3 and 22:6 omega3 dose-dependently (P<0.01), to exceed levels of breast-fed babies (n = 18) day 42 (P<0.05). CE, RBC and PLT 20:3 omega6 was comparable with, and CE, RBC, PLT 20:4 omega6 were below, that of breast-fed infants (P<0.05). Dietary 20:5 omega3 and 22:6 omega3 related with CE, RBC and PLT 20:5 omega3 and 22:6 omega3 (n = 47; P< or =0.01). Dietary 20:5 omega3 and LCPUFA omega3 related inversely with CE, RBC and PLT 20:4 omega6 and LCPUFA omega6 (P< or =0.002). LCP1 and LCP2 fed infants had similar LCPUFA omega6 status day 42. Added 18:3 omega6 does not correct 20:4 omega6 to that of breast-fed infants, but improves 20:3 omega6 status. Fish oil dose-dependently raises 20:5 omega3 and 22:6 omega3, but decreases 20:4 omega6 and other LCPUFA omega6.  相似文献   

14.
The worldwide increase in aquaculture production and the concurrent decrease of wild fish stocks has made the replacement of fish oil in aquafeeds an industry priority. Oil from a plant source Echium plantagineum L., Boraginaceae, has high levels of stearidonic acid (SDA, 18:4omega3, 14%) a biosynthetic precursor of omega-3 long-chain (> or =C(20)) polyunsaturated fatty acids (omega3 LC-PUFA). Atlantic salmon (Salmo salar L.) parr were fed a control fish oil diet (FO) or one of 3 experimental diets with 100% canola oil (CO) 100% SDA oil (SO), and a 1:1 mix of CO and SDA oil (MX) for 42 days. There were no differences in the growth or feed efficiency between the four diets. However, there were significant differences in the fatty acid (FA) profiles of the red and white muscle tissues. Significantly higher amounts of SDA, eicosapentaenoic acid (20:5omega3, EPA), docosahexaenoic acid (22:6omega3, DHA) and total omega3 FA occurred in both red and white muscle tissues of fish fed SO and FO compared with those fed CO. Feeding SO diet resulted in omega3 LC-PUFA amounts in the white and red muscle being comparable to the FO diet. This study shows that absolute concentration (mug/g) of EPA, DHA and total omega3 have been maintained over 6 weeks for Atlantic salmon fed 14% SDA oil. The balance between increased biosynthesis and retention of omega3 LC-PUFA to maintain the concentrations observed in the SO fed fish remains to be conclusively determined, and further studies are needed to ascertain this.  相似文献   

15.
16.
C18:2 omega 6/C18:3 omega 3 ratio was lowered in the diet of Elderly subjects. This was done by the replacement of usual sunflower oil by rapeseed oil or by supplementing soybean oil. This diet modification induced an increase of EPA (C20:5 omega 3) and DHA (C22:6 omega 3) in red cell phospholipids. The omega 6 fatty acids (C18:2 and C20:4) were slightly modified. Therefore, dietary C18:2 omega 6/C18:3 omega 3 ratio, seems to play an important role in the determination of membrane highly unsaturated fatty acid levels.  相似文献   

17.
Hyperphenylalaninemic (HPA) children display low levels of long-chain polyunsaturated fatty acids (LCPUFA), particularly docosahexaenoic acid (DHA), in circulating lipids and erythrocytes. We have investigated the effects on the blood fatty acid status and lipid picture of a balanced supplementation with LCPUFA in HPA children through a double-blind, placebo-controlled trial. A total of 20 well-controlled HPA, school-age children were randomized to receive through a 12-month trial fat capsules supplying either 26% fatty acid as LCPUFA (including 4.6%gamma -linolenic acid, 7.4% arachidonic acid, AA, 5.5% eicosapentaenoic acid and 8% DHA) or placebo (olive oil). The study supplementation was administered in order to provide 0.3-0.5% of the individual daily energy requirements as LCPUFA. Reference data were obtained from healthy children of comparable age. Among HPA children (whose DHA status was poor at baseline), those supplemented with LCPUFA showed an increase of around 100% in the baseline DHA levels in plasma phospholipids and erythrocytes. No changes of AA levels were observed. Blood lipid levels did not significantly change. A balanced supplementation with LCPUFA in treated HPA children may improve the DHA status without adversely affecting the AA status.  相似文献   

18.
There is now evidence that major depression is accompanied by decreased levels of omega3 poly-unsaturated fatty acids (PUFA), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). There is a strong comorbidity between major depression and chronic fatigue syndrome (CFS). The present study has been carried out in order to examine PUFA levels in CFS. In twenty-two CFS patients and 12 normal controls we measured serum PUFA levels using gas chromatography and mass spectrometry. We found that CFS was accompanied by increased levels of omega6 PUFAs, i.e. linoleic acid and arachidonic acid (AA), and mono-unsaturated fatty acids (MUFAs), i.e. oleic acid. The EPA/AA and total omega3/omega6 ratios were significantly lower in CFS patients than in normal controls. The omega3/omega6 ratio was significantly and negatively correlated to the severity of illness and some items of the FibroFatigue scale, i.e. aches and pain, fatigue and failing memory. The severity of illness was significantly and positively correlated to linoleic and arachidonic acid, oleic acid, omega9 fatty acids and one of the saturated fatty acids, i.e. palmitic acid. In CFS subjects, we found significant positive correlations between the omega3/omega6 ratio and lowered serum zinc levels and the lowered mitogen-stimulated CD69 expression on CD3+, CD3+ CD4+, and CD3+ CD8+ T cells, which indicate defects in early T cell activation. The results of this study show that a decreased availability of omega3 PUFAs plays a role in the pathophysiology of CFS and is related to the immune pathophysiology of CFS. The results suggest that patients with CFS should respond favourably to treatment with--amongst other things--omega3 PUFAs, such as EPA and DHA.  相似文献   

19.
Omega‐3 (also called n‐3) long‐chain polyunsaturated fatty acids (≥C20; LC‐PUFAs) are of considerable interest, based on clear evidence of dietary health benefits and the concurrent decline of global sources (fish oils). Generating alternative transgenic plant sources of omega‐3 LC‐PUFAs, i.e. eicosapentaenoic acid (20:5 n‐3, EPA) and docosahexaenoic acid (22:6 n‐3, DHA) has previously proved problematic. Here we describe a set of heterologous genes capable of efficiently directing synthesis of these fatty acids in the seed oil of the crop Camelina sativa, while simultaneously avoiding accumulation of undesirable intermediate fatty acids. We describe two iterations: RRes_EPA in which seeds contain EPA levels of up to 31% (mean 24%), and RRes_DHA, in which seeds accumulate up to 12% EPA and 14% DHA (mean 11% EPA and 8% DHA). These omega‐3 LC‐PUFA levels are equivalent to those in fish oils, and represent a sustainable, terrestrial source of these fatty acids. We also describe the distribution of these non‐native fatty acids within C. sativa seed lipids, and consider these data in the context of our current understanding of acyl exchange during seed oil synthesis.  相似文献   

20.
Experimental animal and human studies have indicated that long chain polyunsaturated fatty acids (LCPUFA) may enhance calcium absorption, reduce urinary calcium excretion, and increase bone calcium content. In the present study, the effect of LCPUFA, as provided in evening primrose oil, fish and tuna oils, on calcium bioavailability was investigated. Growing male rats were fed a semi-synthetic diet for 6 weeks, after which calcium absorption, bone mineral density (ex vivo), bone calcium content, and bone biomechanics were measured. Calcium absorption, ex vivo bone mineral density, and bone calcium content were significantly higher in the animals fed tuna oil compared with those of a control group fed corn oil. Significant correlations were found between the docosahexaenoic acid (DHA) (22:6n-3) content of the red cell membranes and bone density and bone calcium content. DHA increased accretion of calcium in bone significantly more so than eicosapentaenoic acid (EPA) (20:5n-3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号