首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Hippo pathways are ancient signaling systems that contribute to cell growth and proliferation in a wide diversity of eukaryotes, and have emerged as a conserved regulator of organ size control in metazoans. In budding yeast, a Hippo signaling pathway called the Regulation of Ace2 and Morphogenesis (RAM) network promotes polarized cell growth and the final event in the separation of mother and daughter cells. A crucial regulatory input for RAM network control of cell separation is phosphorylation of a conserved hydrophobic motif (HM) site on the NDR/LATS family kinase Cbk1. Here we provide the first direct evidence that the Hippo-like kinase Kic1 in fact phosphorylates the HM site of Cbk1, and show that Kic1 is allosterically activated by Hym1, a highly conserved protein related to mammalian MO25. Using the structure of mammalian MO25 in complex with the Kic1-related pseudokinase STRAD, we identified conserved residues on Kic1 that are required for interaction with Hym1. We find that Kic1 and Hym1 protein levels remain constant throughout the cell cycle but the proteins’ association is regulated, with maximal interaction coinciding with peak Cbk1 HM site phosphorylation. We show that this association is necessary but not sufficient for this phosphorylation, suggesting another level of regulation is required to promote the complex to act upon its substrates. This work presents a previously undiscovered cell cycle regulated interaction between a Hippo kinase and a broadly conserved allosteric activator. Because of the conserved nature of this pathway in higher eukaryotes, this work may also provide insight into the modularity of Hippo signaling pathways.  相似文献   

3.
Saccharomyces cerevisiae Cbk1 is a LATS/Ndr protein kinase and a downstream component of the regulation of Ace2 and morphogenesis (RAM) signaling network. Cbk1 and the RAM network are required for cellular morphogenesis, cell separation, and maintenance of cell integrity. Here, we examine the phenotypes of conditional cbk1 mutants to determine the essential function of Cbk1. Cbk1 inhibition severely disrupts growth and protein secretion, and triggers the Swe1-dependent morphogenesis checkpoint. Cbk1 inhibition also delays the polarity establishment of the exocytosis regulators Rab-GTPase Sec4 and its exchange factor Sec2, but it does not interfere with actin polarity establishment. Cbk1 binds to and phosphorylates Sec2, suggesting that it regulates Sec4-dependent exocytosis. Intriguingly, Cbk1 inhibition causes a >30% decrease in post-Golgi vesicle accumulation in late secretion mutants, indicating that Cbk1 also functions upstream of Sec2-Sec4, perhaps at the level of the Golgi. In agreement, conditional cbk1 mutants mislocalize the cis-Golgi mannosyltransferase Och1, are hypersensitive to the aminoglycoside hygromycin B, and exhibit diminished invertase and Sim1 glycosylation. Significantly, the conditional lethality and hygromycin B sensitivity of cbk1 mutants are suppressed by moderate overexpression of several Golgi mannosyltransferases. These data suggest that an important function for Cbk1 and the RAM signaling network is to regulate growth and secretion via Golgi and Sec2/Sec4-dependent processes.  相似文献   

4.
5.
6.
7.
In order to examine the mediatory role of proton motive force (∆p) or proton ATPase in H2 production by Rhodobacter sphaeroides, ∆p was determined under anaerobic conditions in the dark, and the ATPase activity has been studied in R. sphaeroides strain A-10, isolated from Arzni mineral springs in Armenia. Membrane potential (∆φ) was measured from the distribution of tetraphenylphosphonium cation; pH gradient (∆pH) was the difference between the external and cytoplasmic pH values, and the latter was measured by 9-aminoacridine (9-AA) fluorescence changes. At pH 7.5, ∆φ was of −94 mV and the reversed ∆pH was +30 mV, resulting in ∆p of −64 mV. The addition of N,N′-dicyclohexylcarbodiimide (DCCD), the F0F1–ATPase inhibitor, was not affect ∆φ. It was shown that ∆φ varies nearly linearly with ΔpH, ∆φ increased from −57.1 mV at pH 6.0 to −103.8 mV at pH 8.0; it was compensated at high external pH by a reversed ∆pH, resulting in a low ∆p under anaerobic-dark conditions. Intracellular ATP concentrations and energetic charge (EC) were measured to evaluate a metabolism activity of R. sphaeroides.  相似文献   

8.
9.
The protein kinase cdc2p is a key regulator of the G1-S and G2-M cell cycle transitions in the yeast Schizosaccharomyces pombe. Activation of cdc2p is regulated by its phosphorylation state and by interaction with other proteins. We have analyzed the consequences for cell cycle progression of altering the conserved threonine phosphorylation site, within the activation loop of cdc2p, to glutamic acid. This mutant, T167 E, promotes entry into mitosis, as judged by the accumulation of mitotic spindles and condensed chromosomes, despite the fact that it lacks demonstrable kinase activity both in vitro and in vivo. However, T167 E cannot promote the metaphase-anaphase transition. Since a component of the anaphase-promoting complex (APC) in S. pombe, cut9p, remains hypophosphorylated at the T167 E arrest point, the cell cycle block might be due to the inability of T167 E to activate the APC. T167 E is lethal when overexpressed, and overproduction also causes a mitotic arrest. Multicopy suppressors of the dominant negative phenotype were isolated, and identified as cdc13 + and suc1 + . Overexpression of suc1 + suppresses the effects of T167 E overproduction by restoring sufficient amounts of suc1p to the cell to allow passage through mitosis. Received: 3 April 1998 / Accepted: 23 May 1998  相似文献   

10.
We previously found that overexpression of DGA1 encoding diacylglycerol acyltransferase (DGAT) in the ∆snf2 disruptant of Saccharomyces cerevisiae caused a significant increase in lipid accumulation and DGAT activity. The present study was conducted to investigate how Dga1p is activated in the ∆snf2 disruptant. To analyze the expression of Dga1p in wild type and the ∆snf2 disruptant, we overexpressed Dga1p with a 6x His tag at the N-terminus and a FLAG tag at the C-terminus. Immunoblotting using anti-6x His and anti-FLAG antibodies revealed that, in addition to full-length protein, Dga1p lacking the N-terminus was produced only in the ∆snf2 disruptant. Full-length Dga1p and N-terminally truncated Dga1p were separated and purified from the lipid body fraction by using anti-FLAG M2 agarose and TALON metal affinity resin. Major DGAT activity was recovered in the purified fraction of N-terminally truncated Dga1p, indicating that proteolytic cleavage at the N-terminal region is involved in DGAT activation in the ∆snf2 disruptant. Analysis of the cleavage site of N-terminally truncated Dga1p revealed a major site between Lys-29 and Ser-30. We then overexpressed truncated Dga1p variants that lacked different N-terminal amino acids and had a FLAG tag at the C-terminus. The homogenate and lipid body fraction of the ∆snf2 disruptant overexpressing Dga1p lacking the N-terminal 29 amino acids (Dga1∆N2p) had higher DGAT activity than that overexpressing Dga1p, indicating that Dga1∆N2p is activated Dga1p. Dga1∆N2p-FLAG(C-terminus) was purified to near homogeneity by anti-FLAG M2 agarose chromatography and maintained significant DGAT activity. These results provide a new strategy to engineer expression of DGAT.  相似文献   

11.
Srs2 helicase is believed to function as an anti-recombinase by resolving inappropriate Rad51-DNA filament. We found synthetic lethality or poor growth of srs2 with rad3 or mrc1 in Schizossacharomyces pombe. Lethality may result from a defect in non-checkpoint function of Rad3 or Mrc1 in the absence of Srs2, because srs2∆ rad9∆, srs2∆ chk1∆ cds1∆ or srs2∆ mrc1-14A (non-phosphorylatable mrc1 allele) did not show significant growth impairment. Notably, the inactivation of rhp51/RAD51 or rad22/RAD52 failed to rescue the growth, suggesting that events that impose lethality are independent of homologous recombination. Incubation of the conditional srs2∆ rad3 ts cells at restrictive temperature led not only to a viability decrease but also to a remarkable shortening of rDNA clusters (~100 copies). As opposed to the growth defect, shortening of rDNA clusters was also observed in srs2∆ rad9∆, srs2∆ chk1∆ cds1∆ or srs2∆ mrc1-14A, indicating that proper replication checkpoint signaling is critical for rDNA maintenance. Activation of Chk1 in the unchallenged mrc1-14A srs2∆ cells implies a certain level of spontaneous fork damage that might be the cause for rDNA instability. The data suggest that redundant functions of Srs2 and checkpoint proteins are essential for two independent aspects of genome maintenance. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
13.
The double disruptant of the S. cerevisiae protein phosphatase (PPase) genes, PTP2 (phosphotyrosine-specific PPase) and MSG5 (phosphotyrosine and phosphothreonine/serine-PPase) causes calcium-sensitive growth (Cas). Previous study using Fluorescent-activated cell sorting (FACS) analysis showed that this growth defect with calcium occurs at G1–S transition in the cell cycle. We discovered that six non-essential protein kinase (PKase) disruptions (Δbck1, Δmkk1, Δslt2/Δmpk1, Δmck1, Δssk2 and Δyak1) suppressed the Cas-phenotype of the Δptp2 Δmsg5 double disruptant. Bck1p, Mkk1p and Slt2p are components of the mitogen-activated protein kinase (MAPK) cascade of cell wall integrity pathway (Slt2 pathway), and Mck1p is its down regulator. Ssk2p is the MAPK kinase kinase of the high-osmolarity glycerol (HOG) pathway, while Yak1p is a negative regulator for the cAMP-dependent PKA pathway. FACS analysis revealed that only the disruption of Δssk2 and Δyak1 but not Δbck1, Δmkk1, Δslt2 and Δmck1 was able to suppress the delayed G1–S transition, suggesting that suppression of the growth defect is not always accompanied by suppression of the G1–S transition delay. The discovery of these PKases as suppressors revealed that in addition to the previously anticipated Slt2 pathway, HOG, Yak1p and Mck1p regulatory pathways may also be involved in the calcium sensitivity of the Δptp2 Δmsg5 double disruptant.  相似文献   

14.
The interaction between 8-azaguanine (8-Azan) and bovine serum albumin (BSA) in Tris-HCl buffer solutions at pH 7.4 was investigated by means of fluorescence and ultraviolet-visible (UV-Vis) spectroscopy. At 298 K and 310 K, at a wavelength of excitation (λ ex) of 282 nm, the fluorescence intensity decreased significantly with increasing concentrations of 8-Azan. Fluorescence static quenching was observed for BSA, which was attributed to the formation of a complex between 8-Azan and BSA during the binding reaction. This was illuminated further by the UV-Vis absorption spectra and the decomposition of the fluorescence spectra. The thermodynamic parameters ∆G, ∆H, ∆S were calculated. The results showed that the forces acting between 8-Azan and BSA were typical hydrophobic forces, and that the interaction process was spontaneous. The interaction distance r between 8-Azan and BSA, evaluated according to fluorescence resonance energy transfer theory, suggested that there is a high possibility of energy transfer from BSA to 8-Azan. Theoretical investigations based on homology modeling and molecular docking suggested that binding between 8-Azan and BSA is dominated by hydrophilic forces and hydrogen bonding. The theoretical investigations provided a good structural basis to explain the phenomenon of fluorescence quenching between 8-Azan and BSA.  相似文献   

15.
Programmed DNA double-strand breaks (DSBs) are generated during meiosis to initiate homologous recombination. Various aspects of DSB formation, signaling, and repair are accomplished or governed by Mre11, a component of the MRN/MRX complex, partially in cooperation with Com1/Sae2/CtIP. We used Tetrahymena to study evolutionarily conserved and changed functions of Mre11 and Com1. There is a difference between organisms with respect to the dependency of meiotic DSB formation on Mre11. By cytology and an electrophoresis-based assay for DSBs, we found that in Tetrahymena Mre11p is not required for the formation and ATR-dependent signaling of DSBs. Its dispensability is also reflected by wild-type-like DSB-dependent reorganization of the meiotic nucleus and by the phosphorylation of H2A.X in mre11∆ mutant. However, mre11∆ and com1∆ mutants are unable to repair DSBs, and chromosome pairing is reduced. It is concluded that, while MRE11 has no universal role in DNA damage signaling, its requirement for DSB repair is conserved between evolutionarily distant organisms. Moreover, reduced chromosome pairing in repair-deficient mutants reveals the existence of two complementing pairing processes, one by the rough parallel arrangement of chromosomes imposed by the tubular shape of the meiotic nucleus and the other by repair-dependent precise sequence matching.  相似文献   

16.
We have identified a plasma membrane Na+/H+ exchanger from durum wheat, designated TdSOS1. Heterologous expression of TdSOS1 in a yeast strain lacking endogenous Na+ efflux proteins showed complementation of the Na+- and Li+-sensitive phenotype by a mechanism involving cation efflux. Salt tolerance conferred by TdSOS1 was maximal when co-expressed with the Arabidopsis protein kinase complex SOS2/SOS3. In vitro phosphorylation of TdSOS1 with a hyperactive form of the Arabidopsis SOS2 kinase (T/DSOS2∆308) showed the importance of two essential serine residues at the C-terminal hydrophilic tail (S1126, S1128). Mutation of these two serine residues to alanine decreased the phosphorylation of TdSOS1 by T/DSOS2∆308 and prevented the activation of TdSOS1. In addition, deletion of the C-terminal domain of TdSOS1 encompassing serine residues at position 1126 and 1128 generated a hyperactive form that had maximal sodium exclusion activity independent from the regulatory SOS2/SOS3 complex. These results are consistent with the presence of an auto-inhibitory domain at the C-terminus of TdSOS1 that mediates the activation of TdSOS1 by the protein kinase SOS2. Expression of TdSOS1 mRNA in young seedlings of the durum wheat variety Om Rabia3, using different abiotic stresses (ionic and oxidative stress) at different times of exposure, was monitored by RT–PCR.  相似文献   

17.
The aim of this study was to compare the effects of TNF-α, IL-1β and IFN-γ on the activation of protein kinase B (PKB), p70S6k, mitogen-activated protein kinase (MAPK) and p90 rsk , and on IGF-I-stimulated glucose uptake and protein synthesis in mouse C2C12 myotubes. 100 nmol/l IGF-I stimulated glucose uptake in C2C12 myotubes by 198.1% and 10 ng/ml TNF-α abolished this effect. Glucose uptake in cells differentiated in the presence of 10 ng/ml IFN-γ increased by 167.2% but did not undergo significant further modification upon the addition of IGF-I. IGF-I increased the rate of protein synthesis by 249.8%. Neither TNF-α nor IFN-γ influenced basal protein synthesis, but both cytokines prevented the IGF-I effect. 10 ng/ml IL-1β did not modify either the basal or IGF-I-dependent glucose uptake and protein synthesis. With the exception of TNF-α causing an 18% decrease in the level of PKB protein, the cellular levels of PKB, p70S6k, p42MAPK, p44MAPK and p90 rsk were not affected by the cytokines. IGF-I caused the phosphorylation of PKB (an approximate 8-fold increase above the basal value after 40 min of IGF-I treatment), p42MAPK (a 2.81-fold increase after 50 min), and the activation of p70S6k and p90 rsk , manifesting as gel mobility retardation. In cells differentiated in the presence of TNF-α or IFN-γ, this IGF-I-mediated PKB and p70S6k phosphorylation was significantly diminished, and the increase in p42MAPK and p90 rsk phosphorylation was prevented. The basal p42MAPK phosphorylation in C2C12 cells treated with IFN-γ was high and comparable with the activation of this kinase by IGF-I. Pretreatment of myogenic cells with IL-1β did not modify the IGF-I-stimulated phosphorylation of PKB, p70S6k, p42MAPK and p90 rsk . In conclusion: i) TNF-α and IFN-γ, but not IL-1β, if present in the extracellular environment during C2C12 myoblast differentiation, prevent the stimulatory action of IGF-I on protein synthesis. ii) TNF-α- and IFN-γ-induced IGF-I resistance of protein synthesis could be associated with the decreased phosphorylation of PKB and p70S6k. iii) The activation of glucose uptake in C2C12 myogenic cells treated with IFN-γ is PKB independent. iv) The similar effects of TNF-α and IFN-γ on the signalling and action of IGF-I on protein synthesis in myogenic cells could suggest the involvement of both of these cytokines in protein loss in skeletal muscle.  相似文献   

18.
19.
The quaternary benzo[c]phenanthridine alkaloid chelerythrine is widely used as an inhibitor of protein kinase C (PKC). However, in biological systems chelerythrine interacts with an array of proteins. In this study, we examined the effects of chelerythrine and sanguinarine on conventional PKCs (cPKCs) and PKC upstream kinase, phosphoinositide-dependent protein kinase 1 (PDK1), under complete inhibition conditions of PKC-dependent oxidative burst. In neutrophil-like HL-60 cells, sanguinarine and chelerythrine inhibited N-formyl-Met-Leu-Phe, phorbol 12-myristate 13-acetate (PMA)-, and A23187-induced oxidative burst with IC50 values not exceeding 4.6 μmol/L, but the inhibition of PMA-stimulated cPKC activity in intact cells required at least fivefold higher alkaloid concentrations. At concentrations below 10 μmol/L, sanguinarine and chelerythrine prevented phosphorylation of ∼80 kDa protein and sequestered ∼60 kDa phosphoprotein in cytosol. Moreover, neither sanguinarine nor chelerythrine impaired PMA-stimulated translocation of autophosphorylated PKCα/βII isoenzymes, but both alkaloids induced dephosphorylation of the turn motif in PKCα/βII. The dephosphorylation did not occur in unstimulated cells and it was not accompanied by PKC degradation. Furthermore, cell treatment with sanguinarine or chelerythrine resulted in phosphorylation of ∼70 kDa protein by PDK1. We conclude that PKC-dependent cellular events are affected by chelerythrine primarily by multiple protein interactions rather than by inhibition of PKC activity.  相似文献   

20.
The motor proteins around the flagellar basal body consist of two cytoplasmic membrane proteins, MotA and MotB, and function as a complex that acts as the stator to generate the torque that drives rotation. Genome analysis of several Pseudomonas syringae pathovars revealed that there are two sets of genes encoding motor proteins: motAB and motCD. Deduced amino acid sequences for MotA/B and MotC/D showed homologies to the H+-driven stator from Escherichia coli and Na+-driven stator from Vibrio alginolyticus, respectively. However, the swimming motility of P. syringae pv. tabaci (Pta) 6605 was inhibited by the protonophore carbonyl cyanide m-chlorophenylhydrazone but not by the sodium stator-specific inhibitor phenamil. To identify a gene encoding the stator protein required for motility, ∆motAB, ∆motCD, and ∆motABCD mutants were generated. The ∆motCD mutant had remarkably reduced and the ∆motABCD mutant completely abolished swimming motilities, whereas the ∆motAB mutant retained some degree of these abilities. The ∆motCD and ∆motABCD mutants did not produce N-acyl-homoserine lactones (AHLs), quorum-sensing molecules in this pathogen, and remarkably reduced the ability to cause disease in host tobacco leaves, as we previously observed in the ∆fliC mutant strain. These results strongly indicate that both stator pairs in Pta 6605 are proton-dependent and that MotCD is important for not only flagellar motility but also for production of AHLs and the ability to cause disease in host plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号