首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetochore is a complex protein–DNA assembly that provides the mechanical linkage between microtubules and the centromere DNA of each chromosome. Centromere DNA in all eukaryotes is wrapped around a unique nucleosome that contains the histone H3 variant CENP-A (Cse4p in Saccharomyces cerevisiae). Here, we report that the inner kinetochore complex (CBF3) is required for pericentric DNA looping at the Cse4p-containing nucleosome. DNA within the pericentric loop occupies a spatially confined area that is radially displaced from the interpolar central spindle. Microtubule-binding kinetochore complexes are not involved in pericentric DNA looping but are required for the geometric organization of DNA loops around the spindle microtubules in metaphase. Thus, the mitotic segregation apparatus is a composite structure composed of kinetochore and interpolar microtubules, the kinetochore, and organized pericentric DNA loops. The linkage of microtubule-binding to centromere DNA-looping complexes positions the pericentric chromatin loops and stabilizes the dynamic properties of individual kinetochore complexes in mitosis.  相似文献   

2.
The eukaryote centromere was initially defined cytologically as the primary constriction on vertebrate chromosomes and functionally as a chromosomal feature with a relatively low recombination frequency. Structurally, the centromere is the foundation for sister chromatid cohesion and kinetochore formation. Together these provide the basis for interaction between chromosomes and the mitotic spindle, allowing the efficient segregation of sister chromatids during cell division. Although centromeric (CEN) DNA is highly variable between species, in all cases the functional centromere forms in a chromatin domain defined by the substitution of histone H3 with the centromere specific H3 variant centromere protein A (CENP-A), also known as CENH3. Kinetochore formation and function are dependent on a variety of regional epigenetic modifications that appear to result in a loop chromatin conformation providing exterior CENH3 domains for kinetochore construction, and interior heterochromatin domains essential for sister chromatid cohesion. In addition pericentric heterochromatin provides a structural element required for spindle assembly checkpoint function. Advances in our understanding of CENH3 biology have resulted in a model where kinetochore location is specified by the epigenetic mark left after dilution of CENH3 to daughter DNA strands during S phase. This results in a self-renewing and self-reinforcing epigenetic state favorable to reliably mark centromere location, as well as to provide the optimal chromatin configuration for kinetochore formation and function.  相似文献   

3.
Kinetochore proteins contribute to the fidelity of chromosome transmission by mediating the attachment of a specialized chromosomal region, the centromere, to the mitotic spindle during mitosis. In budding yeast, a subset of kinetochore proteins, referred to as the outer kinetochore, provides a link between centromere DNA-binding proteins of the inner kinetochore and microtubule-binding proteins. Using a combination of chromatin immunoprecipitation, in vivo localization, and protein coimmunoprecipitation, we have established that yeast Chl4p and Iml3p are outer kinetochore proteins that localize to the kinetochore in a Ctf19p-dependent manner. Chl4p interacts with the outer kinetochore proteins Ctf19p and Ctf3p, and Iml3p interacts with Chl4p and Ctf19p. In addition, Chl4p is required for the Ctf19p-Ctf3p and Ctf19p-Iml3p interactions, indicating that Chl4p is an important structural component of the outer kinetochore. These physical interaction dependencies provide insights into the molecular architecture and centromere DNA loading requirements of the outer kinetochore complex.  相似文献   

4.
Centromeres, and the kinetochores that assemble on them, are essential for accurate chromosome segregation. Diverse centromere organization patterns and kinetochore structures have evolved in eukaryotes ranging from yeast to humans. In addition, centromere DNA and kinetochore position can vary even within individual cells. This flexibility is manifested in several ways: centromere DNA sequences evolve rapidly, kinetochore positions shift in response to altered chromosome structure, and kinetochore complex numbers change in response to fluctuations in kinetochore protein levels. Despite their differences, all of these diverse structures promote efficient chromosome segregation. This robustness is inherent to chromosome segregation mechanisms and balances genome stability with adaptability. In this review, we explore the mechanisms and consequences of centromere and kinetochore flexibility as well as the benefits and limitations of different experimental model systems for their study.  相似文献   

5.
The assembly of the centromere, a specialized region of DNA along with a constitutive protein complex which resides at the primary constriction and is the site of kinetochore formation, has been puzzling biologists for many years. Recent advances in the fields of chromatin, microscopy, and proteomics have shed a new light on this complex and essential process. Here we review recently discovered mechanisms and proteins involved in determining mammalian centromere location and assembly. The centromeric core protein CENP-A, a histone H3 variant, is hypothesized to designate centromere localization by incorporation into centromere-specific nucleosomes and is essential for the formation of a functional kinetochore. It has been found that centromere localization of centromere protein A (CENP-A), and therefore centromere determination, requires proteins involved in histone deacetylation, as well as base excision DNA repair pathways and proteolysis. In addition to the incorporation of CENP-A at the centromere, the formation of heterochromatin through histone methylation and RNA interference is also crucial for centromere formation. The assembly of the centromere and kinetochore is complex and interdependent, involving epigenetics and hierarchical protein-protein interactions.  相似文献   

6.
Kinetochores mediate chromosome attachment to the mitotic spindle to ensure accurate chromosome segregation. Budding yeast is an excellent organism for kinetochore assembly studies because it has a simple defined centromere sequence responsible for the localization of >65 proteins. In addition, yeast is the only organism where a conditional centromere is available to allow studies of de novo kinetochore assembly. Using a conditional centromere, we found that yeast kinetochore assembly is not temporally restricted and can occur in both G1 phase and prometaphase. We performed the first investigation of kinetochore assembly in the absence of the centromeric histone H3 variant Cse4 and found that all proteins tested depend on Cse4 to localize. Consistent with this observation, Cse4-depleted cells had severe chromosome segregation defects. We therefore propose that yeast kinetochore assembly requires both centromeric DNA specificity and centromeric chromatin.  相似文献   

7.
The kinetochore is the macromolecular protein complex that assembles onto centromeric DNA and binds spindle microtubules. Evolutionarily divergent kinetoplastids have an unconventional set of kinetochore proteins. It remains unknown how kinetochores assemble at centromeres in these organisms. Here, we characterize KKT2 and KKT3 in the kinetoplastid parasite Trypanosoma brucei. In addition to the N-terminal kinase domain and C-terminal divergent polo boxes, these proteins have a central domain of unknown function. We show that KKT2 and KKT3 are important for the localization of several kinetochore proteins and that their central domains are sufficient for centromere localization. Crystal structures of the KKT2 central domain from two divergent kinetoplastids reveal a unique zinc-binding domain (termed the CL domain for centromere localization), which promotes its kinetochore localization in T. brucei. Mutations in the equivalent domain in KKT3 abolish its kinetochore localization and function. Our work shows that the unique central domains play a critical role in mediating the centromere localization of KKT2 and KKT3.  相似文献   

8.
Chromosomes segregate using their kinetochores, the specialized protein structures that are assembled on centromeric DNA and mediate attachment to the mitotic spindle. Because centromeric sequences are not conserved, centromere identity is propagated by an epigenetic mechanism. All eukaryotes contain an essential histone H3 variant (CenH3) that localizes exclusively to centromeres. Because CenH3 is required for kinetochore assembly and is likely to be the epigenetic mark that specifies centromere identity, it is critical to elucidate the mechanisms that assemble and maintain CenH3 exclusively at centromeres. To learn more about the functions and regulation of CenH3, we isolated mutants in the budding yeast CenH3 that are lethal when overexpressed. These CenH3 mutants fall into three unique classes: (I) those that localize to euchromatin but do not alter kinetochore function, (II) those that localize to the centromere and disrupt kinetochore function, and (III) those that no longer target to the centromere but still disrupt chromosome segregation. We found that a class III mutant is specifically defective in the ability of sister kinetochores to biorient and attach to microtubules from opposite spindle poles, indicating that CenH3 mutants defective in kinetochore biorientation can be obtained.  相似文献   

9.
We describe the generation of 11 monoclonal antibodies that bind to the centromere/kinetochore region of human mitotic chromosomes. These antibodies were raised against mitotic chromosome scaffolds and screened for centromere/kinetochore binding by indirect immunofluorescence against purified chromosomes. Immunoblot analyses with these antibodies revealed that all of the antigens are greater than 200 kD and are components of nuclei, chromosomes, and/or chromosome scaffolds. Comparison of the immunolocalization of the antigens with that observed for the centromere-associated protein CENP-B revealed that each of these centromere/kinetochore proteins lies more peripherally to the DNA than does CENP-B. In cells normally progressing through the cell cycle, these antigens displayed four distinct patterns of centromere/kinetochore association, corresponding to a minimum of four novel centromere/kinetochore-associated proteins.  相似文献   

10.
The centromere is a specialised chromosomal structure that regulates faithful chromosome segregation during cell division, as it dictates the site of assembly of the kinetochore, a critical structure that mediates binding of chromosomes to the spindle, monitors bipolar attachment and pulls chromosomes to the poles during anaphase. Identified more than a century ago as the primary constriction of condensed metaphase chromosomes, the centromere remained elusive to molecular characterisation for many years owed to its unusual enrichment in highly repetitive satellite DNA sequences, except in budding yeast. In the last decade, our understanding of centromere structure, organisation and function has increased tremendously. Nowadays, we know that centromere identity is determined epigenetically by the formation of a unique type of chromatin, which is characterised by the presence of the centromere‐specific histone H3 variant CenH3, originally called CENP‐A, which replaces canonical histone H3 at centromeres. CenH3‐chromatin constitutes the physical and functional foundation for kinetochore assembly. This review explores recent studies addressing the structural and functional characterisation of CenH3‐chromatin, its assembly and propagation during mitosis, and its contribution to kinetochore assembly.  相似文献   

11.
CEP3 encodes a centromere protein of Saccharomyces cerevisiae   总被引:6,自引:0,他引:6       下载免费PDF全文
We have designed a screen to identify mutants specifically affecting kinetochore function in the yeast Saccharomyces cerevisiae. The selection procedure was based on the generation of "synthetic acentric" minichromosomes. "Synthetic acentric" minichromosomes contain a centromere locus, but lack centromere activity due to combination of mutations in centromere DNA and in a chromosomal gene (CEP) encoding a putative centromere protein. Ten conditional lethal cep mutants were isolated, seven were found to be alleles of NDC10 (CEP2) encoding the 110-kD protein of yeast kinetochore. Three mutants defined a novel essential gene CEP3. The CEP3 product (Cep3p) is a 71-kD protein with a potential DNA-binding domain (binuclear Zn-cluster). At nonpermissive temperature the cep3 cells arrest with an undivided nucleus and a short mitotic spindle. At permissive temperature the cep3 cells are unable to support segregation of minichromosomes with mutations in the central part of element III of yeast centromere DNA. These minichromosomes, when isolated from cep3 cultures, fail to bind bovine microtubules in vitro. The sum of genetic, cytological and biochemical data lead us to suggest that the Cep3 protein is a DNA-binding component of yeast centromere. Molecular mass and sequence comparison confirm that Cep3p is the p64 component of centromere DNA binding complex Cbf3 (Lechner, 1994).  相似文献   

12.
In this study, we have examined a DNA element specific to the centromere domain of human chromosomes. Purified HeLa chromosomes were digested with the restriction enzyme Sau3AI and fractionated by sedimentation through a sucrose gradient. Fractions showing antigenecity to anticentromere (kinetochore) serum obtained from a scleroderma CREST patient were used to construct a DNA library. From this library we found one clone which has specifically hybridized to the centromere domain of metaphase chromosomes using a biotinylated probe DNA and FITC-conjugated avidin. The clone contained a stretch of alphoid DNA dimer. To determine precisely the relative location of the alphoid DNA stretch and the centromere antigen, a method was developed to carry out in situ hybridization of DNA and indirect immunofluorescent staining of antigen on the same cell preparation. Using this method, we have found perfect overlapping of the alphoid DNA sites with the centromere antigen sites in both metaphase chromosomes and nuclei at various stages in the cell cycle. We have also observed this exact correlation at the attachment sites of artificially extended sister chromatids. These results suggest the possibility that alphoid DNA repeats are a key component of kinetochore structure.  相似文献   

13.
Centromeric DNA forms two structures on the mitotic chromosome: the kinetochore, which interacts with kinetochore microtubules, and the inner centromere, which connects sister kinetochores. The assembly of the inner centromere is poorly understood. In this study, we show that the human Mis14 (hMis14; also called hNsl1 and DC8) subunit of the heterotetrameric hMis12 complex is involved in inner centromere architecture through a direct interaction with HP1 (heterochromatin protein 1), mediated via a PXVXL motif and a chromoshadow domain. We present evidence that the mitotic function of hMis14 and HP1 requires their functional association at interphase. Alterations in the hMis14 interaction with HP1 disrupt the inner centromere, characterized by the absence of hSgo1 (Shugoshin-like 1) and aurora B. The assembly of HP1 in the inner centromere and the localization of hMis14 at the kinetochore are mutually dependent in human chromosomes. hMis14, which contains a tripartite-binding domain for HP1 and two other kinetochore proteins, hMis13 and blinkin, is a cornerstone for the assembly of the inner centromere and kinetochore.  相似文献   

14.
Attachment, or cohesion, between sister chromatids is essential for their proper segregation in mitosis and meiosis [1,2]. Sister chromatids are tightly apposed at their centromeric regions, but it is not known whether this is due to cohesion at the functional centromere or at flanking centric heterochromatin. The Drosophila MEI-S332 protein maintains sister-chromatid cohesion at the centromeric region [3]. By analyzing MEI-S332's localization requirements at the centromere on a set of minichromosome derivatives [4], we tested the role of heterochromatin and the relationship between cohesion and kinetochore formation in a complex centromere of a higher eukaryote. The frequency of MEI-S332 localization is decreased on minichromosomes with compromised inheritance, despite the consistent presence of two kinetochore proteins. Furthermore, MEI-S332 localization is not coincident with kinetochore outer-plate proteins, suggesting that it is located near the DNA. We conclude that MEI-S332 localization is driven by the functional centromeric chromatin, and binding of MEI-S332 is regulated independently of kinetochore formation. These results suggest that in higher eukaryotes cohesion is controlled by the functional centromere, and that, in contrast to yeast [5], the requirements for cohesion are separable from those for kinetochore assembly.  相似文献   

15.
16.
At each mitosis, accurate segregation of every chromosome is ensured by the assembly of a kinetochore at each centromeric locus. Six foundation kinetochore proteins that assemble hierarchically and co-dependently have been identified in vertebrates. CENP-A, Mis12, CENP-C, CENP-H and CENP-I localize to a core domain of centromeric chromatin. The sixth protein, CENP-B, although not essential in higher eukaryotes, has homologues in fission yeast that bind pericentric DNA and are essential for heterochromatin formation. Foundation kinetochore proteins have various roles and mutual interactions, and their associations with centromeric DNA and heterochromatin create structural domains that support the different functions of the centromere. Advances in molecular and microscopic techniques, coupled with rare centromere variants, have enabled us to gain fresh insights into the linear and 3D organization of centromeric chromatin.  相似文献   

17.
18.
Cse4 is the budding yeast homologue of CENP-A, a modified histone H3 that specifies the base of kinetochores in all eukaryotes. Budding yeast is unique in having only one kinetochore microtubule attachment site per centromere. The centromere is specified by CEN DNA, a sequence-specific binding complex (CBF3), and a Cse4-containing nucleosome. Here we compare the ratio of kinetochore proximal Cse4-GFP fluorescence at anaphase to several standards including purified EGFP molecules in vitro to generate a calibration curve for the copy number of GFP-fusion proteins. Our results yield a mean of ~5 Cse4s, ~3 inner kinetochore CBF3 complexes, and ~20 outer kinetochore Ndc80 complexes. Our calibrated measurements increase 2.5-3-fold protein copy numbers at eukaryotic kinetochores based on previous ratio measurements assuming two Cse4s per budding yeast kinetochore. All approximately five Cse4s may be associated with the CEN nucleosome, but we show that a mean of three Cse4s could be located within flanking nucleosomes at random sites that differ between chromosomes.  相似文献   

19.
The centromere/kinetochore complex is indispensable for accurate segregation of chromosomes during cell divisions when it serves as the attachment site for spindle microtubules. Centromere identity in metazoans is believed to be governed by epigenetic mechanisms, because the highly repetitive centromeric DNA is neither sufficient nor required for specifying the assembly site of the kinetochore. A candidate for an epigenetic mark is the centromere-specific histone H3 variant CENP-A that replaces H3 in alternating blocks of chromatin exclusively in active centromeres. CENP-A acts as an initiator of kinetochore assembly, but the detailed dynamics of the deposition of metazoan CENP-A and of other constitutive kinetochore components are largely unknown. Here we show by quantitative fluorescence measurements in living early embryos that functional fluorescent fusion proteins of the Drosophila CENP-A and CENP-C homologs are rapidly incorporated into centromeres during anaphase. This incorporation is independent of ongoing DNA synthesis and pulling forces generated by the mitotic spindle, but strictly coupled to mitotic progression. Thus, our findings uncover a strikingly dynamic behavior of centromere components in anaphase.  相似文献   

20.
The centromere, which is one of the essential parts of a chromosome, controls kinetochore formation and chromosome segregation during mitosis and meiosis. While centromere function is conserved in eukaryotes, the centromeric DNA sequences evolve rapidly and have few similarities among species. The histone H3 variant CENH3(CENP-A in human), which mostly exists in centromeric nucleosomes, is a universal active centromere mark in eukaryotes and plays an essential role in centromere identity determination. The relationship between centromeric DNA sequences and centromere identity determination is one of the intriguing questions in studying centromere formation. Due to the discoveries in the past decades, including "neocentromeres" and "centromere inactivation", it is now believed that the centromere identity is determined by epigenetic mechanisms. This review will present recent progress in plant centromere biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号