首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. The transfer of sulfate ester group from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to poly-(Glu6, Ala3, Tyr1) (EAY; Mr 47 kDa) in rat submandibular salivary gland has been investigated. The highest tyrosylprotein sulfotransferase activity was obtained in the Golgi-enriched fraction in the presence of 2 mM 5'AMP, 20 mM MnCl2 and 50 mM NaF at pH 6.2. 2. The apparent Km values for EAY and PAPS were 1.6 x 10(-6) and 1.9 x 10(-6) M, respectively. 3. Inclusion of NaCl, EDTA, NEM and DTT was inhibitory for the enzyme activity. The enzyme was 28 times less susceptible to 2,6-dichloro-4-nitrophenol inhibition than to phenol sulfotransferase inhibition. 4. This study is the first report characterizing a sulfotransferase activity specific for tyrosylprotein in rat submandibular salivary glands.  相似文献   

2.
Phospholipase Cepsilon (PLCepsilon) is a novel class of phosphoinositide-specific PLC with unknown physiological functions. Here, we present the first genetic analysis of PLCepsilon in an intact organism, the nematode Caenorhabditis elegans. Ovulation in C. elegans is dependent on an inositol 1,4,5-trisphosphate (IP(3)) signaling pathway activated by the receptor tyrosine kinase LET-23. We generated deletion mutants of the gene, plc-1, encoding C. elegans PLCepsilon. We observed a novel ovulation phenotype whereby oocytes are trapped in the spermatheca due to delayed dilation of the spermatheca-uterine valve. The expression of plc-1 in the adult spermatheca is consistent with its involvement in regulation of ovulation. On the other hand, we failed to observe genetic interaction of plc-1 with let-23-mediated IP(3) signaling pathway genes, suggesting a complex mechanism for control of ovulation.  相似文献   

3.
Cuticle collagen genes. Expression in Caenorhabditis elegans   总被引:3,自引:0,他引:3  
Collagen is a structural protein used in the generation of a wide variety of animal extracellular matrices. The exoskeleton of the free-living nematode, Caenorhabditis elegans, is a complex collagen matrix that is tractable to genetic research. Mutations in individual cuticle collagen genes can cause exoskeletal defects that alter the shape of the animal. The complete sequence of the C. elegans genome indicates upwards of 150 distinct collagen genes that probably contribute to this structure. During the synthesis of this matrix, individual collagen genes are expressed in distinct temporal periods, which might facilitate the formation of specific interactions between distinct collagens.  相似文献   

4.
Migration of cells within epithelial sheets is an important feature of embryogenesis and other biological processes. Previous work has demonstrated a role for inositol 1,4,5-trisphosphate (IP(3))-mediated calcium signalling in the rearrangement of epidermal cells (also known as hypodermal cells) during embryonic morphogenesis in Caenorhabditis elegans. However the mechanism by which IP(3) production is stimulated is unknown. IP(3) is produced by the action of phospholipase C (PLC). We therefore surveyed the PLC family of C. elegans using RNAi and mutant strains, and found that depletion of PLC-1/PLC-epsilon produced substantial embryonic lethality. We used the epithelial cell marker ajm-1::gfp to follow the behaviour of epidermal cells and found that 96% of the arrested embryos have morphogenetic defects. These defects include defective ventral enclosure and aberrant dorsal intercalation. Using time-lapse confocal microscopy we show that the migration of the ventral epidermal cells, especially of the leading cells, is slower and often fails in plc-1(tm753) embryos. As a consequence plc-1 loss of function results in ruptured embryos with a Gex phenotype (gut on exterior) and lumpy larvae. Thus PLC-1 is involved in the regulation of morphogenesis. Genetic studies using gain- and loss-of-function alleles of itr-1, the gene encoding the IP(3) receptor in C. elegans, demonstrate that PLC-1 acts through ITR-1. Using RNAi and double mutants to deplete the other PLCs in a plc-1 background, we show that PLC-3/PLC-gamma and EGL-8/PLC-beta can compensate for reduced PLC-1 activity. Our work places PLC-epsilon into a pathway controlling epidermal cell migration, thus establishing a novel role for PLC-epsilon.  相似文献   

5.
To identify genes controlling volatile anesthetic (VA) action, we have screened through existing Caenorhabditis elegans mutants and found that strains with a reduction in Go signaling are VA resistant. Loss-of-function mutants of the gene goa-1, which codes for the alpha-subunit of Go, have EC(50)s for the VA isoflurane of 1.7- to 2.4-fold that of wild type. Strains overexpressing egl-10, which codes for an RGS protein negatively regulating goa-1, are also isoflurane resistant. However, sensitivity to halothane, a structurally distinct VA, is differentially affected by Go pathway mutants. The RGS overexpressing strains, a goa-1 missense mutant found to carry a novel mutation near the GTP-binding domain, and eat-16(rf) mutants, which suppress goa-1(gf) mutations, are all halothane resistant; goa-1(null) mutants have wild-type sensitivities. Double mutant strains carrying mutations in both goa-1 and unc-64, which codes for a neuronal syntaxin previously found to regulate VA sensitivity, show that the syntaxin mutant phenotypes depend in part on goa-1 expression. Pharmacological assays using the cholinesterase inhibitor aldicarb suggest that VAs and GOA-1 similarly downregulate cholinergic neurotransmitter release in C. elegans. Thus, the mechanism of action of VAs in C. elegans is regulated by Goalpha, and presynaptic Goalpha-effectors are candidate VA molecular targets.  相似文献   

6.
Morsci NS  Haas LA  Barr MM 《Genetics》2011,189(4):1341-1346
Mating behavior of animals is regulated by the sensory stimuli provided by the other sex. Sexually receptive females emit mating signals that can be inhibited by male ejaculate. The genetic mechanisms controlling the release of mating signals and encoding behavioral responses remain enigmatic. Here we present evidence of a Caenorhabditis elegans hermaphrodite-derived cue that stimulates male mating-response behavior and is dynamically regulated by her reproductive status. Wild-type males preferentially mated with older hermaphrodites. Increased sex appeal of older hermaphrodites was potent enough to stimulate robust response from mating-deficient pkd-2 and lov-1 polycystin mutant males. This enhanced response of pkd-2 males toward older hermaphrodites was independent of short-chain ascaroside pheromones, but was contingent on the absence of active sperm in the hermaphrodites. The improved pkd-2 male response toward spermless hermaphrodites was blocked by prior insemination or by genetic ablation of the ceh-18-dependent sperm-sensing pathway of the hermaphrodite somatic gonad. Our work suggests an interaction between sperm and the soma that has a negative but reversible effect on a hermaphrodite-derived mating cue that regulates male mating response, a phenomenon to date attributed to gonochoristic species only.  相似文献   

7.
The cell cycles in C. elegans are tightly controlled but appear to use the same regulators found in other organisms. Four homologues of the dual-specificity phosphatase Cdc25 are present in the C. elegans genome. In our study, we have characterized a deletion mutant for one of these orthologues. We show that embryonic defects are absent in cdc-25.1 homozygous mutants, presumably because of maternally contributed CDC-25.1 product. These embryos hatch and develop into sterile adults. The adults do not appear to have any somatic defects. The sterility results from inadequate germline proliferation. Germline precursors divide slowly and produce abnormally sized daughter cells. Only three to four rounds of germ-cell division occur before they die during the L3 and L4 larval stages.  相似文献   

8.
9.
Striated muscles from Drosophila and several vertebrates extend plasma membrane to facilitate the formation of the neuromuscular junction (NMJ) during development. However, the regulation of these membrane extensions is poorly understood. In C. elegans, the body wall muscles (BWMs) also have plasma membrane extensions called muscle arms that are guided to the motor axons where they form the postsynaptic element of the NMJ. To investigate the regulation of muscle membrane extension, we screened 871 genes by RNAi for ectopic muscle membrane extensions (EMEs) in C. elegans. We discovered that an FGF pathway, including let-756(FGF), egl-15(FGF receptor), sem-5(GRB2) and other genes negatively regulates plasma membrane extension from muscles. Although compromised FGF pathway activity results in EMEs, hyperactivity of the pathway disrupts larval muscle arm extension, a phenotype we call muscle arm extension defective or MAD. We show that expression of egl-15 and sem-5 in the BWMs are each necessary and sufficient to prevent EMEs. Furthermore, we demonstrate that let-756 expression from any one of several tissues can rescue the EMEs of let-756 mutants, suggesting that LET-756 does not guide muscle membrane extensions. Our screen also revealed that loss-of-function in laminin and integrin components results in both MADs and EMEs, the latter of which are suppressed by hyperactive FGF signaling. Our data are consistent with a model in which integrins and laminins are needed for directed muscle arm extension to the nerve cords, while FGF signaling provides a general mechanism to regulate muscle membrane extension.  相似文献   

10.
RNA interference (RNAi) is a widespread and widely exploited phenomenon. Here, we show that changing inositol 1,4,5‐trisphosphate (IP3) signalling alters RNAi sensitivity in Caenorhabditis elegans. Reducing IP3 signalling enhances sensitivity to RNAi in a broad range of genes and tissues. Conversely up‐regulating IP3 signalling decreases sensitivity. Tissue‐specific rescue experiments suggest IP3 functions in the intestine. We also exploit IP3 signalling mutants to further enhance the sensitivity of RNAi hypersensitive strains. These results demonstrate that conserved cell signalling pathways can modify RNAi responses, implying that RNAi responses may be influenced by an animal's physiology or environment.  相似文献   

11.
Much of the material taken into cells by endocytosis is rapidly returned to the plasma membrane by the endocytic recycling pathway. Although recycling is vital for the correct localization of cell membrane receptors and lipids, the molecular mechanisms that regulate recycling are only partially understood. Here we show that in Caenorhabditis elegans endocytic recycling is inhibited by NUM-1A, the nematode Numb homolog. NUM-1AGFP fusion protein is localized to the baso-lateral surfaces of many polarized epithelial cells, including the hypodermis and the intestine. We show that increased NUM-1A levels cause morphological defects in these cells similar to those caused by loss-of-function mutations in rme-1, a positive regulator of recycling in both C. elegans and mammals. We describe the isolation of worms lacking num-1A activity and show that, consistent with a model in which NUM-1A negatively regulates recycling in the intestine, loss of num-1A function bypasses the requirement for RME-1. Genetic epistasis analysis with rab-10, which is required at an early part of the recycling pathway, suggests that loss of num-1A function does not affect the uptake of material by endocytosis but rather inhibits baso-lateral recycling downstream of rab-10.  相似文献   

12.
Tyrosylprotein sulfotransferases (TPSTs) catalyze the sulfation of tyrosine residues within secreted and membrane-bound proteins. The modification modulates protein-protein interactions in the extracellular environment. Here we use combinatorial target-guided ligand assembly to discover the first known inhibitors of human TPST-2.  相似文献   

13.
Number and organization of collagen genes in Caenorhabditis elegans.   总被引:11,自引:4,他引:7       下载免费PDF全文
We analyzed the number and organization of collagen genes in the nematode Caenorhabditis elegans. Genomic Southern blot hybridization experiments and recombinant phage library screenings indicated that C. elegans has between 40 and 150 distinct collagen genes. A large number of recombinant phages containing collagen genes were isolated from C. elegans DNA libraries. Physical mapping studies indicated that most phage contained a single small collagen gene less than 3 kilobases in size. A few phage contained multiple collagen hybridizing regions and may contain a larger collagen gene or several tightly linked small collagen genes. No overlaps were observed between phages containing different collagen genes, implying that the genes are dispersed in the C. elegans genome. Consistent with the small size of most collagen genes, we found that the predominant class of collagen mRNA in C. elegans is 1.2 to 1.4 kilobases in length. Genomic Southern blot experiments under stringent hybridization conditions revealed considerable sequence diversity among collagen genes. Our data suggest that most collagen genes are unique or are present in only a few copies.  相似文献   

14.
15.
Few studies have investigated whether or not there is an interdependence between osmoregulation and vesicular trafficking. We previously showed that in Caenorhabditis elegans che-14 mutations affect osmoregulation, cuticle secretion, and sensory organ development. We report the identification of seven lethal mutations displaying che-14-like phenotypes, which define four new genes, rdy-1-rdy-4 (rod-like larval lethality and dye-filling defective). rdy-1, rdy-2, and rdy-4 mutations affect excretory canal function and cuticle formation. Moreover, rdy-1 and rdy-2 mutations reduce the amount of matrix material normally secreted by sheath cells in the amphid channel. In contrast, rdy-3 mutants have short cystic excretory canals, suggesting that it acts in a different process. rdy-1 encodes the vacuolar H+-ATPase a-subunit VHA-5, whereas rdy-2 encodes a new tetraspan protein. We suggest that RDY-1/VHA-5 acts upstream of RDY-2 and CHE-14 in some tissues, since it is required for their delivery to the epidermal, but not the amphid sheath, apical plasma membrane. Hence, the RDY-1/VHA-5 trafficking function appears essential in some cells and its proton pump function essential in others. Finally, we show that RDY-1/VHA-5 distribution changes prior to molting in parallel with that of actin microfilaments and propose a model for molting whereby actin provides a spatial cue for secretion.  相似文献   

16.
After endocytosis, membrane proteins are often sorted between two alternative pathways: a recycling pathway and a degradation pathway. Relatively little is known about how trafficking through these alternative pathways is differentially regulated. Here, we identify UNC-108/Rab2 as a regulator of postendocytic trafficking in both neurons and coelomocytes. Mutations in the Caenorhabditis elegans Rab2 gene unc-108, caused the green fluorescent protein (GFP)-tagged glutamate receptor GLR-1 (GLR-1::GFP) to accumulate in the ventral cord and in neuronal cell bodies. In neuronal cell bodies of unc-108/Rab2 mutants, GLR-1::GFP was found in tubulovesicular structures that colocalized with markers for early and recycling endosomes, including Syntaxin-13 and Rab8. GFP-tagged Syntaxin-13 also accumulated in the ventral cord of unc-108/Rab2 mutants. UNC-108/Rab2 was not required for ubiquitin-mediated sorting of GLR-1::GFP into the multivesicular body (MVB) degradation pathway. Mutations disrupting the MVB pathway and unc-108/Rab2 mutations had additive effects on GLR-1::GFP levels in the ventral cord. In coelomocytes, postendocytic trafficking of the marker Texas Red-bovine serum albumin was delayed. These results demonstrate that UNC-108/Rab2 regulates postendocytic trafficking, most likely at the level of early or recycling endosomes, and that UNC-108/Rab2 and the MVB pathway define alternative postendocytic trafficking mechanisms that operate in parallel. These results define a new function for Rab2 in protein trafficking.  相似文献   

17.
18.
G N Cox  C Fields  J M Kramer  B Rosenzweig  D Hirsh 《Gene》1989,76(2):331-344
Collagen genes col-6, col-7 (partial), col-8, col-14 and col-19 from the nematode Caenorhabditis elegans were sequenced, and compared to the previously sequenced genes col-1 and col-2. The genes are between 1.0 and 1.2 kb in length, and each includes one or two short introns. The presumptive promoter regions contain sequences similar to the eukaryotic TATA promoter element. Two distinct, conserved sequences were found in the presumptive promoter regions of, respectively, the dauer larva-specific genes col-2 and col-6, and the primarily adult-specific genes col-7 and col-19. The domain structures of the collagen polypeptides are similar: each polypeptide contains two triple-helix forming (Gly-X-Y)n domains, one of 30-33 amino acids (aa), and the other of 127-132 aa. The latter domain is interrupted by one to three short (2-8 aa) non-(Gly-X-Y)n segments that occur at relatively conserved locations in each polypeptide. Sets of cysteine residues flank the (Gly-X-Y)n domains in all of the polypeptides. The genes can be placed into three families based upon amino acid sequence similarities. Genes within a family do not always exhibit similar developmental expression programs, suggesting that structural and regulatory regions of the genes have evolved separately. The codon usage in the genes is highly asymmetrical, with adenine appearing in the third position of 85% of the glycine codons, and 93% of the proline codons.  相似文献   

19.
Complex behavior requires the coordinated action of the nervous system and nonneuronal targets. Male mating in Caenorhabditis elegans consists of a series of defined behavioral steps that lead to the physiological outcomes required for successful impregnation. We demonstrate that signaling mediated by inositol 1,4,5-trisphosphate (IP(3)) is required at several points during mating. Disruption of IP(3) receptor (itr-1) function results in dramatic loss of male fertility, due to defects in turning behavior (during vulva location), spicule insertion and sperm transfer. To elucidate the signaling pathways responsible, we knocked down the six C. elegans genes encoding phospholipase C (PLC) family members. egl-8, which encodes PLC-beta, functions in spicule insertion and sperm transfer. itr-1 and egl-8 are widely expressed in the male reproductive system. An itr-1 gain-of-function mutation rescues infertility caused by egl-8 RNA interference, indicating that egl-8 and itr-1 function together as central components of the signaling events controlling sperm transfer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号