首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Astronauts on a mission to Mars would be exposed for up to 3 years to galactic cosmic rays (GCR) — made up of high-energy protons and high charge (Z) and energy (E) (HZE) nuclei. GCR exposure rate increases about three times as spacecraft venture out of Earth orbit into deep space where protection of the Earth''s magnetosphere and solid body are lost. NASA''s radiation standard limits astronaut exposures to a 3% risk of exposure induced death (REID) at the upper 95% confidence interval (CI) of the risk estimate. Fatal cancer risk has been considered the dominant risk for GCR, however recent epidemiological analysis of radiation risks for circulatory diseases allow for predictions of REID for circulatory diseases to be included with cancer risk predictions for space missions. Using NASA''s models of risks and uncertainties, we predicted that central estimates for radiation induced mortality and morbidity could exceed 5% and 10% with upper 95% CI near 10% and 20%, respectively for a Mars mission. Additional risks to the central nervous system (CNS) and qualitative differences in the biological effects of GCR compared to terrestrial radiation may significantly increase these estimates, and will require new knowledge to evaluate.  相似文献   

2.
An increased risk of carcinogenesis caused by exposure to space radiation during prolonged space travel is a limiting factor for human space exploration. Typically, astronauts are exposed to low fluences of ionizing particles that target only a few cells in a tissue at any one time. The propagation of stressful effects from irradiated to neighboring bystander cells and their transmission to progeny cells would be of importance in estimates of the health risks of exposure to space radiation. With relevance to the risk of carcinogenesis, we investigated, in model C3H 10T½ mouse embryo fibroblasts (MEFs), modulation of the spontaneous frequency of neoplastic transformation in the progeny of bystander MEFs that had been in co-culture 10 population doublings earlier with MEFs exposed to moderate doses of densely ionizing iron ions (1 GeV/nucleon) or sparsely ionizing protons (1 GeV). An increase (P<0.05) in neoplastic transformation frequency, likely mediated by intercellular communication through gap junctions, was observed in the progeny of bystander cells that had been in co-culture with cells irradiated with iron ions, but not with protons.  相似文献   

3.
F. D. Sowby 《CMAJ》1965,92(10):505-507
The current recommendations of the International Commission on Radiological Protection have as a basic objective the limitation of the radiation dose to “that which involves a risk that is not unacceptable to the individual and to the population at large”. The problem is to decide what degree of risk is acceptable, in relation to the benefits of a practice that necessitates a radiation exposure. At the present time it is not possible to make more than very rough estimates of some of the risks of exposure to radiation, but such estimates can be usefully compared with some of the other risks that are tolerated by society. On the assumption that it would be possible to make quantitative assessments of both the benefits and the risks, the question is raised as to how and by whom an appropriate balance should be made.  相似文献   

4.
While there is a considerable number of studies on the relationship between the risk of disease or death and direct exposure from the atomic bomb in Hiroshima, the risk for indirect exposure caused by residual radioactivity has not yet been fully evaluated. One of the reasons is that risk assessments have utilized estimated radiation doses, but that it is difficult to estimate indirect exposure. To evaluate risks for other causes, including indirect radiation exposure, as well as direct exposure, a statistical method is described here that evaluates risk with respect to individual location at the time of atomic bomb exposure instead of radiation dose. In addition, it is also considered to split the risks into separate risks due to direct exposure and other causes using radiation dose. The proposed method is applied to a cohort study of Hiroshima atomic bomb survivors. The resultant contour map suggests that the region west to the hypocenter has a higher risk compared to other areas. This in turn suggests that there exists an impact on risk that cannot be explained by direct exposure.  相似文献   

5.
Previous studies have indicated that thyroid cancer risk after a first childhood malignancy is curvilinear with radiation dose, increasing at low to moderate doses and decreasing at high doses. Understanding factors that modify the radiation dose response over the entire therapeutic dose range is challenging and requires large numbers of subjects. We quantified the long-term risk of thyroid cancer associated with radiation treatment among 12,547 5-year survivors of a childhood cancer (leukemia, Hodgkin lymphoma and non-Hodgkin lymphoma, central nervous system cancer, soft tissue sarcoma, kidney cancer, bone cancer, neuroblastoma) diagnosed between 1970 and 1986 in the Childhood Cancer Survivor Study using the most current cohort follow-up to 2005. There were 119 subsequent pathologically confirmed thyroid cancer cases, and individual radiation doses to the thyroid gland were estimated for the entire cohort. This cohort study builds on the previous case-control study in this population (69 thyroid cancer cases with follow-up to 2000) by allowing the evaluation of both relative and absolute risks. Poisson regression analyses were used to calculate standardized incidence ratios (SIR), excess relative risks (ERR) and excess absolute risks (EAR) of thyroid cancer associated with radiation dose. Other factors such as sex, type of first cancer, attained age, age at exposure to radiation, time since exposure to radiation, and chemotherapy (yes/no) were assessed for their effect on the linear and exponential quadratic terms describing the dose-response relationship. Similar to the previous analysis, thyroid cancer risk increased linearly with radiation dose up to approximately 20 Gy, where the relative risk peaked at 14.6-fold (95% CI, 6.8-31.5). At thyroid radiation doses >20 Gy, a downturn in the dose-response relationship was observed. The ERR model that best fit the data was linear-exponential quadratic. We found that age at exposure modified the ERR linear dose term (higher radiation risk with younger age) (P < 0.001) and that sex (higher radiation risk among females) (P = 0.008) and time since exposure (higher radiation risk with longer time) (P < 0.001) modified the EAR linear dose term. None of these factors modified the exponential quadratic (high dose) term. Sex, age at exposure and time since exposure were found to be significant modifiers of the radiation-related risk of thyroid cancer and as such are important factors to account for in clinical follow-up and thyroid cancer risk estimation among childhood cancer survivors.  相似文献   

6.
Fink CA  Bates MN 《Radiation research》2005,164(5):701-710
This review was initiated in response to concerns that ionizing radiation could be a cause of melanoma. Studies presenting the relative risks for melanoma after external ionizing radiation exposure were in seven categories: (1) The Canadian Radiation Dose Registry, (2) nuclear industry workers, (3) subjects near nuclear test blasts, (4) survivors of the atomic bombings of Japan, (5) airline pilots and cabin attendants, (6) recipients of medical radiation, and (7) radiological technicians. Relative risks for leukemia in each of the studies were used to confirm the likelihood of exposure to ionizing radiation. When studies within a category were compatible, meta-analytic methods were used to obtain combined estimates of the relative risk, and a meta-regression analysis of melanoma relative risk compared to leukemia relative risk was used to examine consistency across exposure categories. Generally, exposure categories with elevated relative risks of leukemia had proportionately elevated relative risks of melanoma. This suggests that people exposed to ionizing radiation may be at increased risk of developing melanoma, although alternative explanations are possible. Future epidemiological studies of ionizing radiation effects should include melanoma as an outcome of interest.  相似文献   

7.
Ariella Binik 《Bioethics》2020,34(4):420-430
Controlled human infection model (CHIM) studies involve the intentional exposure of healthy research volunteers to infectious agents. These studies contribute to knowledge about the cause or development of disease and to the advancement of vaccine research. But they also raise ethical questions about the kinds of risks that should be permissible and whether limits should be imposed on research risks in CHIM studies. Two possible risk thresholds have been considered for CHIM studies. The first suggests constraining ethically permissible risks according to a minimal risk threshold and the second endorses a higher risk threshold that excludes irreversible or fatal infections. I argue that neither of these thresholds is persuasive and situate questions about risk thresholds in CHIM studies within a broader debate about permissible risks in research. I argue that risks in CHIM studies should be constrained according to limits on research risks that do not offer corresponding benefits in all studies rather than developing a unique risk threshold for CHIM studies. I then propose five recommendations for the ethical assessment of risk in CHIM studies.  相似文献   

8.
Innovations in cancer treatment have contributed to the improved survival rate of these patients. Radiotherapy is one of the main options for cancer management nowadays. High doses of ionizing radiation are usually delivered to the tumor site with high energy photon beams. However, the therapeutic radiation exposure may lead to second cancer induction. Moreover, the introduction of intensity-modulated radiation therapy over the last decades has increased the radiation dose to out-of-field organs compared to that from conventional irradiation. The increased organ doses might result in elevated probabilities for developing secondary malignancies to critical organs outside the treatment volume. The organ-specific dosimetry is considered necessary for the theoretical second cancer risk assessment and the proper analysis of data derived from epidemiological reports. This study reviews the methods employed for the measurement and calculation of out-of-field organ doses from exposure to photons and/or neutrons. The strengths and weaknesses of these dosimetric approaches are described in detail. This is followed by a review of the epidemiological data associated with out-of-field cancer risks. Previously published theoretical cancer risk estimates for adult and pediatric patients undergoing radiotherapy with conventional and advanced techniques are presented. The methodology for the theoretical prediction of the probability of carcinogenesis to out-of-field sites and the limitations of this approach are discussed. The article also focuses on the factors affecting the magnitude of the probability for developing radiotherapy-induced malignancies. The restriction of out-of-field doses and risks through the use of different types of shielding equipment is presented.  相似文献   

9.
Ariella Binik 《Bioethics》2018,32(1):27-35
The inclusion of children in research gives rise to a difficult ethical question: What justifies children's research participation and exposure to research risks when they cannot provide informed consent? This question arises out of the tension between the moral requirement to obtain a subject's informed consent for research participation, on the one hand, and the limited capacity of most children to provide informed consent, on the other. Most agree that children's participation in clinical research can be justified. But the ethical justification for exposing children to research risks in the absence of consent remains unclear. One prevalent group of arguments aims to justify children's risk exposure by appealing to the concept of benefit. I call these ‘benefit arguments’. Prominent versions of this argument defend the idea that broadening our understanding of the notion of benefit to include non‐medical benefits (such as the benefit of a moral education) helps to justify children's research participation. I argue that existing benefit arguments are not persuasive and raise problems with the strategy of appealing to broader notions of benefit to justify children's exposure to research risk.  相似文献   

10.
Radiobiologists have been struggling to estimate the health risks from low doses of radiation in humans for decades. Health risks involve not only neoplastic diseases but also somatic mutations that may contribute to other illnesses (including birth defects and ocular maladies) and heritable mutations that may increase the risk of diseases in future generations. Low dose radiation-induced cancer in humans depends on several variables, and most of these variables are not possible to correct for in any epidemiologic study. Some of the confounding factors include (i) interaction of radiation with other physical (UV light), chemical, and biological mutagens and carcinogens in a synergistic manner; (ii) variation in repair mechanisms that depend on dose; (iii) variation in sensitivity of bystander cells to subsequent radiation exposure that depends on whether they have been pre- or postirradiated; and (iv) variation in adaptive response that depends on radiation doses and protective substances (antioxidants). In our opinion, both the linear no-threshold-response and the threshold-response models might not be suitable in predicting cancer risk at low radiation doses in a quantitative sense. Low doses of ionizing radiation should not be considered insignificant for risks of somatic and heritable mutations and neoplastic and nonneoplastic diseases in humans.  相似文献   

11.
Carcinogenesis induced by space radiation is considered a major risk factor in manned interplanetary and other extended missions. The models presently used to estimate the risk for cancer induction following deep space radiation exposure are based on data from A-bomb survivor cohorts and do not account for important biological differences existing between high-linear energy transfer (LET) and low-LET-induced DNA damage. High-energy and charge (HZE) radiation, the main component of galactic cosmic rays (GCR), causes highly complex DNA damage compared to low-LET radiation, which may lead to increased frequency of chromosomal rearrangements, and contribute to carcinogenic risk in astronauts. Gastrointestinal (GI) tumors are frequent in the United States, and colorectal cancer (CRC) is the third most common cancer accounting for 10% of all cancer deaths. On the basis of the aforementioned epidemiological observations and the frequency of spontaneous precancerous GI lesions in the general population, even a modest increase in incidence by space radiation exposure could have a significant effect on health risk estimates for future manned space flights. Ground-based research is necessary to reduce the uncertainties associated with projected cancer risk estimates and to gain insights into molecular mechanisms involved in space-induced carcinogenesis. We investigated in vivo differential effects of γ-rays and HZE ions on intestinal tumorigenesis using two different murine models, ApcMin/+ and Apc1638N/+. We showed that γ- and/or HZE exposure significantly enhances development and progression of intestinal tumors in a mutant-line-specific manner, and identified suitable models for in vivo studies of space radiation–induced intestinal tumorigenesis.  相似文献   

12.
Health effects of exposures at low doses and/or low dose rates are recognized as requiring intensive research activity to answer several questions. To address these issues at a strategic level in Europe, with the perspective of integrating national and EC efforts (in particular those within the Euratom research programmes), a “European High Level and Expert Group (HLEG) on low dose risk research” was formed and carried out its work during 2008. The Group produced a report published by the European Commission in 2009 and available on the website . The more important research issues identified by the HLEG were as follows: (a) the shape of dose–response for cancer; (b) the tissue sensitivities for cancer induction; (c) the individual variability in cancer risk; (d) the effects of radiation quality (type); (e) the risks from internal radiation exposure; and (f) the risks of, and dose response relationships for, non-cancer diseases. In this paper, the radiation quality issues are especially considered, since they are closely linked to health problems and related radioprotection in space and in emerging radiotherapeutic techniques (i.e., hadrontherapy). The peculiar features of low-fluence, high-LET radiation exposures can question in particular the validity of the radiation-weighting factor (w R ) approach. Specific strategies are therefore needed to assess such risks. A multi-scale/systems biology approach, based on mechanistic studies coordinated with molecular-epidemiological studies, is considered essential to elucidate differences and similarities between specific effects of low- and high-LET radiation.  相似文献   

13.
At present, direct data on risk from protracted or fractionated radiation exposure at low dose rates have been limited largely to studies of populations exposed to low cumulative doses with resulting low statistical power. We evaluated the cancer risks associated with protracted exposure to external whole-body gamma radiation at high cumulative doses (the average dose is 0.8 Gy and the highest doses exceed 10 Gy) in Russian nuclear workers. Cancer deaths in a cohort of about 21,500 nuclear workers who began working at the Mayak complex between 1948 and 1972 were ascertained from death certificates and autopsy reports with follow-up through December 1997. Excess relative risk models were used to estimate solid cancer and leukemia risks associated with external gamma-radiation dose with adjustment for effects of plutonium exposures. Both solid cancer and leukemia death rates increased significantly with increasing gamma-ray dose (P < 0.001). Under a linear dose-response model, the excess relative risk for lung, liver and skeletal cancers as a group (668 deaths) adjusted for plutonium exposure is 0.30 per gray (P < 0.001) and 0.08 per gray (P < 0.001) for all other solid cancers (1062 deaths). The solid cancer dose-response functions appear to be nonlinear, with the excess risk estimates at doses of less than 3 Gy being about twice those predicted by the linear model. Plutonium exposure was associated with increased risks both for lung, liver and skeletal cancers (the sites of primary plutonium deposition) and for other solid cancers as a group. A significant dose response, with no indication of plutonium exposure effects, was found for leukemia. Excess risks for leukemia exhibited a significant dependence on the time since the dose was received. For doses received within 3 to 5 years of death the excess relative risk per gray was estimated to be about 7 (P < 0.001), but this risk was only 0.45 (P = 0.02) for doses received 5 to 45 years prior to death. External gamma-ray exposures significantly increased risks of both solid cancers and leukemia in this large cohort of men and women with occupational radiation exposures. Risks at doses of less than 1 Gy may be slightly lower than those seen for doses arising from acute exposures in the atomic bomb survivors. As dose estimates for the Mayak workers are improved, it should be possible to obtain more precise estimates of solid cancer and leukemia risks from protracted external radiation exposure in this cohort.  相似文献   

14.
Estimating uncertainty in lifetime cancer risk for human exposure to space radiation is a unique challenge. Conventional risk assessment with low-linear-energy-transfer (LET)-based risk from Japanese atomic bomb survivor studies may be inappropriate for relativistic protons and nuclei in space due to track structure effects. This paper develops a Monte Carlo mixture model (MCMM) for transferring additive, National Institutes of Health multiplicative, and multiplicative excess cancer incidence risks based on Japanese atomic bomb survivor data to determine excess incidence risk for various US astronaut exposure profiles. The MCMM serves as an anchor point for future risk projection methods involving biophysical models of DNA damage from space radiation. Lifetime incidence risks of radiation-induced cancer for the MCMM based on low-LET Japanese data for nonleukemia (all cancers except leukemia) were 2.77 (90% confidence limit, 0.75-11.34) for males exposed to 1 Sv at age 45 and 2.20 (90% confidence limit, 0.59-10.12) for males exposed at age 55. For females, mixture model risks for nonleukemia exposed separately to 1 Sv at ages of 45 and 55 were 2.98 (90% confidence limit, 0.90-11.70) and 2.44 (90% confidence limit, 0.70-10.30), respectively. Risks for high-LET 200 MeV protons (LET=0.45 keV/micrometer), 1 MeV alpha-particles (LET=100 keV/micrometer), and 600 MeV iron particles (LET=180 keV/micrometer) were scored on a per particle basis by determining the particle fluence required for an average of one particle per cell nucleus of area 100 micrometer(2). Lifetime risk per proton was 2.68x10(-2)% (90% confidence limit, 0.79x10(-3)%-0. 514x10(-2)%). For alpha-particles, lifetime risk was 14.2% (90% confidence limit, 2.5%-31.2%). Conversely, lifetime risk per iron particle was 23.7% (90% confidence limit, 4.5%-53.0%). Uncertainty in the DDREF for high-LET particles may be less than that for low-LET radiation because typically there is very little dose-rate dependence. Probability density functions for high-LET radiation quality and dose-rate may be preferable to conventional risk assessment approaches. Nuclear reactions and track structure effects in tissue may not be properly estimated by existing data using in vitro models for estimating RBEs. The method used here is being extended to estimate uncertainty in spacecraft shielding effectiveness in various space radiation environments.  相似文献   

15.
E S Hansen 《Mutation research》1990,239(3):163-179
This paper reviews the epidemiological literature of relevance for the hypothesis that somatic mutation is involved in the formation of the atherosclerotic plaque. Assuming that somatic mutations are involved in atherogenesis, one would expect at least some of the risk factors for cancer and for atherosclerosis to be identical. Therefore, the review covers the correlated occurrence of cancer and atherosclerotic disease. Special interest is given to populations at high risk of cancer, including subpopulations with certain genetic diseases, and populations exposed to certain carcinogenic environmental agents including ionizing radiation, vinyl chloride monomer (VCM), arsenic, tobacco, and various industrial combustion effluents containing polycyclic aromatic hydrocarbons (PAHs). Exposure to combustion effluents from burning of tobacco or fuel is associated with an increased risk of cancer and atherosclerotic disease. Combustion effluents constitute a complex mixture of potentially hazardous agents, however, and the observed correlation of cancer and atherosclerosis among exposed persons cannot be unambiguously interpreted as evidence of a common etiology of the two groups of diseases. For ionizing radiation, arsenic, and VCM there is suggestive evidence that these agents possess an atherogenic effect beside their well-known carcinogenic properties. Both arsenic and VCM seem to have a specific affinity to the vascular bed causing various lesions including angiosarcomas and atherosclerotic plaques. Regarding ionizing radiation, the atherogenic effects seem to be localized to heavily irradiated fields. Beside the carcinogenic and atherogenic effects, exposure to arsenic, VCM, and ionizing radiation brings about an increase in the incidence of mutations and chromosomal aberrations. A theory involving somatic mutation in the pathogenesis of the atherosclerotic plaque could be consistent with the observed biological effects of ionizing radiation, arsenic, and VCM. The scant data from families with certain inherited diseases may also be consistent with an involvement of the genome in the pathogenesis of atherosclerosis. In conclusion, there is strong epidemiological evidence that several factors associated with an increased risk of cancer are also associated with an increased risk of atherosclerosis.  相似文献   

16.
Background or ambient concentrations are often considered in the evaluation of potential risks to ecological receptors from exposure to hazardous chemicals in the environment. Such an evaluation may be a component of the screening or final risk management process and sets the baseline from which risks contributed by site-related activities can be addressed. Although the process for the evaluation of potential radiological risks to ecological receptors is less formalized than the chemical hazard assessment process, background remains an issue that should be addressed when considering potential site-related impacts. This paper briefly presents the ecological risk assessment approaches used to address background radionuclide concentrations at three United States Department of Defense Facilities. The concepts of total radiation dose, and tolerance and adaptation of populations to radiation are also discussed within the context of background radiation.  相似文献   

17.
Little is known about long-term cancer risks following in utero radiation exposure. We evaluated the association between in utero radiation exposure and risk of solid cancer and leukemia mortality among 8,000 offspring, born from 1948-1988, of female workers at the Mayak Nuclear Facility in Ozyorsk, Russia. Mother's cumulative gamma radiation uterine dose during pregnancy served as a surrogate for fetal dose. We used Poisson regression methods to estimate relative risks (RRs) and 95% confidence intervals (CIs) of solid cancer and leukemia mortality associated with in utero radiation exposure and to quantify excess relative risks (ERRs) as a function of dose. Using currently available dosimetry information, 3,226 (40%) offspring were exposed in utero (mean dose = 54.5 mGy). Based on 75 deaths from solid cancers (28 exposed) and 12 (6 exposed) deaths from leukemia, in utero exposure status was not significantly associated with solid cancer: RR = 0.94, 95% CI 0.58 to 1.49; ERR/Gy = -0.1 (95% CI < -0.1 to 4.1), or leukemia mortality; RR = 1.65, 95% CI 0.52 to 5.27; ERR/Gy = -0.8 (95% CI < -0.8 to 46.9). These initial results provide no evidence that low-dose gamma in utero radiation exposure increases solid cancer or leukemia mortality risk, but the data are not inconsistent with such an increase. As the offspring cohort is relatively young, subsequent analyses based on larger case numbers are expected to provide more precise estimates of adult cancer mortality risk following in utero exposure to ionizing radiation.  相似文献   

18.
Radiation protection concerns the risk of stochastic late effects, especially cancer, and limits on radiation exposure both occupationally and for the public tend to be based on these risks. The risks are determined, mainly by expert committees, from the steadily growing information on exposed human populations, especially the survivors of the atomic bombs dropped in Japan in 1945. Risks of cancer estimated up to the early 1980s were in the range 1 to 5 X 10(-2)/Sv, but recent revisions in the dosimetry of the Japanese survivors and additional cycles of epidemiological information suggest values now probably at the high end of this range. These are likely to require an increase in the values used for radiation protection. A major problem with risk estimation is that data are available only for substantial doses and must be extrapolated down to the low-dose region of interest in radiation protection. Thus the shape of the dose-response curve is important, and here we must turn to laboratory research. Of importance are studies involving (1) dose rate, which affects the response to low-LET radiation and often to high-LET radiation as well; (2) radiation quality, since the shapes of the dose-response curves for high- and low-LET radiation differ and thus the RBE, the ratio between them, varies, reaching a maximum value RBEM at low doses; and (3) modifiers of the carcinogenic response, which either enhance or reduce the effect of a given dose. Radiation protection depends both on risk information, and especially also on comparisons with other occupational and public risks, and on research, not only for extrapolations of risk to low doses but also in areas where human information is lacking such as in the effects of radiation quality and in modifications of response.  相似文献   

19.
After ingestion or inhalation of radionuclides, internal organs of the human body will be exposed to ionising radiation. Current risk estimates of radiation-associated cancer from internal emitters are largely based on extrapolation of risk from high-dose externally exposed groups. Concerns have been expressed that extrapolated risk estimates from internal emitters are greatly underestimated, by factors of ten or more, thus implying a severe underestimation of the true risks. Therefore, data on cancer mortality and incidence in a number of groups who received exposure predominantly from internal emitters are examined and excess relative risks per Sv are compared with comparable (age at exposure, time since exposure, gender) matched subsets of the Japanese atomic bomb survivor cohort. Risks are examined separately for low LET and high LET internal emitters. There are eight studies informative for the effects of internal low LET radiation exposure and 12 studies informative for the effects of internal high LET radiation. For 11 of the 20 cancer endpoints (subgroups of particular study cohorts) examined in the low LET internal emitter studies, the best estimate of the excess relative risk is greater than the corresponding estimate in the Japanese atomic bomb survivors and for the other nine it is less. For four of these 20 studies, the relative risk is significantly (2-sided P < 0.05) different from that in the Japanese atomic bomb survivors, in three cases greater than the atomic bomb survivor relative risk and in one case less. Considering only those six low LET studies/endpoints with 100 or more deaths or cases, for four out of six studies/endpoints the internal emitter risk is greater than that in the Japanese atomic bomb survivors. For seven of the 24 cancer endpoints examined in the high LET internal emitter studies the best estimate of the ERR in the internal emitter study is greater than the corresponding estimate in the Japanese atomic bomb survivors and for the other 17 it is less. For six studies, the relative risk is significantly (2-sided P < 0.05) different from that in the Japanese atomic bomb survivors, in one case greater than the atomic bomb survivor relative risk and in five cases less. Considering only those eight high LET studies/endpoints with 100 or more deaths or cases, for five out of eight studies/endpoints the internal emitter risk is greater than that in the Japanese atomic bomb survivors. These results suggest that excess relative risks in the internal emitter studies do not appreciably differ from those in the Japanese atomic bomb survivors. However, there are substantial uncertainties in estimates of risks in the internal emitter studies, particularly in relation to lung cancer associated with radon daughter (alpha particle) exposure, so a measure of caution should be exercised in these conclusions.  相似文献   

20.
The paper summarized issues, current status and the recent topics in biological research of space radiation. Researches to estimate a risk associated with space radiation exposure during a long-term manned space flight, such as in the International Space Station, is emphasized because of the large uncertainty of biological effects and a complexity of the radiation environment in space. The Issues addressed are; 1) biological effects and end points in low dose radiation, 2) biological effects under low dose rate and long-term radiation exposure, 3) modification of biological responses to radiation under space environments, 4) various aspects of biological end points vs. cellular and molecular mechanisms, 5) estimation of human risk associated with radiation exposure in space flight, 6) regulations for radiation exposure limits for space workers. The paper also summarized and introduced recent progress in space related radiation researches with various biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号