首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The in vitro interaction between the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and cytoskeletal elements is well documented. To verify this association within cells, the intracellular distribution of GAPDH under various metabolic conditions has been investigated in immunostained cells or cells expressing GAPDH as a GFP fusion protein. GAPDH was homogeneously distributed in the cytoplasm and no interaction of GAPDH with cytoskeletal elements, neither with microfilaments nor microtubules or intermediate filaments, was detectable. In living cells expressing GFP-GAPDH, stress fibres were excluded from the fluorescence. In contrast to proliferating cells, the cytoplasmic GAPDH of serum-depleted cells was not homogeneously distributed, but colocalised with stress fibres. The mechanism for stimulating this actin-binding affinity was independent of the NO-signalling pathway. The results support the idea of a specialised function for the interaction of GAPDH and cytoskeletal elements, rather than a general function, as e.g. microcompartmentalization of glycolytic enzymes.  相似文献   

3.
《Autophagy》2013,9(4):531-533
DAPK represents a relatively unique enzyme in the protein kinase superfamily whose major biological functions are linked to both autophagy and signal-mediated apoptosis. However, genetic studies have not yet uncovered how DAPK integrates into the core autophagy-related (Atg) machinery since DAPK is not present in a genetically tractable eukaryotic cell such as yeast. Furthermore, there have been no definitive DAPK binding proteins identified in metazoan systems that play a direct role in cooperating with DAPK in autophagy. We have utilized a growing concept in systems biology that invokes linear peptide-motifs as a fundamental mechanism driving protein-protein interactions and as a key switch underlying the dynamics of a signal transduction pathway. By using peptide combinatorial libraries as an assay that reflects the diversity of the linear peptide motif repertoire in the mammalian proteome, we identified microtubule-associated protein 1B (MAP1B) as a novel DAPK interacting protein that stimulates DAPK-dependent membrane blebbing and autophagy. MAP1B has previously been shown to form a functional interaction with the autophagosomal protein Atg8 (LC3). Together these studies define a genetic interaction between DAPK-MAP1B in the regulation of autophagy that may have particular relevance to cellular signalling pathways that regulate cell survival or cell death under distinct environmental stresses.

Addendum to: Harrison B, Kraus M, Burch L, Stevens C, Craig A, Gordon-Weeks P, Hupp T. DAPK-1 binding to a linear interaction motif in MAP1B stimulates autophagy and membrane blebbing. J Biol Chem 2008; In press.  相似文献   

4.
In MDCK epithelial cells, cell contact at confluency initiates a protracted process of morphogenesis during which several proteins known to bind the cytoskeleton become progressively associated with the detergent-resistant cell fraction and distributed to their characteristic polarized domains. Using extraction protocols that identify this tight cytoskeletal linkage, here we show a similar but slower, time-dependent enrichment in the detergent resistant fraction of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a highly abundant glycolytic enzyme that is traditionally considered soluble. Similar enrichment did not occur for two other glycolytic enzymes, phosphoglycerate mutase or lactate dehydrogenase. Insoluble GAPDH was not homogeneously distributed in the cytoplasm but rather displayed several discrete patterns that varied within and among MDCK cells. It also localized prominently to a few nuclei in the phenotypically heterogeneous cells of late confluency cultures. Disruptors of cytoskeletal filaments were relatively ineffective in the postconfluent epithelial monolayers, although use of disrupting agents implicated actin as the cytoplasmic filament that tethers insoluble GAPDH. Catalytic activity could be demonstrated in the insoluble fraction of GAPDH from postconfluent cultures, but only after release by mechanical disruption of insoluble extracts. Treatment of postconfluent cells with agents that deplete ATP diminished the fraction of cytoskeletally associated GAPDH, and levels of insoluble GAPDH were restored with ATP repletion, suggesting that ATP levels may regulate cytoskeletal linkage and thereby local enzyme activity. We conclude that the highly abundant and ubiquitous enzyme GAPDH becomes progressively enriched in detergent stable subcellular compartments during the process of epithelial morphogenesis. The process that produces GAPDH compartments is slow, suggesting that epithelial cells just at confluency, when they are typically analyzed, have not yet maximized the organizational state that can be attained in monolayer culture.  相似文献   

5.
We have isolated a monoclonal antibody, P4B2, which localizes to multiple anchorage junctions, namely, a subset of focal adhesions, the Z-disk of muscle, and neuromuscular junctions. Immunopurification of the antigen to this antibody from chicken brain tissue yielded a complex of three prominent proteins with mobilities of 36, 30, and 18 kDa. Amino acid sequencing of the purified proteins identified the 36-kDa protein as glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The other two protein bands were heterogeneous, containing proteins found in the synaptic vesicle fusion core complex. Immunolocalization of P4B2 antigen in developing cultured muscle cells showed that the antigen is incorporated into Z-lines soon after the sarcomeric architecture was positive for α-actinin. Together, the data indicate the P4B2 antigen is part of a unique GAPDH-containing protein complex that may be involved in reinforcement of established cytoskeletal structures.  相似文献   

6.
7.
Stevens C  Hupp TR 《Autophagy》2008,4(4):531-533
DAPK represents a relatively unique enzyme in the protein kinase superfamily whose major biological functions are linked to both autophagy and signal-mediated apoptosis. However, genetic studies have not yet uncovered how DAPK integrates into the core autophagy-related (Atg) machinery since DAPK is not present in a genetically tractable eukaryotic cell such as yeast. Furthermore, there have been no definitive DAPK binding proteins identified in metazoan systems that play a direct role in cooperating with DAPK in autophagy. We have utilized a growing concept in systems biology that invokes linear peptide-motifs as a fundamental mechanism driving protein-protein interactions and as a key switch underlying the dynamics of a signal transduction pathway. By using peptide combinatorial libraries as an assay that reflects the diversity of the linear peptide motif repertoire in the mammalian proteome, we identified microtubule-associated protein 1B (MAP1B) as a novel DAPK interacting protein that stimulates DAPK-dependent membrane blebbing and autophagy. MAP1B has previously been shown to form a functional interaction with the autophagosomal protein Atg8 (LC3). Together these studies define a genetic interaction between DAPK-MAP1B in the regulation of autophagy that may have particular relevance to cellular signalling pathways that regulate cell survival or cell death under distinct environmental stresses.  相似文献   

8.
The predominant brain microtubule-associated proteins MAP2 and tau play a critical role in microtubule cytoskeletal organization and function. We have previously reported that PP2A/Bα, a major protein phosphatase 2A (PP2A) holoenzyme, binds to and dephosphorylates tau, and regulates microtubule stability. Here, we provide evidence that MAP2 co-purifies with and is dephosphorylated by endogenous PP2A/Bα in bovine gray matter. It co-localizes with PP2A/Bα in immature and mature human neuronal cell bodies. PP2A co-immunoprecipitates with and directly interacts with MAP2. Using in vitro binding assays, we show that PP2A/Bα binds to MAP2c isoforms through a region encompassing the microtubule-binding domain and upstream proline-rich region. Tau and MAP2 compete for binding to and dephosphorylation by PP2A/Bα. Remarkably, the protein-tyrosine kinase Fyn, which binds to the proline-rich RTPPKSP motif conserved in both MAP2 and tau, inhibits the interaction of PP2A/Bα with either tau or MAP2c. The corresponding synthetic RTPPKSP peptide, but not the phosphorylated RpTPPKSP version, competes with Tau and MAP2c for binding to PP2A/Bα. Significantly, down-regulation of PP2A/Bα and deregulation of Fyn-Tau protein interactions have been linked to enhanced tau phosphorylation in Alzheimer disease. Together, our results suggest that PP2A/Bα is part of segregated MAP2 and tau signaling scaffolds that can coordinate the action of key kinases and phosphatases involved in modulating neuronal plasticity. Deregulation of these compartmentalized multifunctional protein complexes is likely to contribute to tau deregulation, microtubule disruption, and altered signaling in tauopathies.  相似文献   

9.
L Ulloa  J Díaz-Nido    J Avila 《The EMBO journal》1993,12(4):1633-1640
Casein kinase II is a multifunctional protein kinase which has been implicated in the regulation of cell growth and differentiation. This enzyme is much more abundant in neurons than in any other cell type. The treatment of neuroblastoma cells with an antisense oligodeoxyribonucleotide which specifically results in the depletion of casein kinase II catalytic subunits blocks neuritogenesis. Accordingly, this enzyme may perform an essential role during neurite growth in developing neurons. Casein kinase II depletion induced by antisense oligodeoxyribonucleotide is accompanied by a site-specific dephosphorylation of microtubule-associated protein MAP1B (also referred to as MAP5, MAP1.X or MAP1.2), which is paralleled by a release of MAP1B from microtubules. We therefore propose that phosphorylation by casein kinase II may be required for the proper MAP1B functioning in the promotion of the assembly of microtubules which constitute the cytoskeletal scaffolding of growing axon-like neurites.  相似文献   

10.
Trypanosoma brucei contains two isoenzymes for glyceraldehyde-phosphate dehydrogenase (GAPDH); one enzyme resides in a microbody-like organelle, the glycosome, the other one is found in the cytosol. We show here that the glycosomal enzyme is encoded by two tandemly linked genes of identical sequence. These genes code for a protein of 358 amino acids, with a mol. wt of 38.9 kd. This is considerably larger than all other GAPDH proteins studied so far, including the enzyme that is located in the cytosol of the trypanosome. The glycosomal enzyme shows 52-57% homology with known sequences of GAPDH proteins from 10 other organisms, both prokaryotes and eukaryotes. The residues that are involved in NAD+ binding, catalysis and subunit contacts are well conserved between all these GAPDH molecules, including the trypanosomal one. However, the glycosomal protein of T. brucei has some distinct features. Firstly, it contains a number of insertions, 1-8 amino acids long, which are responsible for the high mol. wt of the protein. Secondly, an unusually high number of positively charged amino acids confer a high isoelectric point (pI 9.3) to the protein. Part of the additional basic residues are present in the insertions. We discuss the genomic organization of the genes for the glycosomal GAPDH and the possibility that the particular features of the protein are involved in its transfer from the cytoplasm, where it is synthesized, into the glycosome.  相似文献   

11.
Abstract: MAP 1B is a microtubule-associated phosphoprotein that is expressed early in neurons and plays a role in axon growth. MAP 1B has two types of phosphoisoforms, one of which is developmentally down-regulated after neuronal maturation and one of which persists into adulthood. Because phosphorylation regulates MAP 1B binding activity, characterisation of the phosphorylation sites and identification of the corresponding kinases/phosphatases are important goals. We have characterised the developmentally down-regulated phosphorylation sites recognised by monoclonal antibody (mAb) SMI-31. We purified MAP 1B from neonatal rat brain and mapped the mAb SMI-31 sites to specific MAP 1B fragments after chemical cleavage. We then developed an in vitro kinase assay by using a high-speed spin supernatant from neonatal rat brain in the presence of ATP and recombinant proteins encoding selective regions of the MAP 1B molecule. Phosphorylation of the recombinant protein was detected on western blots using mAb SMI-31. This analysis showed that mAb SMI-31 recognises two recombinant proteins corresponding to residues 1,109–1,360 and 1,836–2,076 of rat MAP 1B after in vitro phosphorylation. The former phosphorylation site was further defined in the in vitro kinase assay by inhibition with peptides and antibodies from candidate regions of the MAP 1B sequence. This approach identified a region of 20 amino acids, from 1,244 to 1,264, characterised by a high concentration of serines immediately upstream of prolines, indicating that the kinase responsible is a proline-directed serine kinase.  相似文献   

12.
In this study, the molecular interaction of separated alpha- and beta-tubulin with purified microtubule-associated protein 1 (MAP 1) and MAP 2 was studied using electron microscopy and solid-phase binding assays with 125I-radiolabeled proteins. Electron microscopy of proteins recovered from sodium dodecyl sulfate polyacrylamide gels and subsequently incubated in various combinations under conditions promoting tubulin polymer formation revealed that both subunits have binding sites for MAP 1 as well as MAP 2. Overlays of nitrocellulose-transblotted MAPs with electrophoretically separated tubulin subunits eluted from gels confirmed these results. In overlays of nitrocellulose-immobilized tubulin subunits with gel-eluted MAP 2, self-association of MAP 2, but no binding to tubulin was detected. However, overlays with MAP 1 and MAP 2 purified under nondenaturing conditions revealed binding of both MAPs to beta-tubulin. In addition, these experiments demonstrated binding of both MAPs to MAP 2 and to the neurofilament proteins NF 70, NF 150 and NF 200. It is concluded that both alpha- and beta-tubulin possess binding sites for MAP 1 as well as MAP 2, but that the accessibility and/or binding affinity of these sites are strongly dependent on the tertiary structure of proteins. The demonstrated in vitro binding of MAP 1 and MAP 2 to all three neurofilament proteins as well as to MAP 2 confirms their presumed role as cytoskeletal linking proteins.  相似文献   

13.
为深入了解细胞凋亡的机制,研究了细胞凋亡过程中细胞核蛋白的变化.通过分离肿瘤坏死因子TNFα诱导的小鼠黑色素瘤B16细胞的细胞核并进行二维电泳分析,获得了分辨率和重复性较好的双向电泳图谱.图像分析比较对照细胞和凋亡细胞的核蛋白发现,在凋亡细胞中有11个蛋白发生了明显的变化,6个蛋白下调,5个蛋白上调,对这11个差异蛋白质点分别进行肽质指纹分析.经数据库查询,初步鉴定出这些蛋白.其中4个含量增加的蛋白(HSP84,calreticulin,vimentin,GAPDH)均直接或间接地参与诱导细胞凋亡,另外1个含量增加的蛋白(plasminogen)尚未见其与细胞凋亡有关的报道.而6个含量降低的蛋白分别属于信号转导相关蛋白(guaninenucleotidebindingprotein,lamininreceptor1)、转录调控蛋白、mRNA转运蛋白(heterochromatinprotein1alpha,heterogeneousnuclearribonucleoproteinA3,heterogeneousnuclearribonucleoproteinA2B1)和未知功能蛋白(nucleolarproteinNO38).细胞凋亡过程中这些变化的核蛋白质的发现将有助于深入认识细胞凋亡的分子机制.  相似文献   

14.
Microtubule-associated protein 1B (MAP1B) is expressed mainly in the brain during early development and plays important roles in the regulation of microtubule dynamics which is essential to neurite outgrowth and elongation. Recent studies report, however, that MAP1B persists in some areas of mature brain where it may serve functions other than microtubule-binding, in some cases possibly as a transmembrane protein. To understand the entire aspect of MAP1B function, we investigated the expression and subcellular localization of MAP1B during the course of synaptogenesis in cultured rat cortical neurons. Major part of synaptogenesis in this system took place between 3 and 17 days in vitro as monitored by Synapsin I expression. After surface-biotinylation of intact cells, subcellular fractionation was carried out using streptoavidin-conjugated magnetic beads to yield three fractions: plasma membrane fraction with attached membrane skeleton, cytoskeletal fraction, and soluble fraction. The amount of total MAP1B as well as the proportion of cytoskeletal MAP1B was kept constant between 7 and 21 days. MAP1B in the plasma membrane fraction increased progressively at the expense of soluble MAP1B, reaching 50% of total at 21 days in vitro. A small but reproducible proportion (0.35%) of MAP1B was also detected as a biotinylated transmembrane protein which increased with synaptogenesis. There was a concomitant increase in plasma membrane-associated actin, indicating the development of actin-based membrane skeleton. It is thus concluded that MAP1B has another important role in the maturation of neurites through establishment of the membrane skeleton.  相似文献   

15.
MAP kinase phosphatase (MKP)-3 is a cytoplasmic dual specificity protein phosphatase that specifically binds to and inactivates the ERK1/2 MAP kinases in mammalian cells. However, the molecular basis of the cytoplasmic localization of MKP-3 or its physiological significance is unknown. We have used MKP-3-green fluorescent protein fusions in conjunction with leptomycin B to show that the cytoplasmic localization of MKP-3 is mediated by a chromosome region maintenance-1 (CRM1)-dependent nuclear export pathway. Furthermore, the nuclear translocation of MKP-3 seen in the presence of leptomycin B is mediated by an active process, indicating that MKP-3 shuttles between the nucleus and cytoplasm. The amino-terminal noncatalytic domain of MKP-3 is both necessary and sufficient for nuclear export of the phosphatase and contains a single functional leucine-rich nuclear export signal (NES). Even though this domain of the protein also mediates the binding of MKP-3 to MAP kinase, we show that mutations of the kinase interaction motif which abrogate ERK2 binding do not affect MKP-3 localization. Conversely, mutation of the NES does not affect either the binding or phosphatase activity of MKP-3 toward ERK2, indicating that the kinase interaction motif and NES function independently. Finally, we demonstrate that the ability of MKP-3 to cause the cytoplasmic retention of ERK2 requires both a functional kinase interaction motif and NES. We conclude that in addition to its established function in the regulated dephosphorylation and inactivation of MAP kinase, MKP-3 may also play a role in determining the subcellular localization of its substrate. Our results reinforce the idea that regulatory proteins such as MKP-3 may play a key role in the spatio-temporal regulation of MAP kinase activity.  相似文献   

16.
Dystonin is a large multidomain cytoskeletal-associated protein that plays an essential role in the nervous system. Loss of dystonin results in neuromuscular dysfunction and early death in a mouse mutant called dystonia musculorum. Conserved among related proteins, the plakin domain is a defining feature of all major dystonin isoforms, yet its interactions have not been explored in detail. The purpose of the present study was to identify novel interacting partners of the plakin domain of the neuronal isoform of dystonin (dystonin-a). Newly identified interacting proteins discovered through a pull-down assay were validated using coimmunoprecipitation, coimmunofluorescence, and proximity ligation assays. Microtubule associated protein 1B (MAP1B), a microtubule stabilizing protein, and clathrin heavy chain, the major component of the clathrin triskelion, were identified as interaction partners for dystonin-a. Increased levels of phosphorylated MAP1B suggest a misregulation of MAP1B and a potentially novel component of the dt pathology. This work will further facilitate our understanding of how cytoskeletal proteins can affect and regulate neurodegenerative disorders.  相似文献   

17.
Bmcc1s, a brain-enriched short isoform of the BCH-domain containing molecule Bmcc1, has recently been shown to interact with the microtubule-associated protein MAP6 and to regulate cell morphology. Here we identified kidney-type glutaminase (KGA), the mitochondrial enzyme responsible for the conversion of glutamine to glutamate in neurons, as a novel partner of Bmcc1s. Co-immunoprecipitation experiments confirmed that Bmcc1s and KGA form a physiological complex in the brain, whereas binding and modeling studies showed that they interact with each other. Overexpression of Bmcc1s in mouse primary cortical neurons impaired proper mitochondrial targeting of KGA leading to its accumulation within the cytoplasm. Thus, Bmcc1s may control the trafficking of KGA to the mitochondria.  相似文献   

18.
The normally cytosolic glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase, (GAPDH) has been reported to be expressed on the surface of Streptococcus pyogenes, group A, where it can act as a plasmin binding protein (Plr), and potentially a signaling molecule. In studies of wild-type and isogenic mutants, an association between surface expression of antigenic GAPDH/Plr and M and M-related fibrinogen-binding proteins was identified. Inactivation of the mga gene, whose product controls expression of M and M-related proteins also influenced expression of surface GAPDH/Plr. Revertants or pseudorevertants of mga mutants led to concomitant re-expression of surface GAPDH/Plr and M and M-related proteins. Using surface enhanced laser desorption ionization (SELDI) mass spectroscopy, a physical association between GAPDH/Plr and streptococcal fibrinogen-binding proteins was demonstrated. These studies support the hypothesis that surface M and M-related proteins are involved in anchoring GAPDH/Plr on the surface of group A streptococci.  相似文献   

19.
Myelin-associated glycoprotein (MAG) is expressed in periaxonal membranes of myelinating glia where it is believed to function in glia-axon interactions by binding to a component of the axolemma. Experiments involving Western blot overlay and coimmunoprecipitation demonstrated that MAG binds to a phosphorylated neuronal isoform of microtubule-associated protein 1B (MAP1B) expressed in dorsal root ganglion neurons (DRGNs) and axolemma-enriched fractions from myelinated axons of brain, but not to the isoform of MAP1B expressed by glial cells. The expression of some MAP1B as a neuronal plasma membrane glycoprotein (Tanner, S.L., R. Franzen, H. Jaffe, and R.H. Quarles. 2000. J. Neurochem. 75:553-562.), further documented here by its immunostaining without cell permeabilization, is consistent with it being a binding partner for MAG on the axonal surface. Binding sites for a MAG-Fc chimera on DRGNs colocalized with MAP1B on neuronal varicosities, and MAG and MAP1B also colocalized in the periaxonal region of myelinated axons. In addition, expression of the phosphorylated isoform of MAP1B was increased significantly when DRGNs were cocultured with MAG-transfected COS cells. The interaction of MAG with MAP1B is relevant to the known role of MAG in affecting the cytoskeletal structure and stability of myelinated axons.  相似文献   

20.
In this report, we describe proteomic analysis of corpora amylacea collected by postmortem laser microdissection from multiple sclerosis (MS) brain lesions. Using low level protein loads (about 30 microg), a combination of two-dimensional electrophoresis with matrix-assisted laser desorption/ionization-time of flight mass spectrometry and database interrogations we identified 24 proteins of suspected neuronal origin. In addition to major cytoskeletal proteins like actin, tubulin, and vimentin, we identified a variety of proteins implicated specifically in cellular motility and plasticity (F-actin capping protein), regulation of apoptosis and senescence (tumor rejection antigen-1, heat shock proteins, valosin-containing protein, and ubiquitin-activating enzyme E1), and enzymatic pathways (glyceraldehyde-3-dehydrogenase, protein disulfide isomerase, protein disulfide isomerase related protein 5, lactate dehydrogenase). Samples taken from regions in the vicinity of corpora amylacea showed only traces of cellular proteins suggesting that these bodies may represent remnants of neuronal aggregates with highly polymerized cytoskeletal material. Our data provide evidence supporting the concept that biogenesis of corpora amylacea involves degeneration and aggregation of cells of neuronal origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号