首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reproductive capacity was investigated in naturally occurring triploid individuals of the loach Misgurnus anguillicaudatus collected from Memanbetsu Town, Abashiri County, Hokkaido Island, Japan. These triploids have been considered to appear by accidental incorporation of the haploid sperm genome from normal diploid into unreduced diploid eggs from the clonal lineage that usually reproduces unisexually. By fertilization with sperm from the normal male, one triploid female gave many inviable aneuploid (2.1–2.7n) and very few tetraploid progeny, whereas the other produced both diploid and triploid progeny. The results suggest that at least four different types of eggs can be formed in triploid females in this locality. In contrast, no progeny hatched when eggs of the normal female were fertilized with sperm or sperm-like cells obtained from triploid males. These gametes exhibited inactive or no motility after adding ambient water. They had larger head sizes than those of normal haploid sperm and had a short or no tail. Although their ploidy was triploid or hexaploid, a small number of haploid cells were detected in the semen by flow cytometry. Thus, triploid males were generally sterile, but they have a little potential for producing very few haploid sperm.  相似文献   

2.
Spermatozoa in triploids of the rosy bitterling Rhodeus ocellatus ocellatus   总被引:1,自引:0,他引:1  
Artificially induced triploid male Rhodeus ocellatus ocellatus showed typical nuptial colorations, irrespective of spermiation. In milt from triploids, abnormal spermatozoa (malformation of the head and mitochondrion, excessive formation of the head, mitochondrion and flagellum, and no flagellum) occurred at 78°4% frequency. Spermatozoa with multiflagella were most common, often with a saccate-like organ. Many triploid spermatozoa moved actively as long as those of diploids (10·92±0·91 min=mean±S.D., P >0·05), but did not advance like diploids, spinning around until movement ceased. The sperm density in triploids was < 2% of that from diploids. In triploid testes, deformed and variously sized spermatids were often observed, and normal spermatids and spermatozoa were seldom recognized. The DNA content of triploid spermatozoa varied greatly, compared with that of diploids. Peak of sperm DNA content differed slightly between two triploid samples with two peaks at 1·5 n and 1·9 n ( P <0·0001 in both), respectively. Triploids had the greatest average sperm head diameter of 2·25±0·67 μm (mean±S.D.), while that of diploids was 1·83±0·15 μm ( P =0·002). In the fertilization test using the eggs of diploids ( n =1500, 30 trials), only one egg developed. The embryo chromosome number was 60 (2·5 n) and the ploidy of spermatozoa contributing to fertilization appears to be 1·5 n. The extremely low fertility of triploid R. o. ocellatus spermatozoa seems to be caused by the reduced motility and large head size of spermatozoa, and the low sperm density of the milt. The ploidy of spermatozoa that are successful in fertilization is likely to be related to the distribution pattern in the DNA content of cells.  相似文献   

3.
Asexual lineages derived from dioecious taxa are typically assumed to be all female. Even so, asexual females from a variety of animal taxa occasionally produce males. The existence of these males sets the stage for potential gene flow across asexual lineages as well as between sexual and asexual lineages. A recent study showed that asexual triploid female Potamopyrgus antipodarum, a New Zealand freshwater snail often used as a model to study sexual reproduction, occasionally produce triploid male offspring. Here, we show that these triploid male P. antipodarum (1) have testes that produce morphologically normal sperm, (2) make larger sperm cells that contain more nuclear DNA than the sperm produced by diploid sexual males, and (3) produce sperm that range in DNA content from haploid to diploid, and are often aneuploid. Analysis of meiotic chromosomes of triploid males showed that aberrant pairing during prophase I probably accounts for the high variation in DNA content among sperm. These results indicate that triploid male P. antipodarum produce sperm, but the extent to which these sperm are able to fertilize female ova remains unclear. Our results also suggest that the general assumption of sterility in triploid males should be more closely examined in other species in which such males are occasionally produced. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 227–234.  相似文献   

4.
The Amazon molly, Poecilia formosa, is an all-female fish of hybrid origin which reproduces by gynogenesis, i.e. it depends on sperm of males of closely related species to trigger parthenogenetic development of the embryo. Therefore the offspring is clonal and identical to the mother. In rare cases the exclusion mechanism fails and paternal introgression occurs. This may result either in triploid offspring - if the whole haploid chromosome set of the sperm fuses with the diploid egg nucleus - or in siblings with microchromosomes - if only subgenomic amounts of paternal DNA are included. In one of our diploid, microchromosome-carrying laboratory stocks we observed eight triploid individuals which all developed into males. We investigated the mitotic and meiotic chromosomes, the synaptonemal complex (SC), and sperm production of these males, and compared them to males of the gonochoristic parental species (P. latipinna and P. mexicana) and their hybrids. This comparison revealed that P. formosa males are functional males with reduced effective fertility. They show a deviation from the typical 23 bivalents in the synaptonemal complexes as well as in diakinesis due to the triploid state. They produced offspring but only with gynogenetic Amazon molly females. This shows that the probably aneuploid sperm from P. formosa males can trigger parthenogenetic development of unreduced eggs.  相似文献   

5.
In hymenopterans, males are normally haploid (1n) and females diploid (2n), but individuals with divergent ploidy levels are frequently found. In species with ‘complementary sex determination’ (CSD), increasing numbers of diploid males that are often infertile or unviable arise from inbreeding, presenting a major impediment to biocontrol breeding. Non‐CSD species, which are common in some parasitoid wasp taxa, do not produce polyploids through inbreeding. Nevertheless, polyploidy also occurs in non‐CSD Hymenoptera. As a first survey on the impacts of inbreeding and polyploidy of non‐CSD species, we investigate life‐history traits of a long‐term laboratory line of the parasitoid Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae) (‘Whiting polyploid line’) in which polyploids of both sexes (diploid males, triploid females) are viable and fertile. Diploid males produce diploid sperm and virgin triploid females produce haploid and diploid eggs. We found that diploid males did not differ from haploid males with respect to body size, progeny size, mate competition, or lifespan. When diploid males were mated to many females (without accounting for mating order), the females produced a relatively high proportion of male offspring, possibly indicating that these males produce less sperm and/or have reduced sperm functionality. In triploid females, parasitization rate and fecundity were reduced and body size was slightly increased, but there was no effect on lifespan. After one generation of outbreeding, lifespan as well as parasitization rate were increased, and a body size difference was no longer apparent. This suggests that outbreeding has an effect on traits observed in an inbred polyploidy background. Overall, these results indicate some phenotypic detriments of non‐CSD polyploids that must be taken into account in breeding.  相似文献   

6.
Two tetraploid isolates of Meloidogyne hapla, 86P and E289P, with haploid chromosome numbers of 34 and 28, respectively, were studied cytogenetically and biologically in relation to the diploid populations, 86-Va (n = 17) and E289-Taiwan (n = 14), from which they had been originally isolated. Both isolates were quite stable, converting to diploidy at the low rate of about 2.5%. The tetraploid isolate 86P maintained itself in competition with its diploid counterpart in mixed cultures, although an initial frequency of 50% polyploidy was reduced to about 9% at the end of the sixth generation. Both tetraploid isolates could maintain themselves in greenhouse cultures without artificial selection for at least 2 years. Crosses between diploid females and tetraploid males resulted in a few triploid females that produced mostly nonviable eggs, suggesting partial reproductive isolation between the two ploidy forms. Ten generations of propagation of only polyploid females of isolate 86P that were associated with males failed to yield an obligatorily amphimictic isolate that would not convert at all to diploidy. If one accepts a previous assumption that the present day amphimictic root-knot nematodes are tetraploids derived from diploid ancestors, results of the present study are not inconsistent with an evolutionary trend toward an even higher level of ploidy in Meloidogyne, presumably octaploidy.  相似文献   

7.
P. E. Brandham 《Genetica》1982,59(1):29-42
In reciprocal crosses between diploid and triploid Aloineae the progeny are largely diploid or diploid plus one or two chromosomes, but in reciprocal crosses between triploids and tetraploids they are tetraploid or nearly so. Thus the triploids contribute circa haploid gametes to the progeny when crossed with diploids but circa diploid gametes when crossed with tetraploids. These results are compared with those of a number of earlier workers. It is concluded that the bias in the frequency of progeny types towards diploidy or tetraploidy, depending on the ploidy level of the plant which is crossed with the triploid, is caused by inter-embryo competition. Those embryos with an endosperm/embryo factor of 1.5, the value found in normal diploid/diploid crosses having triploid endosperms, are selected in preference to those with factors higher or lower than 1.5.Inter-gamete competition also occurs among the euploid and aneuploid gametes produced by the triploids. This is more pronounced on the male side, because the degree of survival of aneuploid pollen from the triploids into the next generation is much lower than that of aneuploid egg nuclei.Non-reduction in the triploids gives rise to occasional pentaploid progeny in crosses with tetraploids, but it is more probable that in diploid/triploid crosses tetraploid progeny are the products of non-reduction in the diploid.  相似文献   

8.
Summary Chromosome counts of ten morphogenic and seven non-morphogenic immature embryo derived calluses of barley,Hordeum vulgare L. cv. Himalaya, were determined. Morphogenic calluses carried the normal chromosome complement (2n=2x=14) in a majority of the cells. A low frequency of haploid (2n=x=7), triploid (2n=3x=21), tetraploid (2n=4x=28) and octoploid (2n=8x=56) cells were also observed. In contrast, non-regenerability of a callus was attributed to the cells having numerical and structural chromosomal changes. In these calluses, aneuploid cells around diploid, triploid, and tetraploid chromosome numbers predominated. It has been demonstrated that chromosomal changes were induced during the culture and that they did not pre-exist in the cultured barley embryos. Based on this study, it is suggested that chromosome analysis of a non-regenerable callus should be conducted before altering the media composition.  相似文献   

9.
Triploidy interferes with gametogenesis in all fish species tested so far. In fish it results in complete female sterility however, males are still able to develop testis. The reason why sterility levels in triploid fishes differ among species and between sexes is unclear. In the present study the reproductive capacity of triploid males of tench was studied. Flow cytometry revealed sperm cells of triploids to be largely aneuploid with high mosaic DNA, oscillating from haploid DNA to diploid DNA content. Analysis of variance showed an insignificant influence of ploidy level on the percentage of motile spermatozoa, as well as on spermatozoa velocity. Experimental crosses between normal diploid female and triploid males resulted in the appearance of triploid progeny, which exhibited genotypes composed of microsatellite alleles inherited from the founder female and additional allele derived from the donor male. We can conclude that the triploid males analysed in the present study were capable to fertilize eggs derived from diploid females.  相似文献   

10.
Contents     
Colcemid at the dose level of 0.37 mg/kg/day was injected intraperitoneally to 3 sexually active chicken males for 3 consecutive days. 10–12 days after the first colcemid injection, 14–25% of the sperm population in the semen samples from the treated males was found to be diploid in DNA content by flow microfluorometric analysis. Cytogeneic and developmental analyses on early embryos indicate that, during the process of spermatogenesis, the male germ cells are most susceptible to colcemid treatment 1-–12 days prior to the maturationn of the spermatozoa which is equivalent to the primary through secondary spermatocyte stages in chicken males. By the application of an extremely unequal chromosomal translocation as a cytological marker of parentage, it is confirmed that the diploid sperm induced are capable of uniting with a normal haploid or diploid egg to produce a triploid or tetraploid zygote.  相似文献   

11.
In kidney epithelial cultures from female Microtus agrestis, 3,55% of all mitoses are multipolar, 94% of them tripolar. Feulgen photometric measurements of 21 tripolar mitoses reveal a total DNA amount corresponding to the mitotic diploid value (4c) in 5 cases, and to the tetraploid value (8c) in 16 cases, Diploid tripolar mitoses divide into one daughter nucleus with a diploid DNA value (2c) and two nuclei each with a haploid DNA value (1c). Most tetraploid tripolar mitoses divide into one daughter nucleus with a diploid DNA value (2c) and two nuclei with a triploid DNA value (3c). Also the sex chromosomes are distributed to the daughter nuclei in the relation of 2∶3∶3. This can be seen in anaphase figures as well as in interphase nuclei presumably derived from tripolar mitoses, showing chromocenters according to the number of X-chromosomes. In two cases of tripolar tetraploid mitoses the resulting nuclei have a haploid, a triploid and a tetraploid DNA value. The DNA replication pattern is always identical in the daughter nuclei of diploid and tetraploid tripolar mitoses. — Our observations suggest segregation and distribution of haploid chromosome sets or multiples of haploid sets to the daughter nuclei of multipolar mitoses. They also show a possible way of formation of haploid and triploid cells in a basically diploid tissue. Presumably triploid nuclei (with 3 chromocenters) are capable of DNA synthesis.  相似文献   

12.
本文利用扫描电镜和透射电镜对鲫鲤杂种F2精子的超微结构进行了系统的研究。F2精子由头部、中片和尾部组成,头部前端有液泡,没有顶体。研究发现,F2精子头部大小差别明显,最小的精子头径只有1.32μm,而最大的那个“超级精子”头径约18.39μm,但是绝大部分精子头径在1.85-2.15μm。另外,通过透射电镜还发现了双核精子和双尾精子。结果表明,F2精子中存在着明显的多态性,其中有正常的精子,即单倍体精子;也有异常的精子,包括二倍体精子、四倍体精子甚至更高倍性的精子,还有非整倍体精子。本研究结果为二倍体的精子和二倍体的卵子结合产生四倍体的机制提供了有利的证据。  相似文献   

13.
Image analysis of sagittal sections of gill lamellae of diploid and triploid tench Tinca tinca revealed the blood and water diffusion distance in diploids (2·07 μm) to be significantly higher than that of their triploid siblings (1·46 μm; P < 0·01). Lamellae of diploids compared to triploids were found to be significantly shorter (105·84 v. 132·11 μm) and thicker (18·47 v. 14·21 μm; all at P < 0·05) than those of their triploid siblings but with similar mean sectional areas (1965·44 v. 1910·86 μm2).  相似文献   

14.
The hybrid minnow Rutilus alburnoides comprises diploid and polyploid females and males. Previous studies revealed that diploid and triploid females exhibit altered oogenesis that does not involve random segregation and recombination of the genomes of the two ancestors, constituting unisexual lineages. In the present study, we investigated the reproductive mode of hybrid males from the Tejo basin, using experimental crosses and flow cytometric analysis of blood and sperm. The results suggest that diploid hybrids produced fertile unreduced sperm, transmitting their hybrid genome intact to offspring. Triploid hybrids also produced unreduced sperm, but it was not possible to obtain data concerning their fertility. Finally, tetraploid hybrids produced fertile diploid sperm, which exhibited Mendelian segregation. Tetraploid R. alburnoides may reestablish biparental reproduction, as individuals of both sexes with the appropriate constitution for normal meiosis (two haploid genomes from each parental species) are likely to occur in natural populations. Tetraploids probably have arisen from syngamy of diploid eggs and diploid sperm produced by diploid hybrid males. Diploid hybrid males may therefore play a significant role in the dynamics of the complex, starting the evolutionary process that may ultimately lead to a new sexually reproducing species.  相似文献   

15.
In Polistes paper wasps, haploid early males can mate with early emerging females and leave viable offspring. In contrast, diploid early males are eventually sterile because they contribute triploid offspring via diploid sperm. Clarifying the ploidy of early males is important for determining whether early male production is a reproductive strategy for the species. We examined the mating behavior and the ploidy of early males in the Japanese paper wasp, Polistes rothneyi iwatai van der Vecht. Thirteen early males from four colonies were all diploid. Two of the nine early males (22.2%) attempted to mate with females, but only one individual (11.1%) was successful (the female's spermatheca contained spermatozoa). These results suggest that although most early males of P. rothneyi iwatai do not produce offspring, their mating may be linked to the occasional production of triploid females.  相似文献   

16.
Loaches (Misgurnus anguillicaudatus) were collected from 35 localities in Japan and assayed by flow cytometry to determine ploidy status. No tetraploids were found, with samples from 33 localities having no or few (1.2–3.2%) triploids. Samples collected from Ichinomiya Town, Aichi Prefecture, showed a relatively high rate of triploidy (7.7%). Samples collected from a fish farm in Hirokami Village, Niigata Prefecture, also showed high proportions of triploids (2.0–15.8%), these triploid males being sterile, but the females producing both large-sized triploid and small-sized haploid eggs. Such eggs developed bisexually rather than gynogenetically, giving rise to viable tetraploid and diploid offspring after normal fertilization. Of eight diploid females obtained from the same locality, one produced a high incidence of viable diploid gynogens (55%) after gynogenetic induction by fertilization with UV-irradiated spermatozoa. These observations indicated the presence of diploid fish which produced both diploid and haploid eggs. Thus, triploid and diploid individuals were also produced after fertilization with haploid spermatozoa. These results suggested that the occurrence of such unreduced eggs may be a cause of natural polyploidization in this species.  相似文献   

17.
Mating between a diploid male and a diploid female ofBombus atratus produced fertile triploid F1 females. The F2 descendents of these virgin females were composed of haploid males (10), diploid males (4), aneuploid males (3) and intersexes (2). These data indicate that sex is produced by a balance between male determining and female determining genes: they, also, suggest that the number of sex genes are not large.  相似文献   

18.
Senegal sole Solea senegalensis larval and metamorphic stages were exposed to a range of light intensities (200, 1000 and 2000 lx) in cultures with or without supplementation of β-carotene-rich live Dunaliella salina cells. Antioxidant biomarkers such as superoxide dismutase (SOD), catalase (KAT), total glutathione peroxidase (t-GPX) and malondialdehyde (MDA) were determined in larval and metamorphic stages. Growth was not affected ( P > 0·05) either by light intensity or D. salina supplementation. Survival after metamorphosis was also unaffected by D. salina supplementation (mean ± s . e . 81·0 ± 2·5% against 80·6 ± 2·9% those fed the control algal diet) or light intensity (mean ± s . e . 74·3 ± 4·9% for 200 lx, 85·1 ± 2·7% for 1000 lx and 82·8 ± 5·2% for 2000 lx, respectively). Light intensity affected ( P < 0·05) KAT and t-GPX throughout development. SOD was only affected in metamorphosing larvae. The highest KAT and t-GPX activities were detected when the lowest light intensity (200 lx) was used. Light had no effect ( P > 0·05) on MDA at any stage. Supplementing the diet with D. salina did not affect SOD, KAT or t-GPX and there was no interaction ( P > 0·05) with light intensity. MDA was the only biomarker whose activity was significantly ( P < 0·05) reduced when D. salina was supplemented to the larval rearing tanks. The effect of D. salina supplementation was only detected in metamorphosing larvae, whose MDA levels were noticeably higher than in earlier stages. These results are evidence of the antiperoxidative effect of β-carotene from live algae in the larval rearing process of marine fishes.  相似文献   

19.
Cryopreservation of sperm from tetraploid organisms (the possession of four chromosome sets) is essentially unexplored. This is the first cryopreservation study to address sperm from tetraploid Pacific oysters, Crassostrea gigas, and addresses the commercial production of triploid oysters (three chromosome sets). Initial motility, refrigerated storage of undiluted sperm, osmolality of extender solutions, sperm concentrations, equilibration time, and cryoprotectants of propylene glycol and dimethyl sulfoxide were evaluated with sperm from diploid and tetraploid oysters. Unlike most teleost fishes, in which the duration of active motility is typically brief, the motility of sperm from oysters lasts for hours. The present study showed that responses to treatment effects by sperm from tetraploids were different from diploids. The majority of tetraploid experiments resulted in less than 10% motility after thawing and less than 5% fertilization. The highest fertilization obtained for thawed sperm was 96% for sperm from diploid oysters and 28% for sperm from tetraploid oysters. Differential responses to treatments by sperm from tetraploid and diploid oysters may be due to differences in gonadal development. However, the use of cryopreserved sperm from tetraploid Pacific oysters produced 100% triploid offspring by fertilization of eggs from diploid females as determined by flow cytometry of larvae. This study demonstrates that sperm from tetraploid oysters can be collected, frozen, and stored for production of triploid offspring.  相似文献   

20.
Summary First generation tetraploids were produced by hydrostatic pressure treatment before the first cleavage and raised until the adult stage. Their survival and growth were severely depressed when compared to the diploid control: after two years, no ovulated females were found although males produced sperm at 1 and 2 years of age and were mated individually with diploid females. The progenies were consistently normal with high survival rates. They were found to be almost all triploids by karyology, which failed to detect a significant rate of aneuploidies. However, the fertilizing ability of tetraploid males was always low (0 to 97% of the control; average 40%). Several arguments presented here support the hypothesis that diploid spermatozoas, which are wider than haploid ones, would be frequently blocked during their penetration through the micropyle canal. Second generation tetraploids were produced after such matings by heat shocks, causing the retention of the second polar body. Their survival and growth were much more satisfactory than in the first generation, although still lower than in diploid and triploid controls issuing from diploid parents. Performances of second generation triploids were comparable to those of diploids, and slightly better than those of conventional triploids issuing from diploid parents. 94.5% of the second generation tetraploids were male.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号