首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The effects of corticoliberin fragment CRF(4-6) (Pro-Pro-Ile) on pain sensitivity of rats in "hot plate" test were investigated. Intracerebroventricular administration of tripeptide CRF(4-6) (6, 30, 150 nmol/head) induced dose-dependent antinociception: the latency of paw lick response increased by 7.4 +/- 1.4, 10.1 +/- 1.5 and 16.7 +/- 4.2 s respectively from the basic level of 10.2 +/- 0.9 s. Duration of tripeptide antinociceptive action was 30 min (for 6 nmol) and 60 min (for 30 and 150 nmol). Pretreatment with corticotropin-releasing factor antagonist alpha-helical CRF(9-41) (6.5 nmol/head) 60 minutes before tripeptide administration completely abolished the antinociceptive effects of CRF(4-6) (6 nmol). Therefore corticoliberin receptors seem to be involved in realization of tripeptide influence on pain sensitivity. The data obtained suggest that CRF(4-6) can either directly interact with corticoliberin receptors or modulate activity of CRF-ergic neurons.  相似文献   

2.
The effects of tripeptide corticoliberin fragment CRF4-6 (Pro-Pro-Ile) on heart rate and behaviour of rats with simultaneous monitoring of these parameters in free-moving animals in their home cage were investigated. Intracerebroventriculary administered CRF4-6 (6, 30, 150 nmol) induces arousal effect increasing the duration of active behaviour, decreasing the duration of passive behaviour and sleep both. At the same time the tripeptide increases the heart rate during sleep, passive and exploratory activity. CRF4-6 (30, 150 nmol) also increases the heart rate in anaesthetised rats. All observed effects of the tripeptide are dose dependent. Taking into account these facts we suggest that CRF4-6 influences behaviour and heart activities independently.  相似文献   

3.
The effect of somatostatin on corticotropin-releasing factor (CRF)-induced anorexia was examined in rats. Intracerebroventricular (icv) administration of 0.11 nmol and 0.21 nmol ovine CRF significantly suppressed food intake of 24 h-starved rats. Icv administration of 0.31 nmol somatostatin 14 and somatostatin 28 partially reversed suppression of food intake induced by icv injection of 0.21 nmol CRF in 24 h-starved rats. These results suggest that somatostatin may counteract the suppressive effect of CRF on food intake within the central nervous system.  相似文献   

4.
The effects of tripeptide corticoliberin fragment CRF4-6 (icv; 6, 30, and 150 nmol/head) on behaviour of rats were investigated under non-stressing and stressing conditions. CRF4-6 activated rat behaviour under non-stressing conditions (home cage): the duration of locomotion and exploratory behaviour was increased whereas the duration of passive behaviour and sleep was decreased. On the other hand, CRF4-6 suppressed the rat exploratory behaviour under stressing conditions (elevated plus-maze): the duration of non-exploratory behaviour was increased; numbers of rearings and leanings out to open arms were reduced. All observed effects of the tripeptide CRF4-6 were dose-dependent. Behavioural effects of the tripeptide were similar to the well-known action of the whole corticoliberin molecule. Therefore we suggest that CRF4-6 is located in the active part of CRF or it can be a physiologically active corticoliberin derivative.  相似文献   

5.
Blockade of central endothelin ET(B) receptors inhibits fever induced by LPS in conscious rats. The contribution of ET(B) receptor-mediated mechanisms to fever triggered by intracerebroventricular IL-6, PGE2, PGF(2alpha), corticotropin-releasing factor (CRF), and preformed pyrogenic factor derived from LPS-stimulated macrophages (PFPF) was examined. The influence of natural IL-1 receptor antagonist or soluble TNF receptor I on endothelin (ET)-1-induced fever was also assessed. The selective ET(B) receptor antagonist BQ-788 (3 pmol icv) abolished fever induced by intracerebroventricular ET-1 (1 pmol) or PFPF (200 ng) and reduced that caused by ICV CRF (1 nmol) but not by IL-6 (14.6 pmol), PGE2 (1.4 nmol), or PGF(2alpha) (2 nmol). CRF-induced fever was also attenuated by bosentan (dual ET(A)/ET(B) receptor antagonist; 10 mg/kg iv) but unaffected by BQ-123 (selective ET(A) receptor antagonist; 3 pmol icv). alpha-Helical CRF(9-41) (dual CRF1/CRF2 receptor antagonist; 6.5 nmol icv) attenuated fever induced by CRF but not by ET-1. Human IL-1 receptor antagonist (9.1 pmol) markedly reduced fever to IL-1beta (180 fmol) or ET-1 and attenuated that caused by PFPF or CRF. Murine soluble TNF receptor I (23.8 pmol) reduced fever to TNF-alpha (14.7 pmol) but not to ET-1. The results of the present study suggest that PFPF and CRF recruit the brain ET system to cause ET(B) receptor-mediated IL-1-dependent fever.  相似文献   

6.
Intracerebroventricular (icv) injections of corticotropin-releasing factor (CRF; 25 ng) given to male rough-skinned newts (Taricha granulosa) stimulated locomotor activity tested in a circular arena starting 35 min after the injection. The CRF receptor antagonist, alpha-helical CRF9-41 (ahCRF; 250 or 500 ng), injected icv concurrently with CRF blocked CRF-induced locomotor activity. In contrast, icv injection of ahCRF had no effect on spontaneous locomotor activity. Other studies examined the effect of ahCRF on the elevated locomotor activity that was observed when the animals were stressed (handled or placed in warm water). The CRF antagonist dose dependently attenuated the response to either handling or warm stress tested 2 hr after drug treatment. We also examined the effect of the alpha 2-adrenergic agonist, clonidine, on spontaneous and CRF-induced locomotor activity. Clonidine injected icv dose dependently suppressed spontaneous locomotor activity but not CRF-induced locomotor activity. These studies support the hypothesis that endogenous CRF is involved in mediating stress-induced locomotor activity and indicate that the effects of CRF on locomotor activity are independent of activation of the alpha 2-adrenergic system.  相似文献   

7.
The medial prefrontal cortex (mPFC) and the neuropeptide corticotropin-releasing factor (CRF) have recently been receiving more attention from those interested in the neurobiology of anxiety. Here, we investigated the CRF pathway in the modulation of anxiety-like behaviors in male mice exposed to the elevated plus-maze (EPM), through intra-mPFC injections of CRF, CP376395 [N-(1-ethylpropyl)-3,6-dimethyl-2-(2,4,6-trimethylphenoxy)-4-pyridinamine hydrochloride, a CRF type 1 receptor antagonist (CR F1)] or H-89 [N-[2-[[3-(4-bromophenyl)-2-propenyl]amino]ethyl]-5-isoquinolinesulfonamide dihydrochloride, a protein kinase (PKA) inhibitor]. We also investigated the effects of intra-mPFC injections of H-89 on the behavioral effects induced by CRF. Mice received bilateral intra-mPFC injections of CRF (0, 37.5, 75 or 150 pmol), CP376395 (0, 0.75, 1.5 or 3 nmol) or H-89 (0, 1.25, 2.5 or 5 nmol) and were exposed to the EPM, to record conventional and complementary measures of anxiety for 5 min. Results showed that while CRF (75 and 150 pmol) produced an anxiogenic-like effect, CP376395 (all doses) and H-89 (5 nmol) attenuated anxiety-like behavior. When injected before CRF (150 pmol), intra-mPFC H-89 (2.5 nmol, a dose devoid of intrinsic effects on anxiety) completely blocked the anxiogenic-like effects of CRF. These results suggest that (i) CRF plays a tonic anxiogenic-like role at CRF1 receptors within the mPFC, since their blockade per se attenuated anxiety indices and (ii) the anxiogenic-like effects following CRF1 receptor activation depend on cAMP/PKA cascade activation in this limbic forebrain area.  相似文献   

8.
The mechanism by which restraint stress induces suppression of food intake and the influence of intracerebroventricular (icv) administration of somatostatin on the anorexia induced by restraint stress were examined in the rat. Ninety minutes of restraint stress reduced food intake of rats to approximately 60% that of control. Anorexia induced by 90 min restraint stress was partially reversed by icv administration of alpha-helical CRF (9-41), a corticotropin-releasing factor (CRF) antagonist, and completely reversed by anti-CRF gamma-globulin. These results provide further evidence in support of the theory that CRF is involved in the inhibitory mechanism of food intake in restraint stress. ICV administration of somatostatin 14 and SMS 201-995, an analog of somatostatin, also reversed restraint stress-induced anorexia. It is, therefore, suggested that somatostatin may counteract the suppressive action of CRF on food intake in stress.  相似文献   

9.
The effect of interleukin (IL)-1 on the occurrence of stress-induced gastric erosions was examined in rats. The intracerebroventricular (icv) administration of IL-1 beta significantly inhibited the occurrence of water-immersion restraint stress-induced gastric erosion at doses of 200 ng, 500 ng and 1 microgram, whereas the intravenous (iv) administration of IL-1 beta altered the occurrence of gastric erosion only at a dose of 1 microgram. The inhibitory effect of IL-1 alpha icv administered on the occurrence of gastric erosion was found only at a dose of 1 microgram. The inhibitory effect of IL-1 beta icv administered on the occurrence of stress-induced gastric erosion was not influenced by icv administration of alpha-helical CRF(9-41), a corticotropin-releasing factor (CRF) receptor antagonist. Indomethacin completely blocked the inhibitory action of IL-1 beta icv administered on stress-induced gastric erosion. It is concluded from these results that IL-1 acts mainly in the central nervous system to inhibit the occurrence of stress-induced gastric erosion and that the IL-1 beta-induced inhibition of gastric erosion is mediated by prostaglandin in a manner that is independent of brain CRF.  相似文献   

10.
The corticotropin-releasing factor (CRF) receptor antagonist, alpha-helical [Glu27]-corticotropin-releasing factor 9-41 (CRF 9-41) has been assessed for its ability to modify plasma concentrations of epinephrine and norepinephrine, mean arterial pressure (MAP) and heart rate (HR). Basal concentrations of epinephrine and norepinephrine were not altered by lateral ventricular (icv) administration of CRF 9-41. However, this CRF antagonist, given icv, attenuated the rise of plasma epinephrine following 30% hemorrhage and insulin-induced hypoglycemia. CRF 9-41 did not alter the increased plasma concentrations of epinephrine or norepinephrine following icv administration of bombesin. Icv administration of CRF 9-41 blunted CRF-induced elevation of MAP and HR in normal animals. However, this CRF antagonist did not modify the MAP or HR in spontaneously hypertensive rats. Similarly, this CRF antagonist administered to Sprague-Dawley rats neither prevented the rise of MAP or HR following electrical stimulation of the central nucleus of the amygdala, nor did it affect nitroprusside-induced hypotension and tachycardia.  相似文献   

11.
1. Experiments were performed to investigate the contribution of diffusion to the termination of PCN induced convulsive (epileptiform) activity in the awake rat. The basic question was whether convulsive activity terminates at the same critical concentration Ct of PCN independently of the concentration Co of PCN injected into the superficial layer of the foreleg field of the right motor cortex. Different concentrations Co were used, the lowest being 16 IU PCN/0.5 microliters saline, the largest 1000 IU PCN/0.5 microliters saline. The convulsive activity was recorded by means of the electroencephalogram (EEG). 2. Mathematical calculations concerning the diffusion of the substances were performed by using the diffusion equation with a PCN diffusion coefficient D = 3.52 x 10(-4) mm2/s and the tortuosity factor lambda = 1.62. 3. The lowest dose of PCN used was considered as a threshold dose for acute induction of convulsive activity because only 4 out of 9 rats treated with 16 IU PCN developed epileptiform activity. For the range of doses between 16 and 32 IU, the median frequency of convulsive potentials was dose-dependent, and increased from 7.9 to 13.8 pot./min, respectively. For higher doses covering the range between 63 and 1000 IU, there was only an insignificant increase from 19.2 to 22.7 pot./min, respectively. 4. The median period of convulsive activity increased significantly (p less than 0.05 or less than 0.01) and monotonically from 19.5 min in rats treated with 16 IU PCN to 267 min after treatment with 1000 IU PCN. 5. At the end of the convulsive activity, the median critical concentration Ct within the artificial focus ranged from 1.75 to 1.31 IU/0.5 microliters saline in rats treated with 16 to 125 IU PCN, while after induction of convulsive activity with doses of 250, 500 or 1000 IU PCN, Ct gradually increased to 2.01, 2.83, and 3.75 IU/0.5 microliters, respectively. This means that the brain became less sensitive for PCN the longer the epileptiform activity lasted. 6. It is concluded that during long-lasting convulsive activity, the brain takes advantage of its plastic properties by eliciting counteracting mechanisms. These self-protective factors may utilize neuronal networks which needs some time to become effective in the control of the cortical activity.  相似文献   

12.
The effects of intracerebroventricular (icv) administration of a corticotropin-releasing factor (CRF) receptor antagonist, alpha-helical CRF, on systemic and regional hemodynamic adjustments to exercise were studied in conscious rats. On consecutive days, rats received saline icv, alpha-helical CRF icv, and no treatment 30 min before treadmill exercise (TMX). Increases in heart rate (HR) and mean arterial pressure (MAP) in response to TMX (16.1-28.6 m/min) were similar after icv administration of saline or no treatment. In rats receiving saline icv or no treatment, estimated vascular resistance increased in the mesenteric and renal regions and declined in the iliac (hindlimb) region. After icv administration of alpha-helical CRF9-41, HR and MAP responses during TMX were significantly attenuated. In addition, TMX-induced elevations of estimated mesenteric vascular resistance and iliac blood flow velocity were blunted after CRF receptor blockade. These altered cardiovascular and hemodynamic responses were ultimately reflected in the animals' compromised ability to run. The results suggest that the central nervous system actions of endogenous CRF are necessary for the full expression of the cardiovascular adjustments to TMX in the conscious rat.  相似文献   

13.
The effects of tripeptide corticoliberin fragment CRF4-6 (Pro-Pro-Ile) on blood glucose level and the rat body temperatire were investigated. Intracerebroventricularly injected CRF4-6 (6, 30, 150 nmol/head) causes a dosedependent hyperglycemia and hyperthermia in anaesthetized animals. Corticotropin releasing factor antagonist alpha-helical CRF4-6 (6.5 nmol/head) abolishes the influence of tripeptide CRF4-6 (6 nmol/head) on blood glucose level and body temperature of rats. Bilateral adrenalectomy has no effect on tripeptide-induced hyperglycemia and hyperthemia. This result indicates that hyperglycemic and hyperthermal effects of tripeptide occur independently of adrenal gland catecholamines. In addition, non-pituitary corticoliberin receptors are involved in CRF4-6 influences on blood glucose level and body temperature.  相似文献   

14.
The effects of intracerebroventricular (icv) injections of corticotropin-releasing factor (CRF, 100 and 300 ng) were investigated in the social interaction test of anxiety in rats. Both doses of CRF significantly decreased active social interaction without a concomitant decrease in locomotor activity. CRF also significantly increased self-grooming, an effect that was independent of the decrease in social interaction. These results indicate an anxiogenic action for CRF. Chlordiazepoxide (CDP, 5 mg/kg ip) pretreatment reversed the anxiogenic effects of icv CRF (100 ng), but CRF did not prevent the sedative effects of CDP. There were no statistically significant changes due to CRF in locomotor activity or rears or head dipping in the holeboard test. Both doses of CRF significantly increased plasma concentrations of corticosterone. The possible mechanisms of the behavioral effects of CRF are discussed.  相似文献   

15.
The effects of tripeptide corticoliberin fragment CRF(4-6) (Pro-Pro-Ile) on blood pressure and heart rate of rats were investigated. Intracerebroventricularly injected CRF(4-6) (1.5-15.0 nmol/head) increases the mean arterial pressure and heart rate in conscious and anaesthetized animals in a dose-dependent manner. Corticotropin releasing factor antagonist: alpha-helical CRF(9-41) (6.5 nmol) completely abolished the influence of tripeptide CRF(4-6) (1.5 nmol) on blood pressure and heart rate in anaesthetized rats. This result indicates that corticoliberin receptors are involved in cardiovascular effects of CRF(4-6).  相似文献   

16.
Chemical or electrical stimulation of the dorsal portion of the midbrain periaqueductal gray (dPAG) produces anxiogenic and antinociceptive effects. In rats, chemical stimulation of dPAG by local infusion of the neuropeptide corticotropin-releasing factor (CRF) provokes anxiogenic effects in the elevated plus-maze test (EPM). CRF also produces antinociception when injected intracerebroventricularly in rats, however it remains unclear whether this response is also observed following CRF injection into the dPAG in mice. Yet, given that there are CRF1 and CRF2 receptor subtypes within the PAG, it is important to show in which receptor subtypes CRF exert its anxiogenic and antinociceptive effects in the dPAG. Here, we investigated the role of these receptors in the anxiogenic (assessed in the EPM) and antinociceptive (assessed by the Formalin test: 2.5% formalin injection into the right hind paw) effects following intra-dPAG infusion of CRF in mice. The results show that intra-dPAG injections of CRF (75 pmol/0.1 μl and 150 pmol/0.2 μl) produced dose-dependent anxiogenic and antinociceptive effects. In addition, local infusion of NBI 27914 (5-chloro-4-(N-(cyclopropyl)methyl-N-propylamino)-2-methyl-6-(2,4,6-trichlorophenyl)-aminopyridine; 2 nmol/0.2 μl), a CRF1 receptor antagonist, completely blocked both the anxiogenic and antinociceptive effects induced by local infusion of CRF, while that of antisauvagine 30 (ASV30; 1 nmol/0.2 μl), a CRF2 receptor antagonist, did not alter the CRF effects. Present results are suggestive that CRF1 (but not CRF2) receptors play a crucial role in the anxiogenic and antinociceptive effects induced by CRF in the dPAG in mice.  相似文献   

17.
Possible involvement of orexin in the stress reaction in rats   总被引:6,自引:0,他引:6  
We examined whether corticotropin-releasing factor (CRF) was involved in orexin-induced grooming and face-washing behaviors, and whether orexin was involved in the stress reaction. Administration of alpha-helical CRF, CRF antagonist, alone had no behavioral effect, but it blocked the orexin-induced grooming and face-washing behaviors in rats. The level of corticosterone increased in a dose-dependent manner 15 min after icv injection of orexin, and it remained high for at least 60 min. In 2-month-old rats, 1 h of immobilization stress increased orexin mRNA levels, but not the melanin-concentrating hormone (MCH) mRNA, in the lateral hypothalamic area (LHA). In 6-month-old rats, 30 min of cold stress increased the expression of orexin mRNA in the LHA. Unlike in the 2-month-old rats, immobilization stress did not change orexin mRNA expression in 6-month-old rats. These results suggest that CRF is involved in orexin-induced behaviors, and that orexin may play an important role in some stress reactions.  相似文献   

18.
An electroencephalographic study of the brain activity in the wakefulness-sleep cycle was carried out on rats of Krushinskii-Molodkina line (KM) with hereditary predisposition to audiogenic convulsions and on Wistar rats that were insensitive to the convulsiogenic sound effect, but with epileptiform manifestations appearing on the background of cadmium intoxication and administration of kainic acid into the caudate nucleus head. There were revealed several EEG patterns whose presence was an indicator of formation of disorders of the CNS activity of the paroxysmal character in the animals. It has been established that in the phase of the rat rapid-wave sleep, a high representation of episodes with predominance of a-diapason EEG oscillations can be considered a specific non-paroxysmal abnormality due to the presence of convulsive syndrome in these animals. It was shown the long steady decrease of sensitivity of KM rats to the convulsiogenic sound effect, which appeared after multiple audiogenic generalized tonicoclonic convulsive attacks, correlated with a decrease of the degree of theta-diapason oscillations and with an increase of representation of alpha-diapason waves on EEG in the state of the animal quiet consciousness. A role of disintegration in activity of the ascending activating brain systems in the animal and human paroxysmal syndromes is discussed.  相似文献   

19.
The effects of adrenoreceptor blocking agents on corticotropin-releasing factor (CRF)-induced behavioral changes in rats were examined. The i.c.v. injection of 1 micrograms ovine CRF significantly increased the grooming frequency, number of occurrences of rearing and total distance moved. I.c.v. administered phentolamine at a dose of 10 nmol completely suppressed the increase in rearing and total distance moved induced by CRF without affecting the grooming frequency, whereas 100 nmol phentolamine significantly decreased the grooming frequency as well as the rearing and total distance moved. In contrast, propranolol reduced the increase in rearing induced by CRF only at a dose which induced ataxia in rats. The increases in rearing and total distance moved induced by CRF were reduced by 10 nmol of yohimbine and 100 nmol of prazosin. S.c. injection of caffeine (10 mg/kg) produced a significant increase in grooming frequency, rearing, and total movement. Administration of 10 nmol phentolamine and yohimbine did not affect these behavioral changes induced by caffeine, while 100 nmol prazosin suppressed them. Therefore, prazosin depressed the behavior of rats non-specifically. These results suggest that CRF-induced behavioral hyperactivity is mediated at least in part by alpha-noradrenergic, mainly alpha 2-noradrenergic, systems in the brain.  相似文献   

20.
H P Kosoyan  J Y Wei  Y Taché 《Peptides》1999,20(7):851-858
Consecutive intracisternal (ic) injections of corticotropin-releasing factor (CRF) (21, 63, and 126 pmol, ic) or sauvagine (2.1, 6.3, and 21 pmol, ic) decreased gastric vagal efferent multiunit discharge (GVED) to 82%, 75% and 69% and 71%, 40% and 21%, respectively, from preinjection basal levels (taken as 100%). The inhibitory action was dose related (magnitude and duration of the response, 7-45 min). The CRF antagonist, [D-Phe12,Nle21,38,Calpha-MeLeu37]-rCRF12-4 1 (6.25 nmol, ic) increased GVED by 43.5+/-4.3% and blocked the decrease in GVED induced by CRF (21 pmol, ic) for >90 min with a complete recovery after 3 h. Vehicles (injected intracisternally) had no effect. These data indicate that: 1) CRF injected intracisternally decreases GVED through the activation of CRF receptors and sauvagine is more potent than CRF to inhibit GVED; and 2) endogenous CRF exerts an inhibitory tone on basal GVED in urethane-anesthetized rats undergoing surgery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号