首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The yeast Candida tropicalis, isolated from petroleum-contaminated soil in India, was found to be the potent producer of biosurfactant in mineral salt media containing diesel oil as the carbon source and found to be an efficient degrader of diesel oil (98%) over a period of 10 days. The crude biosurfactant decreased the surface tension of cell-free broth, 78 to 30 mN/m, with a large oil displacement area and highly positive drop collapse test. The crude biosurfactant was purified using silica gel column chromatography followed by dialysis. With the use of Fourier transform infrared (FT-IR) spectroscopy, in combination with gas chromatography–mass spectrometry (GC-MS) analysis, chemical structures of the purified biosurfactant was identified as sophorolipid species. Involvement of biosurfactant in physiological mechanism of diesel adsorption on yeast cell surface was characterized based on zeta potential. When diesel oil was emulsified with biosurfactant, the surface charge of the diesel was modified, resulting in more adsorption of diesel on yeast cell surface. Biosurfactant production by yeast species was monitored using scanning electron microscopy (SEM) analysis and found that yeast species could form thick mat of mucilaginous biosurfactant that could interconnect the individual cells. Uptake of diesel oil by C. tropicalis was elucidated through transmission electron microscopy (TEM) analysis. Interestingly, it was observed that internalization of diesel oil droplet was taking place, suggesting a mechanism similar in appearance to active pinocytosis.  相似文献   

2.
The diesel-degrading strains, designated as MJ01 and MJ4, were isolated from oil-contaminated soil in Daejeon (South Korea) and were taxonomically characterized using a polyphasic approach and their diesel oil degradation abilities were analyzed. The isolates MJ01 and MJ4 were identified as Acinetobacter haemolyticus and Acinetobacter johnsonii, respectively, based on their 16S rDNA gene sequences, DNA–DNA relatedness, fatty acid profiles and various physiological characteristics. Strains MJ01 and MJ4 were able to use diesel oil as the sole carbon and energy source. Both strains could degrade over 90% of diesel oil with an initial concentration of 20,000 mg/l after incubation for 7 days, the most significant degradation occurred during the first 3 days. To our knowledge, this is the first report on diesel oil-degrading microorganisms among bacterial strains belonging to A. haemolyticus and A. johnsonii.  相似文献   

3.
Phenol biodegradation in a continuous system of immobilized Candida tropicalis NCIM 3556 was studied. The bioreactor was simple, it had a feed inlet from the bottom and the effluent outlet from top, no supplementary oxygen was supplied, the reactor was operated continuously for 116 days. Initially the column was run continuously with a feed concentration of 2 g l−1 for 42 days whence a degradation of >97% was achieved. The feed concentration was then increased to 3 g l−1, for which a ~80% biodegradation was sustained for 90 days after which there was a steady decrease in the performance. When the phenol degradation was reduced to ~50% in 116 days, the reactor was stopped. The efficiency of free cells recycled every 24 h and immobilized cells were compared; it was estimated that repeated reuse of free cells in batch mode gave an overall efficiency of 0.102 g phenol degradation g−1 cell wet weight in 12 days. In contrast, the immobilized system of the same biomass had a longer working lifetime of ~4 months indicating an efficiency of 3.72 g phenol g−1 cell wet wt.  相似文献   

4.
Highly oil-absorbent polyurethane foam (PUF) materials were obtained by polymerizing polyether polyol mixture and carbodiimide-modified d-methyl diisocyanate in a weight ratio of 10:2. The foam materials were prepared to contain inorganic nutrients (slow-release fertilizer; SRF) and oil-degrading yeast cells, Yarrowia lipolytica 180, to be applied for removal of oil films on surface waters through absorption and biodegradation after oil spills. PUFs absorbed 7–9 times their own weight of Arabian light crude oil and the oil absorbency appeared to improve as the ratio of surface area to foam weight increased. PUFs showed excellent floatability which was maintained for more than 6 months in sea water, and less than 5% of the absorbed oil was released when the foams were left on water for more than 10 days. For immobilization of yeast cells into PUFs, various immobilization techniques were tested to compare their oil degrading ability and the maintenance thereof. All immobilized cells showed oil degrading abilities as good as those of free cells immediately after the preparation of PUFs, however, the activity of chitin-immobilized cells remained at a high level for the longest period of preservation. The high efficiency of oil absorption and oil degradation by PUF-immobilized yeast cells suggested that PUF-immobilized cells have a high potential as a bioremediation technique for the treatment of oil films on surface waters. Received: 27 September 1999 / Received revision: 6 March 2000 / Accepted: 17 March 2000  相似文献   

5.
To develop a microbial treatment of edible oil-contaminated wastewater, microorganisms capable of rapidly degrading edible oil were screened. The screening study yielded a yeast coculture comprising Rhodotorula pacifica strain ST3411 and Cryptococcus laurentii strain ST3412. The coculture was able to degrade efficiently even at low contents of nitrogen ([NH4–N] = 240 mg/L) and phosphorus sources ([PO4–P] = 90 mg/L). The 24-h degradation rate of 3,000 ppm mixed oils (salad oil/lard/beef tallow, 1:1 w/w) at 20°C was 39.8% ± 9.9% (means ± standard deviations of eight replicates). The highest degradation rate was observed at 20°C and pH 8. In a scaled-up experiment, the salad oil was rapidly degraded by the coculture from 671 ± 52.0 to 143 ± 96.7 ppm in 24 h, and the degradation rate was 79.4% ± 13.8% (means ± standard deviations of three replicates). In addition, a repetitive degradation was observed with the cell growth by only pH adjustment without addition of the cells.  相似文献   

6.
A simple method for the preparation of the biocatalyst with whole cells is presented, and the applicability of the technique for biodegradation of phenol in wastewater from the chemical industries using the basidomycetes yeast Trichosporon cutaneum is explored. Kinetic studies of the influence of other compounds contained in wastewater as naphthalene, benzene, toluene and pyridine indicate that apart from oil fraction, which is removed, the phenol concentration is the only major factor limiting the growth of immobilized cells. Mathematical models are applied to describe the kinetic behavior of immobilized yeast cells. From the analysis of the experimental curves was shown that the obtained values for the apparent rate parameters vary depending on the substrate concentration (μmaxapp from 0.35 to 0.09 h−1 and K sapp from 0.037 to 0.4 g dm−3). The inhibitory effect of the phenol on the obtained yield coefficients was investigated too. It has been shown that covalent immobilization of T. cutaneum whole cells to plastic carrier beads is possible, and that cell viability and phenol degrading activity are maintained after the chemical modification of cell walls during the binding procedure. The results obtained indicate a possible future application of immobilized T. cutaneum for destroying phenol in industrial wastewaters.  相似文献   

7.
Candida parapsilosis is yeast capable of forming biofilms on medical devices. Novel approaches for the prevention and eradication of the biofilms are desired. This study investigated the anticandidal activity of sixteen essential oils on planktonic and biofilm cultures of C. parapsilosis complex. We used molecular tools, enumeration of colony-forming units, the colourimetric MTT assay, scanning electron microscopy (SEM) and a chequerboard assay coupled with software analyses to evaluate the growth kinetics, architecture, inhibition and reduction in biofilms formed from environmental isolates of the Candida parapsilosis complex; further, we also evaluated whether essential oils would interact synergistically with amphotericin B to increase their anticandidal activities. Of the environmental C. parapsilosis isolates examined, C. parapsilosis and C. orthopsilosis were identified. Biofilm growth on polystyrene substrates peaked within 48 h, after which growth remained relatively stable up to 72 h, when it began to decline. Details of the architectural analysis assessed by SEM showed that C. parapsilosis complex formed less complex biofilms compared with C. albicans biofilms. The most active essential oil was cinnamon oil (CO), which showed anticandidal activity against C. orthopsilosis and C. parapsilosis in both suspension (minimum inhibitory concentration—MIC—250 and 500 μg/ml) and biofilm (minimum biofilm reduction concentration—MBRC—1,000 and 2,000 μg/ml) cultures. CO also inhibited biofilm formation (MBIC) at concentrations above 250 μg/ml for both species tested. However, synergism with amphotericin B was not observed. Thus, CO is a natural anticandidal agent that can be effectively utilised for the control of the yeasts tested.  相似文献   

8.
In the development of a system for the removal of chlorophenols from aqueous effluents, a range of solid substrates for the growth of Coriolus versicolor were investigated. Substrates included wood chips, cereal grain, wheat husk and wheat bran. Suitability for transformation of chlorophenols depended on laccase production by the fungus. The greatest amount of laccase (<25 Units g−1 substrate) was produced on wheat husk and wheat bran over 30 days colonisation. Aqueous extracts of laccase from wheat husk and wheat bran cultures removed 100% of 2,4-dichlorophenol (50 ppm) from solution within 5 h and 75–80% of pentachlorophenol (50 ppm) within 24 h. Wheat bran was formulated into pellets with biscuit flour to provide a compact substrate for fungal immobilisation. Addition of 8–12% yeast extract to the pellets increased laccase production five-fold. Colonised pellets were added to chlorophenol solutions in 200–4000-ml bioreactors, resulting in >90% removal of chlorophenols within 100 min. Received: 10 April 2000 / Received revision: 4 July 2000 / Accepted: 10 July 2000  相似文献   

9.
This study describes the production of xylanases from Aspergillus niveus, A. niger, and A. ochraceus under solid-state fermentation using agro-industrial residues as substrates. Enzyme production was improved using a mixture of wheat bran and yeast extract or peptone. When a mixture of corncob and wheat bran was used, xylanase production from A. niger and A. ochraceus increased by 18%. All cultures were incubated at 30 °C at 70–80% relative humidity for 96 h. For biobleaching assays, 10 or 35 U of xylanase/g dry cellulose pulp were incubated at pH 5.5 for 1 or 2 h, at 55 °C. The delignification efficiency was 20%, the brightness (percentage of ISO) increased two to three points and the viscosity was maintained confirming the absence of cellulolytic activity. These results indicated that the use of xylanases could help to reduce the amount of chlorine compounds used in cellulose pulp treatment.  相似文献   

10.
In this study, Bacillus sphaericus NRC 69 was grown in culture media, in which 12 agricultural wastes were tested as the main carbon, nitrogen and energy sources under solid state fermentation. Of the 12 tested agricultural by-products, wheat bran was the most efficient substrate for the production of B. sphaericus mosquitocidal toxins against larvae of Culex pipiens (LC50 1.2 ppm). Mixtures of tested agricultural wastes separately with wheat bran enhanced the produced toxicity several folds and decreased LC50 between 3.7- and 50-fold in comparison with that of agricultural wastes without mixing. The toxicity of B. sphaericus grown in wheat bran/rice hull at 8/2 (g/g) and wheat bran/barley straw at 1/4 (g/g) showed the same toxicity as that in wheat bran medium (LC50 decreased 17- and 16-fold, in comparison with that in rice hull or barely straw media, respectively). In wheat bran medium, the maximum toxicity of the tested organism obtained at 50% moisture content, inoculum size 84 × 106 CFU/g wheat bran and incubation for 6 days at 30°C. Addition of cheese whey permeate at 10% to wheat bran medium enhanced the toxicity of B. sphaericus NRC 69 about 46%.  相似文献   

11.
Efficiency of Enterobacter cloacae KU923381 isolated from petroleum hydrocarbon contaminated soil was evaluated in batch culture and bioreactor mode. The isolate were screened for biofilm formation using qualitative and quantitative assays. Response surface methodology (RSM) was used to study the effect of pH, temperature, glucose concentration, and sodium chloride on diesel degradation. The predicted values for diesel oil degradation efficiency by the statistical designs are in a close agreement with experimental data (R 2 = 99.66%). Degradation efficiency is increased by 36.78% at pH = 7, temperature = 35°C, glucose = 5%, and sodium chloride concentration = 5%. Under the optimized conditions, the experiments were performed for diesel oil degradation by gas chromatographic mass spectrometric analysis (GC-MS). GC-MS analysis confirmed that E. cloacae had highly degrade hexadecane, heptadecane, tridecane, and docosane by 99.71%, 99.23%, 99.66%, and 98.34% respectively. This study shows that rapid bioremoval of hydrocarbons in diesel oil is acheived by E. cloacae with abet of biofilm formation. The potential use of the biofilms for preparing trickling filters (gravel particles) for the degradation of hydrocarbons from petroleum wastes before their disposal in the open environment is highly suggested. This is the first successful attempt for artificially establishing petroleum hydrocarbon degrading bacterial biofilm on solid substrates in bioreactor.  相似文献   

12.
This study investigated the aerobic degradation of phenol by yeast strains isolated from an oil refinery wastewater from the Northeast of Brazil. The samples displayed low fungal diversity, as only yeast colonies were detected on Sabouraud dextrose agar containing chloramphenicol 0.05% (w/v). Among the isolates, three yeast strains were selected to be evaluated for their potential for degrading high phenol concentrations. These species were identified through morphological and biochemical characteristics as Candida tropicalis, C. rugosa, and Pichia membranaefaciens. Although the strains were able to degrade the phenol concentration present in the wastewater, which was 7 mg l−1, only C. tropicalis was capable of growing at high concentrations of phenol such as 500 mg l−1 and 1,000 mg l−1 in a mineral medium containing this pollutant as the only carbon source. C. rugosa and P. membranaefaciens were inhibited in the presence of 500 mg l−1 of phenol. However, a longer incubation time was needed for C. tropicalis strain to degrade 1,000 mg l−1 of phenol compared to the time required to degrade 500 mg l−1. Moreover, the strain released a significant amount of polysaccharide biosurfactant in the medium probably to minimize the toxic effect of the high phenol concentration. When challenged with 1,500 and 2,000 mg l−1 of phenol, C. tropicalis was unable to grow at the tested conditions. The results indicate that this strain of C. tropicalis can be considered both a good phenol-degrader and biosurfactant-producer. Application of this strain might be useful in bioremediation activities or treatment of phenol-polluted wastewater.  相似文献   

13.
Aims: To test degradation of malic acid content in wine by immobilized Issatchenkia orientalis KMBL 5774 cells recently isolated from Korean wine pomace as a malic acid‐degrading yeast. Methods and Results: I. orientalis KMBL 5774 cells were immobilized using a mixture of oriental oak (Quercus variabilis) charcoal with sodium alginate. When the immobilized yeast cells were observed on a scanning electron microscope, cells were efficiently immobilized on the surface area of the charcoal. A Korean wine containing a high level of malic acid was treated with the immobilized yeast cells. The HPLC analysis of the malic acid content in the treated wine showed the malic acid content was reduced to 0·75 mg ml?1 after treatment from the original content of 8·96 mg ml?1, representing 91·6% of the malic acid was degraded during the treatment. Conclusions: The immobilization of the malic acid‐degrading yeasts with oriental oak charcoal and sodium alginate is useful for degradation of malic acid in wines containing a high level of malic acid with no significant increase in other acids. Significance and Impact of the study: Malic acid is sometimes detrimental to the quality of wines when present at high concentrations in some varieties. The immobilized I. orientalis KMBL5774 cells appear to be a promising candidate in view of developing biotechnological methods for reduction of malic acid contents in wine.  相似文献   

14.
Pseudoxanthomonas sp. RN402 was capable of degrading diesel, crude oil, n-tetradecane and n-hexadecane. The RN402 cells were immobilized on the surface of high-density polyethylene plastic pellets at a maximum cell density of 108 most probable number (MPN) g?1 of plastic pellets. The immobilized cells not only showed a higher efficacy of diesel oil removal than free cells but could also degrade higher concentrations of diesel oil. The rate of diesel oil removal by immobilized RN402 cells in liquid culture was 1,050 mg l?1 day?1. Moreover, the immobilized cells could maintain high efficacy and viability throughout 70 cycles of bioremedial treatment of diesel-contaminated water. The stability of diesel oil degradation in the immobilized cells resulted from the ability of living RN402 cells to attach to material surfaces by biofilm formation, as was shown by CLSM imaging. These characteristics of the immobilized RN402 cells, including high degradative efficacy, stability and flotation, make them suitable for the purpose of continuous wastewater bioremediation.  相似文献   

15.
Nigerloxin, a new and potent lipoxygenase inhibitor, was discovered in our laboratory through solid-state fermentation of wheat bran by Aspergillus niger V. Teigh (MTCC-5166). The aim of this study is to investigate the possibility of using different agro-industrial residues as nutritional supplements along with wheat bran to enhance the production of nigerloxin. Nigerloxin produced by SSF was quantified spectrophotometrically at 292 nm. The results indicate that the inhibitor production was influenced by the type of solid substrate supplemented, moisture content, pH and size of the inoculum. Individually optimized supplements were tested in different combinations to determine their effects on nigerloxin production. A twofold increase in the production of nigerloxin (4.9 ± 0.3 mg gds−1) was achieved by supplementing wheat bran with 10% w/w sweet lemon peel and 5% v/w methanol at optimized process parameters, that is, an initial moisture content of 65% v/w and incubation period of 6 days with an initial inoculum size of 2 ml (8 × 105 spores gds−1). Nigerloxin production was stable between pH of 4 and 5.  相似文献   

16.
Dey K  Roy P 《Biotechnology letters》2011,33(6):1101-1105
A Bacillus sp., capable of degrading chloroform, was immobilized in calcium alginate. The beads in 20 g alginate l−1 (about 2 × 108 cells/bead) could be re-used nine times for degradation of chloroform at 40 μM. The immobilized cells had a higher range of tolerance (pH 6.5–9 and 20–41°C) than free cells (pH 7–8.5 and 28–32°C). At 5 g alginate l−1, leakage of the cells from the beads was 0.51 mg dry wt ml−1. This species is the first reported Bacillus that can degrade chloroform as the sole carbon source.  相似文献   

17.
A locally isolated Acinetobacter sp. Strain AQ5NOL 1 was encapsulated in gellan gum and its ability to degrade phenol was compared with the free cells. Optimal phenol degradation was achieved at gellan gum concentration of 0.75% (w/v), bead size of 3 mm diameter (estimated surface area of 28.26 mm2) and bead number of 300 per 100 ml medium. At phenol concentration of 100 mg l−1, both free and immobilized bacteria exhibited similar rates of phenol degradation but at higher phenol concentrations, the immobilized bacteria exhibited a higher rate of degradation of phenol. The immobilized cells completely degrade phenol within 108, 216 and 240 h at 1,100, 1,500 and 1,900 mg l−1 phenol, respectively, whereas free cells took 240 h to completely degrade phenol at 1,100 mg l−1. However, the free cells were unable to completely degrade phenol at higher concentrations. Overall, the rates of phenol degradation by both immobilized and free bacteria decreased gradually as the phenol concentration was increased. The immobilized cells showed no loss in phenol degrading activity after being used repeatedly for 45 cycles of 18 h cycle. However, phenol degrading activity of the immobilized bacteria experienced 10 and 38% losses after the 46 and 47th cycles, respectively. The study has shown an increased efficiency of phenol degradation when the cells are encapsulated in gellan gum.  相似文献   

18.
19.
The biodegradability of petroleum hydrocarbons such as polycyclic aromatic hydrocarbons (PAHs) and n-branched alkanes etc. of 2T engine oil were studied in aqueous media using bacterial strain isolated from petroleum contaminated soil of high altitude. Out of five petroleum degrading bacterial strain one of the most growing bacteria was identified as Enterobacter strain by morphological, physiological, biochemical and partial sequencing of 16S rDNA. This strain was capable of degrading 75 ± 3% of n-alkanes, 32 ± 5% PAHs, and the abiotic loss was 24 ± 6% during 10 days incubation period. 85 ± 2% of n-alkanes and 51 ± 3% PAHs were biodegraded in 20 days. The abiotic loss during this period was 15 ± 3%. In 30 days of incubation period 98% ± 1% n-alkanes and 75 ± 3% PAHs were degraded. As expected abiotic losses were smaller with increasing long chain alkanes and PAH’s concentration. An increment in oil degradation was correlated to an increase in cell number indicating that the bacterial isolate was responsible for the oil degradation. The hydrocarbon contents were measured by Shimadzu QP-2000 Gas chromatography/mass spectrometry by ULBON HR-1 column.  相似文献   

20.
High lipid concentration contained in wastewater inhibits the activity of microorganisms in biological wastewater treatment systems such as activated sludge and methane fermentation. To reduce the inhibitory effects, microorganisms capable of efficiently degrading edible oils were screened from various environmental sources. From Japanese soil, we isolated 2 bacteria strains with high degradation abilities at an alkaline pH without consumption of biological oxygen demand (BOD) constituents. Acinetobacter sp. strain SS-192 and Pseudomonas aeruginosa strain SS-219 degraded 77.5 ± 0.6% and 89.5 ± 1.5%, respectively, of 3,000 ppm of mixed oil consisting of salad oil/lard/beef tallow (1/1/1, w/w/w) at 37°C and pH 9.0 in 24 h. Efficient degradation by the two strains occurred at pH 8–9 and 25–40°C. Strain SS-219 degraded lipids even at pH 3. The degradation rate of 3,000 ppm of salad oil, lard, and beef tallow by strain SS-192 was 79.9 ± 2.6%, 63.6 ± 1.9%, and 70.1 ± 1.2%, respectively, during a 24-h cultivation. The degradation rate of 3,000 ppm of salad oil, lard, and beef tallow by strain SS-219 was 82.3 ± 2.1%, 71.9 ± 2.2%, and 71.0 ± 1.1%, respectively, during a 24-h cultivation. After mixed oil degradation by both strains, the BOD value of the cell culture increased from 2,100 ppm to 3,200–4,000 ppm. The fact that neither strain utilizes BOD ingredients will be beneficial to pretreatment of methane fermentation systems such as upflow anaerobic sludge blanket reactors. In addition, the growth of usual heterotrophic microorganisms utilizing soluble BOD can be suppressed under alkaline pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号