首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isolated skinned frog skeletal muscle fibers were activated (increasing [Ca2+]) and then relaxed (decreasing [Ca2+]) with solution changes, and muscle force and stiffness were recorded during the steady state. To investigate the actomyosin cycle, the biochemical species were changed (lowering [MgATP] and elevating [H2PO4-]) to populate different states in the actomyosin ATPase cycle. In solutions with 200 microM [MgATP], compared with physiological [MgATP], the slope of the plot of relative steady state muscle force vs. stiffness was decreased. At low [MgATP], cross-bridge dissociation from actin should be reduced, increasing the population of the last cross-bridge state before dissociation. These data imply that the last cross-bridge state before dissociation could be an attached low-force-producing or non-force-producing state. In solutions with 10 mM total Pi, compared to normal levels of MgATP, the maximally activated muscle force was reduced more than muscle stiffness, and the slope of the plot of relative steady state muscle force vs. stiffness was reduced. Assuming that in elevated Pi, Pi release from the cross-bridge is reversed, the state(s) before Pi release would be populated. These data are consistent with the conclusion that the cross-bridges are strongly bound to actin before Pi release. In addition, if Ca2+ activates the ATPase by allowing for the strong attachment of the myosin to actin in an A.M.ADP.Pi state, it could do so before Pi release. The calcium sensitivity of muscle force and stiffness in solutions with 4 mM [MgATP] was bracketed by that measured in solutions with 200 microM [MgATP], where muscle force and stiffness were more sensitive to calcium, and 10 mM total Pi, where muscle force and stiffness were less sensitive to calcium. The changes in calcium sensitivity were explained using a model in which force-producing and rigor cross-bridges can affect Ca2+ binding or promote the attachment of other cross-bridges to alter calcium sensitivity.  相似文献   

2.
The rate and association constants (kinetic constants) which comprise a seven state cross-bridge scheme were deduced by sinusoidal analysis in chemically skinned rabbit psoas muscle fibers at 20 degrees C, 200 mM ionic strength, and during maximal Ca2+ activation (pCa 4.54-4.82). The kinetic constants were then used to calculate the steady state probability of cross-bridges in each state as the function of MgATP, MgADP, and phosphate (Pi) concentrations. This calculation showed that 72% of available cross-bridges were (strongly) attached during our control activation (5 mM MgATP, 8 mM Pi), which agreed approximately with the stiffness ratio (active:rigor, 69 +/- 3%); active stiffness was measured during the control activation, and rigor stiffness after an induction of the rigor state. By assuming that isometric tension is a linear combination of probabilities of cross-bridges in each state, and by measuring tension as the function of MgATP, MgADP, and Pi concentrations, we deduced the force associated with each cross-bridge state. Data from the osmotic compression of muscle fibers by dextran T500 were used to deduce the force associated with one of the cross-bridge states. Our results show that force is highest in the AM*ADP.Pi state (A = actin, M = myosin). Since the state which leads into the AM*ADP.Pi state is the weakly attached AM.ADP.Pi state, we confirm that the force development occurs on Pi isomerization (AM.ADP.Pi --> AM*ADP.Pi). Our results also show that a minimal force change occurs with the release of Pi or MgADP, and that force declines gradually with ADP isomerization (AM*ADP -->AM.ADP), ATP isomerization (AM+ATP-->AM*ATP), and with cross-bridge detachment. Force of the AM state agreed well with force measured after induction of the rigor state, indicating that the AM state is a close approximation of the rigor state. The stiffness results obtained as functions of MgATP, MgADP, and Pi concentrations were generally consistent with the cross-bridge scheme.  相似文献   

3.
The suppression of tension development by orthovanadate (Vi) was studied in mechanical experiments and by measuring the binding of radioactive Vi and nucleotides to glycerol-extracted rabbit muscle fibers. During active contractions, Vi bound to the cross-bridges and suppressed tension with an apparent second-order rate constant of 1.34 X 10(3) M-1s-1. The half-saturation concentration for tension suppression was 94 microM Vi. The incubation of fibers in Vi relaxing or rigor solutions prior to initiation of active contractions had little effect on the initial rise of active tension. The addition of adenosine diphosphate (ADP) and Vi to fibers in rigor did not cause relaxation. Suppression of tension only developed during cross-bridge cycling. After slow relaxation from rigor in 1 mM Vi and low (50 microM) MgATP concentration (0 Ca2+), radioactive Vi and ADP were trapped within the fiber. This finding indicated the formation of a stable myosin X ADP X Vi complex, as has been reported in biochemical experiments with isolated myosin. Vi and ADP trapped within the fibers were released only by subsequent cross-bridge attachment. Vi and ADP were preferentially trapped under conditions of cross-bridge cycling in the presence of ATP rather than in relaxed fibers or in rigor with ADP. These results indicate that in the normal cross-bridge cycle, inorganic phosphate (Pi) is released from actomyosin before ADP. The resulting actomyosin X ADP intermediate can bind Vi and Pi. This intermediate probably supports force. Vi behaves as a close analogue of Pi in muscle fibers, as it does with isolated actomyosin.  相似文献   

4.
Shepard A  Borejdo J 《Biochemistry》2004,43(10):2804-2811
The conventional hypothesis of muscle contraction postulates that the interaction between actin and myosin involves tight coupling between the power stroke and hydrolysis of ATP. However, some in vitro experiments suggested that hydrolysis of a single molecule of ATP caused multiple mechanical cycles. To test whether the tight coupling is present in contracting muscle, we simultaneously followed mechanical and enzymatic events in a small population of cross-bridges of glycerinated rabbit psoas fibers. Such small population behaves as a single cross-bridge when muscle contraction is initiated by a sudden release of caged ATP. Mechanical events were measured by changes of orientation of probes bound to the regulatory domain of myosin. Enzymatic events were simultaneously measured from the same cross-bridge population by the release of fluorescent ADP from the active site. If the conventional view were true, ADP desorption would occur simultaneously with dissociation of cross-bridges from thin filaments and would be followed by cross-bridge rebinding to thin filaments. Such sequence of events was indeed observed in contracting muscle fibers, suggesting that mechanical and enzymatic events are tightly coupled in vivo.  相似文献   

5.
A conventional five-step chemo-mechanical cycle of the myosin–actin ATPase reaction, which implies myosin detachment from actin upon release of hydrolysis products (ADP and phosphate, Pi) and binding of a new ATP molecule, is able to fit the [Pi] dependence of the force and number of myosin motors during isometric contraction of skeletal muscle. However, this scheme is not able to explain why the isometric ATPase rate of fast skeletal muscle is decreased by an increase in [Pi] much less than the number of motors. The question can be solved assuming the presence of a branch in the cycle: in isometric contraction, when the force generation process by the myosin motor is biased at the start of the working stroke, the motor can detach at an early stage of the ATPase cycle, with Pi still bound to its catalytic site, and then rapidly release the hydrolysis products and bind another ATP. In this way, the model predicts that in fast skeletal muscle the energetic cost of isometric contraction increases with [Pi]. The large dissociation constant of the product release in the branched pathway allows the isometric myosin–actin reaction to fit the equilibrium constant of the ATPase.  相似文献   

6.
Muscle fiber contraction involves the cyclical interaction of myosin cross-bridges with actin filaments, linked to hydrolysis of ATP that provides the required energy. We show here the relationship between cross-bridge states, force generation, and Pi release during ramp stretches of active mammalian skeletal muscle fibers at 20°C. The results show that force and Pi release respond quickly to the application of stretch: force rises rapidly, whereas the rate of Pi release decreases abruptly and remains low for the duration of the stretch. These measurements show that biochemical change on the millisecond timescale accompanies the mechanical and structural responses in active muscle fibers. A cross-bridge model is used to simulate the effect of stretch on the distribution of actomyosin cross-bridges, force, and Pi release, with explicit inclusion of ATP, ADP, and Pi in the biochemical states and length-dependence of transitions. In the simulation, stretch causes rapid detachment and reattachment of cross-bridges without release of Pi or ATP hydrolysis.  相似文献   

7.
Hybrid contractile apparatus was reconstituted in skeletal muscle ghost fibers by incorporation of skeletal muscle myosin subfragment 1 (S1), smooth muscle tropomyosin and caldesmon. The spatial orientation of FITC-phalloidin-labeled actin and IAEDANS-labeled S1 during sequential steps of the acto-S1 ATPase cycle was studied by measurement of polarized fluorescence in the absence or presence of nucleotides conditioning the binding affinity of both proteins. In the fibers devoid of caldesmon addition of nucleotides evoked unidirectional synchronous changes in the orientation of the fluorescent probes attached to F-actin or S1. The results support the suggestion on the multistep rotation of the cross-bridge (myosin head and actin monomers) during the ATPase cycle. The maximal cross-bridge rotation by 7 degrees relative to the fiber axis and the increase in its rigidity by 30% were observed at transition between A**.M**.ADP.Pi (weak binding) and A--.M--.ADP (strong binding) states. When caldesmon was present in the fibers (OFF-state of the thin filament) the unidirectional changes in the orientation of actin monomers and S1 were uncoupled. The tilting of the myosin head and of the actin monomer decreased by 29% and 90%, respectively. It is suggested that in the "closed" position caldesmon "freezes" the actin filament structure and induces the transition of the intermediate state of actomyosin towards the weak-binding states, thereby inhibiting the ATPase activity of the actomyosin.  相似文献   

8.
We have used polyethylene glycol (PEG) to perturb the actomyosin interaction in active skinned muscle fibers. PEG is known to potentiate protein-protein interactions, including the binding of myosin to actin. The addition of 5% w/v PEG (MW 300 or 4000) to active fibers increased fiber tension and decreased shortening velocity and ATPase activity, all by 25-40%. Variation in [ADP] or [ATP] showed that the addition of PEG had little effect on the dissociation of the cross-bridge at the end of the power stroke. Myosin complexed with ADP and the phosphate analog V(i) or AlF(4) binds weakly to actin and is an analog of a pre-power-stroke state. PEG substantially enhances binding of these states both in active fibers and in solution. Titration of force with increasing [P(i)] showed that PEG increased the free energy available to drive the power stroke by about the same amount as it increased the free energy available from the formation of the actomyosin bond. Thus PEG potentiates the binding of myosin to actin in active fibers, and it provides a method for enhancing populations of some states for structural or mechanical studies, particularly those of the normally weakly bound transient states that precede the power stroke.  相似文献   

9.
Generation of force and movement by actomyosin cross-bridges is the molecular basis of muscle contraction, but generally accepted ideas about cross-bridge properties have recently been questioned. Of the utmost significance, evidence for nonlinear cross-bridge elasticity has been presented. We here investigate how this and other newly discovered or postulated phenomena would modify cross-bridge operation, with focus on post-power-stroke events. First, as an experimental basis, we present evidence for a hyperbolic [MgATP]-velocity relationship of heavy-meromyosin-propelled actin filaments in the in vitro motility assay using fast rabbit skeletal muscle myosin (28–29°C). As the hyperbolic [MgATP]-velocity relationship was not consistent with interhead cooperativity, we developed a cross-bridge model with independent myosin heads and strain-dependent interstate transition rates. The model, implemented with inclusion of MgATP-independent detachment from the rigor state, as suggested by previous single-molecule mechanics experiments, accounts well for the [MgATP]-velocity relationship if nonlinear cross-bridge elasticity is assumed, but not if linear cross-bridge elasticity is assumed. In addition, a better fit is obtained with load-independent than with load-dependent MgATP-induced detachment rate. We discuss our results in relation to previous data showing a nonhyperbolic [MgATP]-velocity relationship when actin filaments are propelled by myosin subfragment 1 or full-length myosin. We also consider the implications of our results for characterization of the cross-bridge elasticity in the filament lattice of muscle.  相似文献   

10.
Inhibition of muscle force by vanadate.   总被引:1,自引:1,他引:0       下载免费PDF全文
Vanadate (Vi), an analogue of inorganic phosphate (Pi), is known to bind tightly with a long half life to the myosin MgATPase site, producing a complex which inhibits force. Both of these ligands bind to an actin.myosin.ADP state that follows the release of Pi in the enzymatic cycle, and their effects on muscle fibers and proteins in solution provide information on the properties of this state. The inhibition of active force generation began to occur at a [Vi] of 5 microM and was 90% complete at a [Vi] of 1 mM. Hill plots of the inhibition of force by Vi approximated that expected for a simple binding isotherm. Similar plots were obtained at both 25 degrees C and 5 degrees C. A simple binding isotherm is not expected to occur in a muscle fiber where steric constraints imposed by the intact filaments should introduce more complexity into the energetics of ligand binding. The inhibition of MgATPase activity for acto-subfragment-1 to 50% of controls occurred at a [Vi] which was only 20-fold higher than that required to inhibit force generation in fibers to the same level. Some models of actomyosin interactions would predict that the range of [Vi] required for complete force inhibition in fibers and the difference in the [Vi] required for inhibition in fibers and of myosin in solution would both be much larger.  相似文献   

11.
The elementary steps of the cross-bridge cycle in which troponin C (TnC) was partially extracted were investigated by sinusoidal analysis in rabbit psoas muscle fibers. The effects of MgATP and phosphate on the rate constants of exponential processes were studied at 200 mM ionic strength, pCa 4.20, pH 7.00, and at 20 degrees C. The results were analyzed with the following cross-bridge scheme: [formula: see text] where A is actin, M is myosin, S is MgATP, D is MgADP, and P is phosphate (Pi). When TnC was extracted so that the average remaining tension was 11% (range 8-15%), K1 (MgATP association constant) increased to 7x, k2 (rate constant of cross-bridge detachment) increased to 1.55x, k-2 (reversal of detachment) decreased to 0.27x, and K2 (= k2/k-2: equilibrium constant of cross-bridge detachment) increased to 6.6x, k4 (rate constant of force generation) decreased to 0.4x, k-4 (reversal of force generation) increased to 2x, K4 (= k4/k-4) decreased to 0.17x, and K5 (Pi association constant) did not change. The activation factor alpha, which represents the fraction of cross-bridges participating in the cycling, decreased from 1 to 0.14 with TnC extraction. The fact that K1 increased with TnC extraction implies that the condition of the thin filament modifies the contour of the substrate binding site on the myosin head and is consistent with the Fenn effect. The fact that alpha decreased to 0.14 is consistent with the steric blocking mechanism (recruitment hypothesis) and indicates that some of the cross-bridges disappear from the active cycling pool. The fact that the equilibrium constants changed is consistent with the cooperative activation mechanism (graded activation hypothesis) among thin-filament regulatory units that consist of troponin (TnC, Tnl, TnT), tropomyosin, and seven actin molecules, and possibly include cross-bridges.  相似文献   

12.
The relation between the chemical and mechanical steps of the myosin-actin ATPase reaction that leads to generation of isometric force in fast skeletal muscle was investigated in demembranated fibers of rabbit psoas muscle by determining the effect of the concentration of inorganic phosphate (Pi) on the stiffness of the half-sarcomere (hs) during transient and steady-state conditions of the isometric contraction (temperature 12°C, sarcomere length 2.5 μm). Changes in the hs strain were measured by imposing length steps or small 4 kHz oscillations on the fibers in control solution (without added Pi) and in solution with 3-20 mM added Pi. At the plateau of the isometric contraction in control solution, the hs stiffness is 22.8 ± 1.1 kPa nm−1. Taking the filament compliance into account, the total stiffness of the array of myosin cross-bridges in the hs (e) is 40.7 ± 3.7 kPa nm−1. An increase in [Pi] decreases the stiffness of the cross-bridge array in proportion to the isometric force, indicating that the force of the cross-bridge remains constant independently of [Pi]. The rate constant of isometric force development after a period of unloaded shortening (rF) is 23.5 ± 1.0 s−1 in control solution and increases monotonically with [Pi], attaining a maximum value of 48.6 ± 0.9 s−1 at 20 mM [Pi], in agreement with the idea that Pi release is a relatively fast step after force generation by the myosin cross-bridge. During isometric force development at any [Pi], e and thus the number of attached cross-bridges increase in proportion to the force, indicating that, independently of the speed of the process that leads to myosin attachment to actin, there is no significant (>1 ms) delay between generation of stiffness and generation of force by the cross-bridges.  相似文献   

13.
In most current models of muscle contraction there are two translational steps, the working stroke, whereby an attached myosin cross-bridge moves relative to the actin filament, and the repriming step, in which the cross-bridge returns to its original orientation. The development of single molecule methods has allowed a more detailed investigation of the relationship of these mechanical steps to the underlying biochemistry. In the normal adenosine triphosphate cycle, myosin.adenosine diphosphate.phosphate (M.ADP.Pi) binds to actin and moves it by ca. 5 nm on average before the formation of the end product, the rigor actomyosin state. All the other product-like intermediate states tested were found to give no net movement indicating that M.ADP.Pi alone binds in a pre-force state.Myosin states with bound, unhydrolysed nucleoside triphosphates also give no net movement, indicating that these must also bind in a post-force conformation and that the repriming, post- to pre-transition during the forward cycle must take place while the myosin is dissociated from actin. These observations fit in well with the structural model in which the working stroke is aligned to the opening of the switch 2 element of the ATPase site.  相似文献   

14.
Hooft AM  Maki EJ  Cox KK  Baker JE 《Biochemistry》2007,46(11):3513-3520
We use an in vitro motility assay to determine the biochemical basis for a hypermotile state of myosin-based actin sliding. It is widely assumed that the sole biochemical determinant of actin-sliding velocities, V, is actin-myosin detachment kinetics (1/tauon), yet we recently reported that, above a critical ATP concentration of approximately 100 microM, V exceeds the detachment limit by more than 2-fold. To determine the biochemical basis for this hypermotile state, we measure the effects of ATP and inorganic phosphate, Pi, on V and observe that at low [ATP] V decreases as ln [Pi], whereas above 100 microM ATP the hypermotile V is independent of Pi. The ln [Pi] dependence of V at low [ATP] is consistent with a macroscopic model of muscle shortening, similar to Hill's contractile component, which predicts that V varies linearly with an internal force (Hill's active state) that drives actin movement against the viscous drag of myosin heads strongly bound to actin (Hill's dashpot). At high [ATP], we suggest that the hypermotile V is caused by shear thinning of the resistive population of strongly bound myosin heads. Our data and analysis indicate that, in addition to contributions from tauon and myosin's step size, d, V is influenced by the biochemistry of myosin's working step as well as resistive properties of actin and myosin.  相似文献   

15.
Kinetics of the cross-bridge cycle in insect fibrillar flight muscle have been measured using laser pulse photolysis of caged ATP and caged inorganic phosphate (Pi) to produce rapid step increases in the concentration of ATP and Pi within single glycerol-extracted fibers. Rapid photochemical liberation of 100 microM-1 mM ATP from caged ATP within a fiber caused relaxation in the absence of Ca2+ and initiated an active contraction in the presence of approximately 30 microM Ca2+. The apparent second order rate constant for detachment of rigor cross-bridges by ATP was between 5 x 10(4) and 2 x 10(5) M-1s-1. This rate is not appreciably sensitive to the Ca2+ or Pi concentrations or to rigor tension level. The value is within an order of magnitude of the analogous reaction rate constant measured with isolated actin and insect myosin subfragment-1 (1986. J. Muscle Res. Cell Motil. 7:179-192). In both the absence and presence of Ca2+ insect fibers showed evidence of transient cross-bridge reattachment after ATP-induced detachment from rigor, as found in corresponding experiments on rabbit psoas fibers. However, in contrast to results with rabbit fibers, tension traces of insect fibers starting at different rigor tensions did not converge to a common time course until late in the transients. This result suggests that the proportion of myosin cross-bridges that can reattach into force-generating states depends on stress or strain in the filament lattice. A steady 10-mM concentration of Pi markedly decreased the transient reattachment phase after caged ATP photolysis. Pi also decreased the amplitude of stretch activation after step stretches applied in the presence of Ca2+ and ATP. Photolysis of caged Pi during stretch activation abruptly terminated the development of tension. These results are consistent with a linkage between Pi release and the steps leading to force production in the cross-bridge cycle.  相似文献   

16.
The actin-myosin lattice spacing of rabbit psoas fibers was osmotically compressed with a dextran T-500, and its effect on the elementary steps of the cross-bridge cycle was investigated. Experiments were performed at the saturating Ca (pCa 4.5-4.9), 200 mM ionic strength, pH 7.0, and at 20 degrees C, and the results were analyzed by the following cross-bridge scheme: [formula: see text] where A = actin, M = myosin head, S = MgATP, D = MgADP, and P = Pi = phosphate. From MgATP and MgADP studies on exponential process (C) and (D), the association constants of cross-bridges to MgADP (K0), MgATP (K1a), the rate constants of the isomerization of the AM S state (k1b and k-1b), and the rate constants of the cross-bridge detachment step (k2 and k-2) were deduced. From Pi study on process (B), the rate constants of the cross-bridge attachment (power stroke) step (k4- and k-4) and the association constant of Pi ions to cross-bridges (K5) were deduced. From ATP hydrolysis measurement, the rate constant of ADP-isomerization (rate-limiting) step (k6) was deduced. These kinetic constants were studied as functions of dextran concentrations. Our results show that nucleotide binding, the ATP-isomerization, and the cross-bridge detachment steps are minimally affected by the compression. The rate constant of the reverse power stroke step (k-4) decreases with mild compression (0-6.3% dextran), presumably because of the stabilization of the attached cross-bridges in the AM*DP state. The rate constant of the power stroke step (k4) does not change with mild compression, but it decreases with higher compression (> 6.3% dextran), presumably because of an increased difficulty in performing the power stroke. These results are consistent with the observation that isometric tension increases with a low level of compression and decreases with a high level of compression. Our results also show that the association constant K5 of Pi with cross-bridge state AM*D is not changed with compression. Our result further show that the ATP hydrolysis rate decreased with compression, and that the rate constants of the ADP-isomerization step (k6) becomes progressively less with compression. The effect of compression on the power stroke step and rate-limiting step implies that a large-scale molecular rearrangement in the myosin head takes place in these two slow reaction steps.  相似文献   

17.
Two-dimensional x-ray diffraction was used to investigate structural features of cross-bridges that generate force in isometrically contracting skeletal muscle. Diffraction patterns were recorded from arrays of single, chemically skinned rabbit psoas muscle fibers during isometric force generation, under relaxation, and in rigor. In isometric contraction, a rather prominent intensification of the actin layer lines at 5.9 and 5.1 nm and of the first actin layer line at 37 nm was found compared with those under relaxing conditions. Surprisingly, during isometric contraction, the intensity profile of the 5.9-nm actin layer line was shifted toward the meridian, but the resulting intensity profile was different from that observed in rigor. We particularly addressed the question whether the differences seen between rigor and active contraction might be due to a rigor-like configuration of both myosin heads in the absence of nucleotide (rigor), whereas during active contraction only one head of each myosin molecule is in a rigor-like configuration and the second head is weakly bound. To investigate this question, we created different mixtures of weak binding myosin heads and rigor-like actomyosin complexes by titrating MgATPgammaS at saturating [Ca2+] into arrays of single muscle fibers. The resulting diffraction patterns were different in several respects from patterns recorded under isometric contraction, particularly in the intensity distribution along the 5.9-nm actin layer line. This result indicates that cross-bridges present during isometric force generation are not simply a mixture of weakly bound and single-headed rigor-like complexes but are rather distinctly different from the rigor-like cross-bridge. Experiments with myosin-S1 and truncated S1 (motor domain) support the idea that for a force generating cross-bridge, disorder due to elastic distortion might involve a larger part of the myosin head than for a nucleotide free, rigor cross-bridge.  相似文献   

18.
The effect of varying concentrations of Pi and Ca2+ on isometric force and on the rate of force development in skinned rabbit psoas muscle fibers has been investigated. Steady-state results show that the three parameters that define the force-pCa relation (Po, pK, and n) all vary linearly with log [Pi]. As [Pi] increases, Po and pK decrease while n increases. The kinetics of force generation in isometrically contracting fibers were studied by laser flash photolysis of caged phosphate. The observed rate of the resulting tension transient, kPi, is 23.5 +/- 1.7 s-1 at 10 degrees C, 0.7 mM Pi, and is independent of [Ca2+] over the range pCa 4.5-7.2. By contrast, kTR, the rate of tension redevelopment following a period of isotonic shortening, is sensitive to [Ca2+] and is slower than kPi (kTR = 13.6 +/- 0.2 s-1 at pCa 4.5, 0.7 mM Pi). The results show that [Ca2+] does not directly affect the Pi release or force-generating steps of the cross-bridge cycle and show that the observed rate of force development depends on how the measurement is made. The data can be interpreted in terms of a model in which strong cross-bridges activate the thin filament, this activation being modulated by Ca2+ binding to troponin.  相似文献   

19.
Generation of force and movement by actomyosin cross-bridges is the molecular basis of muscle contraction, but generally accepted ideas about cross-bridge properties have recently been questioned. Of the utmost significance, evidence for nonlinear cross-bridge elasticity has been presented. We here investigate how this and other newly discovered or postulated phenomena would modify cross-bridge operation, with focus on post-power-stroke events. First, as an experimental basis, we present evidence for a hyperbolic [MgATP]-velocity relationship of heavy-meromyosin-propelled actin filaments in the in vitro motility assay using fast rabbit skeletal muscle myosin (28–29°C). As the hyperbolic [MgATP]-velocity relationship was not consistent with interhead cooperativity, we developed a cross-bridge model with independent myosin heads and strain-dependent interstate transition rates. The model, implemented with inclusion of MgATP-independent detachment from the rigor state, as suggested by previous single-molecule mechanics experiments, accounts well for the [MgATP]-velocity relationship if nonlinear cross-bridge elasticity is assumed, but not if linear cross-bridge elasticity is assumed. In addition, a better fit is obtained with load-independent than with load-dependent MgATP-induced detachment rate. We discuss our results in relation to previous data showing a nonhyperbolic [MgATP]-velocity relationship when actin filaments are propelled by myosin subfragment 1 or full-length myosin. We also consider the implications of our results for characterization of the cross-bridge elasticity in the filament lattice of muscle.  相似文献   

20.
Quantitative predictions of steady-state muscle properties from the strain-dependent cross-bridge for muscle are presented. With a stiffness of 5.4 x 10(-4) N/m per head, a throw distance of 11 nm, and three allowed actin sites/head, isometric properties and their dependence on phosphate and nucleotide levels are well described if the tension-generating step occurs before phosphate release. At very low ATP levels, rigorlike states with negative strain are predicted. The rate-limiting step for cycling and ATP consumption is strain-blocked ADP release for isometric and slowly shortening muscle. Under rapid shortening, ATP hydrolysis on detached heads is the rate-limiting step, and the ratio of bound ATP to bound ADP.Pi increases by a factor of 7. At large positive strains, bound heads must be forcibly detached from actin to account for tension in rapid extension, but forced detachment in shortening has no effect without destroying isometric attached states. Strain-blocked phosphate release as proposed produces modest inhibition of the ATPase rate under rapid shortening, sufficient to give a maximum for one actin site per helix turn. Alternative cross-bridge models are discussed in the light of these predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号