首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three Markov models (Dayhoff, Proportional and Poisson models; Hasegawa et al., 1992a) for amino acid substitution during evolution were used for maximum likelihood analyses of proteins coded for in mitochondrial DNA in estimating a phylogenetic tree among human, bovine and murids (mouse and rat) with chicken as an outgroup. It turned out that Dayhoff model is the most appropriate model among the alternatives in approximating the amino acid substitutions of proteins coded for in mitochondrial DNA. In spite of the presence of the complete sequence data of mitochondrial genomes, we could not resolve the trichotomy among human, bovine and murids, probably because the time length separating two branching events among these three lines was short and because chicken is too distant from mammals to be used as an outgroup. It was suggested that the average substitution rate of amino acids coded for in mitochondrial DNA is lower along the bovine line than those along the human or murid lines. Advantages of amino acid sequence analysis over nucleotide sequence analysis in phylogenetic study were discussed.  相似文献   

2.
Cytochromeb gene of marine mammals: Phylogeny and evolution   总被引:2,自引:0,他引:2  
The DNA sequences of the mitochondrial cytochromeb gene of marine mammals (Cetacea, Pinnipedia, Sirenia) were compared with cytochromeb genes of terrestrial mammals including the semiaquatic hippopotamus. The comparison included 28 sequences, representing 22 families and 10 orders. The dugong (order Sirenia) sequence associated with that of the elephant, supporting the Tethytheria clade. The fin whale and dolphin (order Cetacea) sequences are more closely related to those of the artiodactyls, and the comparison suggests that the hippopotamus may be the extant artiodactyl species that is most closely related to the cetaceans. The seal sequence may be more closely related to those of artiodactyls, cetaceans, and perissodactyls than to tethytheres, rodents, lagomorphs, or primates. The cytochromeb proteins of mammals do not evolve at a uniform rate. Human and elephant cytochromeb amino acid sequences were found to evolve the most rapidly, while those of myomorph rodents evolved slowest. The cytochromeb of marine mammals evolves at an intermediate rate. The pattern of amino acid substitutions in marine mammals is similar to that of terrestrial mammals.  相似文献   

3.
Summary The compositional properties of DNAs from 122 species of fishes and from 18 other coldblooded vertebrates (amphibians and reptiles) were compared with those from 10 warm-blooded vertebrates (mammals and birds) and found to be substantially different. Indeed, DNAs from cold-blooded vertebrates are characterized by much lower intermolecular compositional heterogeneities and CsCl band asymmetries, by a much wider spectrum of modal buoyant densities in CsCl, by generally lower amounts of satellites, as well as by the fact that in no case do buoyant densities reach the high values found in the GC-richest components of DNAs from warm-blooded vertebrates.In the case of fish genomes, which were more extensively studied, different orders were generally characterized by modal buoyant densities that were different in average values as well as in their ranges. In contrast, different families within any given order were more often characterized by narrow ranges of modal buoyant densities, and no difference in modal buoyant density was found within any single genus (except for the genusAphyosemion, which should be split into several genera).The compositional differences that were found among species belonging to different orders and to different families within the same order are indicative of compositional transitions, which were shown to be essentially due to directional base substitutions. These transitions were found to be independent of geological time. Moreover, the rates of directional base substitutions were found to be very variable and to reach, in some cases, extremely high values, that were even higher than those of silent substitutions in primates. The taxonomic and evolutionary implications of these findings are discussed.  相似文献   

4.
5.
Studies have been made on the activity of cation- and anion-stimulated ATPases, as well as succinic dehydrogenase in homogenates and subcellular fractions from osmoregulatory organs of marine (elasmobranch and teleost) and freshwater (teleost) fishes, amphibians, reptiles, birds and mammals. The activity of Na+, K+-ATPase was found to be rather similar in almost all osmoregulatory organs of the species investigated. The highest level of Cl-stimulated ATPase was found in microsomal fraction of the kidneys from birds and mammals. Succinic dehydrogenase activity is significantly higher in the renal tissue of mammals, both in total homogenates and in mitochondrial fraction.  相似文献   

6.
Patterns of molecular evolution in birds have long been considered anomalous. Compared with other vertebrates, birds have reduced levels of genetic divergence between groups of similar taxonomic ranks for a variety of nuclear and mitochondrial markers. This observation led to the avian constraint hypothesis, which identifies increased functional constraint on avian proteins as the cause for the reduction in genetic divergence. Subsequent investigations provided additional support for the avian constraint hypothesis when rates of molecular evolution were found to be slower in birds than in mammals in a variety of independent calibrations. It is possible to test the avian constraint hypothesis as an explanation for this avian slowdown by comparing DNA sequence data from protein-coding regions in birds and homologous regions in mammals. The increased selective constraints should lead to a reduction in the proportion of amino acid replacement substitutions. To test for such a decrease, we calculated the numbers of amino acid replacement substitutions per replacement site (dN) and silent substitutions per silent site (dS) for the complete mitochondrial cytochrome b gene using 38 avian and 43 mammalian comparisons that were phylogenetically independent. We find that dN/dS is significantly smaller in birds than in mammals. This difference cannot be explained by differences in codon bias affecting dS values. We suggest that the avian slowdown can be explained, at least in part, by a decreased tolerance for amino acid substitutions in avian species relative to mammalian species.  相似文献   

7.
8.
Zhou L  Li-Ling J  Huang H  Ma F  Li Q 《Genomics》2008,91(2):129-141
Kininogens, the precursors of bradykinins, vary extremely in both structure and function among different taxa of animals, in particular between mammals and amphibians. This includes even the most conserved bradykinin domain in terms of biosynthesis mode and structure. To elucidate the evolutionary dynamics of kininogen genes, we have identified 19 novel amino acid sequences from EST and genomic databases (for mammals, birds, and fishes) and explored their phylogenetic relationships using combined amino acid sequence and gene structure as markers. Our results show that there were initially two paralogous kininogen genes in vertebrates. During their evolution, the original gene was saved with frequent multiplication in amphibians, but lost in fishes, birds, and mammals, while the novel gene was saved with multiple functions in fishes, birds, and mammals, but became a pseudogene in amphibians. We also propose that the defense mechanism against specific predators in amphibian skin secretions has been bradykinin receptor dependent. Our findings may provide a foundation for identification and structural, functional, and evolutionary analyses of more kininogen genes and other gene families.  相似文献   

9.
The sense of bitter taste plays a critical role in how organisms avoid generally bitter toxic and harmful substances. Previous studies revealed that there were 25 intact bitter taste receptor (T2R) genes in humans and 34 in mice. However, because the recent chicken genome project reported only three T2R genes, it appears that extensive gene expansions occurred in the lineage leading to mammals or extensive gene contractions occurred in the lineage leading to birds. Here, I examined the T2R gene repertoire in placental mammals (dogs, Canis familiaris; and cows, Bos taurus), marsupials (opossums, Monodelphis domestica), amphibians (frogs, Xenopus tropicalis), and fishes (zebrafishes, Danio rerio; and pufferfishes, Takifugu rubripes) to investigate the birth-and-death process of T2R genes throughout vertebrate evolution. I show that (1) the first extensive gene expansions occurred before the divergence of mammals from reptiles/birds but after the divergence of amniotes (reptiles/birds/mammals) from amphibians, (2) subsequent gene expansions continuously took place in the ancestral mammalian lineage and the lineage leading to amphibians, as evidenced by the presence of 15, 18, 26, and 49 intact T2R genes in the dog, cow, opossum, and frog genome, respectively, and (3) contractions of the gene repertoire happened in the lineage leading to chickens. Thus, continuous gene expansions have shaped the T2R repertoire in mammals, but the contractions subsequent to the first round of expansions have made the chicken T2R repertoire narrow. These dramatic changes in the repertoire size might reflect the daily intake of foods from an external environment as a driving force of evolution.  相似文献   

10.
Studies have been made on the level of activity of anion ATPase and its sensitivity to anions in erythrocytic membranes from fishes, amphibians, reptiles, birds and mammals. Significant variations in these properties of the ATPase were found among the species investigated. Protein composition of erythrocytic membranes was also investigated by means of disc-electrophoresis in polyacrylamide gel in men, rabbit, rat, mouse, hamster, tortoise, crow and starling.  相似文献   

11.
An overview of our own and literature molecular phylogenetic studies on intraspecies variability in widely distributed Asian fishes, amphibians, birds, and mammals is presented. In many cases, the populations from the southeastern parts of the species ranges demonstrate distinct sets of haplotypes and increased variability. This means that such populations might have experienced isolation in refuges and that eastern Asia might have served as a hotspot in the speciation process for many Asian animals.  相似文献   

12.
Although the various vertebrate classes, from fishes to mammals are each distinctive, they possess many common features making it important to understand their comparative biology. One general feature that has long commanded interest is the integumental pigmentary system. Thus, much is known about particular pigment cells; however, the basis for some specific colors, such as blue, has escaped the scrutiny of the comparative approach. Regardless of Class, blue is almost always a structural color based upon incoherent or coherent scatter of blue wavelengths from the animal surface. The source of scatter may be intracellular or extra-cellular. A main intracellular scatterer is the surface of reflecting platelets of iridophores of lower vertebrates. Extra-cellular scatter is widespread and thought to occur from ordered dermal collagen arrays in primitive fishes, birds and mammals including humans. Among birds, feather structures provide major means for extra-cellular light scatter. There is only one known example of blue color deriving from a blue pigment found within a pigment cell. For amphibians, reptiles and birds, the scatter of blue wavelengths, together with the presence of yellow pigmentation, is fundamental for the expression of green coloration.  相似文献   

13.
The lateral line system of fishes and amphibians comprises two ancient sensory systems: mechanoreception and electroreception. Electroreception is found in all major vertebrate groups (i.e. jawless fishes, cartilaginous fishes, and bony fishes); however, it was lost in several groups including anuran amphibians (frogs) and amniotes (reptiles, birds, and mammals), as well as in the lineage leading to the neopterygian clade of bony fishes (bowfins, gars, and teleosts). Electroreception is mediated by modified “hair cells,” which are collected in ampullary organs that flank lines of mechanosensory hair cell containing neuromasts. In the axolotl (a urodele amphibian), grafting and ablation studies have shown a lateral line placode origin for both mechanosensory neuromasts and electrosensory ampullary organs (and the neurons that innervate them). However, little is known at the molecular level about the development of the amphibian lateral line system in general and electrosensory ampullary organs in particular. Previously, we identified Eya4 as a marker for lateral line (and otic) placodes, neuromasts, and ampullary organs in a shark (a cartilaginous fish) and a paddlefish (a basal ray‐finned fish). Here, we show that Eya4 is similarly expressed during otic and lateral line placode development in the axolotl (a representative of the lobe‐finned fish clade). Furthermore, Eya4 expression is specifically restricted to hair cells in both neuromasts and ampullary organs, as identified by coexpression with the calcium‐buffering protein Parvalbumin3. As well as identifying new molecular markers for amphibian mechanosensory and electrosensory hair cells, these data demonstrate that Eya4 is a conserved marker for lateral line placodes and their derivatives in all jawed vertebrates.  相似文献   

14.
Hughes S  Clay O  Bernardi G 《Gene》2002,295(2):323-329
Sauropsids form a complex group of vertebrates including squamates (lizards and snakes), turtles, crocodiles, sphenodon and birds (which are often considered as a separate class). Although avian genomes have been relatively well studied, the genomes of the other groups have remained only sparsely characterized. Moreover, the nuclear sequences available in databanks are still very limited. In the present study, we have analysed the compositional patterns, i.e. the GC (molar fraction of guanine and cytosine in DNA) distributions, of 31 reptilian (particularly snake) genomes by analytical ultracentrifugation of DNAs in CsCl gradients. The profiles were characterized by their modal buoyant density rho(o), mean buoyant density < rho>, asymmetry < rho>- rho(o), and heterogeneity H. The modal buoyant density distribution of reptilian DNAs clearly distinguishes two groups. The snakes fall in the same range of modal densities as most mammals, whereas crocodiles, turtles and lizards show higher values (>1.700 g/cm(3)). As far as the more important compositional properties of asymmetry and heterogeneity are concerned, previous studies showed that amphibians and fishes share relatively low values, whereas birds and mammals are characterized by highly heterogeneous and asymmetric patterns (with the exception of Muridae, which have a lower heterogeneity). The present results show that the snake genomes cover a broad range of asymmetry and heterogeneity values, whereas the genomes of crocodiles and turtles cover a narrow range that is intermediate between those of fishes/amphibians and those of mammals/birds.  相似文献   

15.
Zardoya R  Malaga-Trillo E  Veith M  Meyer A 《Gene》2003,317(1-2):17-27
The complete nucleotide sequence (16,650 bp) of the mitochondrial genome of the salamander Mertensiella luschani (Caudata, Amphibia) was determined. This molecule conforms to the consensus vertebrate mitochondrial gene order. However, it is characterized by a long non-coding intervening sequence with two 124-bp repeats between the tRNA(Thr) and tRNA(Pro) genes. The new sequence data were used to reconstruct a phylogeny of jawed vertebrates. Phylogenetic analyses of all mitochondrial protein-coding genes at the amino acid level recovered a robust vertebrate tree in which lungfishes are the closest living relatives of tetrapods, salamanders and frogs are grouped together to the exclusion of caecilians (the Batrachia hypothesis) in a monophyletic amphibian clade, turtles show diapsid affinities and are placed as sister group of crocodiles+birds, and the marsupials are grouped together with monotremes and basal to placental mammals. The deduced phylogeny was used to characterize the molecular evolution of vertebrate mitochondrial proteins. Amino acid frequencies were analyzed across the main lineages of jawed vertebrates, and leucine and cysteine were found to be the most and least abundant amino acids in mitochondrial proteins, respectively. Patterns of amino acid replacements were conserved among vertebrates. Overall, cartilaginous fishes showed the least variation in amino acid frequencies and replacements. Constancy of rates of evolution among the main lineages of jawed vertebrates was rejected.  相似文献   

16.
Mitotic chromosomes, interphase cell nuclei, and male meiosis of 41 species representing all vertebrate classes were analyzed with distamycin A/mithramycin counterstaining. The purpose of the study was to recognize differences and common characteristics in the reverse (R) fluorescent banding patterns in the chromosomes of vertebrate species at various stages of evolution. In contrast to the warm-blooded mammals and birds, the euchromatic segments in the chromosomes of most reptiles, amphibians, and fishes contain no multiple fluorescent R-bands. This is thought to be due to the absence of the long homogeneous regions (isochores) in the DNA of the cold-blooded vertebrates. Distamycin A/mithramycin banding specifically reveals the GC-rich constitutive heterochromatin in all vertebrates. In most of the vertebrate chromosomes examined, the heterochromatic regions have opposite staining properties with mithramycin and quinacrine. Mithramycin labels the nucleolus organizer regions very brightly in the karyotypes of fishes, amphibians, reptiles and birds, but not of mammals. The lack of mithramycin fluorescence at the nucleolus organizer regions of mammals is attributed to the relatively low level of redundancy of the GC-rich ribosomal DNA in their genomes. Studies on the various meiotic stages of the cold-blooded vertebrates show that the mithramycin labeling of the nucleolus organizers is independent of their state of activity. This can be confirmed by mithramycin fluorescence at the nucleoli of actinomycintreated cells.Dedicated to the memory of Professor Dr. Hans Bauer  相似文献   

17.
The complete mitochondrial genome sequence of the pig, Sus scrofa, was determined. The length of the sequence presented is 16,679 nucleotides. This figure is not absolute, however, due to pronounced heteroplasmy caused by variable numbers of the motif GTACACGTGC in the control region of different molecules. A phylogenetic study was performed on the concatenated amino acid and nucleotide sequences of 12 protein-coding genes of the mitochondrial genome. The analysis identified the pig (Suiformes) as a sister group of a cow/whale clade, making Artiodactyla paraphyletic. The split between pig and cow/whale was molecularly dated at 65 million years before present. Received: 2 December 1997 / Accepted: 20 February 1998  相似文献   

18.
19.
Vertebrates represent one of the best-studied groups in terms of the role that mating preferences have played in the evolution of exaggerated secondary sexual characters and mating behaviours within species. Vertebrate species however, also exhibit enormous interspecific diversity in features of mating signals that has potentially led to reproductive isolation and speciation in many groups. The role that sexual selection has played in interspecific divergence in mating signals has been less fully explored. This review summarizes our current knowledge of how mating preferences within species have shaped interspecific divergence in mate recognition signals among the major vertebrate groups. Certain signal modalities appear to characterize mating signal diversification among different vertebrate taxa. Acoustic signals play an important role in mating decisions in anuran amphibians and birds. Here, different properties of the signal may convey information regarding individual, neighbor and species recognition. Mating preferences for particular features of the acoustic signal have led to interspecific divergence in calls and songs. Divergence in morphological traits such as colouration or ornamentation appears to be important in interspecific diversity in certain groups of fishes and birds. Pheromonal signals serve as the primary basis for species-specific mating cues in many salamander species, most mammals and even some fishes. The evolution of interspecific divergence in elaborate courtship displays may have played an important role in speciation of lizards, and particular groups of fishes, salamanders, birds and mammals. While much research has focused on the importance of mating preferences in shaping the evolution of these types of mating signals within species, the link between intraspecific preferences and interspecific divergence and speciation remains to be more fully tested. Future studies should focus on identifying how variation in mating preferences within a species shapes interspecific diversity in features of mating signals in order to better understand how sexual selection may have led to speciation in vertebrates.  相似文献   

20.
Genome size and developmental parameters in the homeothermic vertebrates.   总被引:4,自引:0,他引:4  
T Ryan Gregory 《Génome》2002,45(5):833-838
Although unrelated to any intuitive notions of organismal complexity, haploid genome sizes (C values) are correlated with a variety of cellular and organismal parameters in different taxa. In some cases, these relationships are universal--notably, genome size correlates positively with cell size in each of the vertebrate classes. Other relationships are apparently relevant only in particular groups. For example, although genome size is inversely correlated with metabolic rate in both mammals and birds, no such relationship is found in amphibians. More recently, it has been suggested that developmental rate and (or) longevity are related to genome size in birds. In the present study, a large dataset was used to examine possible relationships between genome size and various developmental parameters in both birds and mammals. In neither group does development appear to be of relevance to genome size evolution (except perhaps indirectly in birds through the intermediation of body size and (or) within the rodents), a situation very different from that found in amphibians. These findings make it clear that genome size evolution cannot be understood without reference to the particular biology of the organisms under study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号