首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calsequestrin is by far the most abundant Ca(2+)-binding protein in the sarcoplasmic reticulum (SR) of skeletal and cardiac muscle. It allows the Ca2+ required for contraction to be stored at total concentrations of up to 20mM, while the free Ca2+ concentration remains at approximately 1mM. This storage capacity confers upon muscle the ability to contract frequently with minimal run-down in tension. Calsequestrin is highly acidic, containing up to 50 Ca(2+)-binding sites, which are formed simply by clustering of two or more acidic residues. The Kd for Ca2+ binding is between 1 and 100 microM, depending on the isoform, species and the presence of other cations. Calsequestrin monomers have a molecular mass of approximately 40 kDa and contain approximately 400 residues. The monomer contains three domains each with a compact alpha-helical/beta-sheet thioredoxin fold which is stable in the presence of Ca2+. The protein polymerises when Ca2+ concentrations approach 1mM. The polymer is anchored at one end to ryanodine receptor (RyR) Ca2+ release channels either via the intrinsic membrane proteins triadin and junctin or by binding directly to the RyR. It is becoming clear that calsequestrin has several functions in the lumen of the SR in addition to its well-recognised role as a Ca2+ buffer. Firstly, it is a luminal regulator of RyR activity. When triadin and junctin are present, calsequestrin maximally inhibits the Ca2+ release channel when the free Ca2+ concentration in the SR lumen is 1mM. The inhibition is relieved when the Ca2+ concentration alters, either because of small changes in the conformation of calsequestrin or its dissociation from the junctional face membrane. These changes in calsequestrin's association with the RyR amplify the direct effects of luminal Ca2+ concentration on RyR activity. In addition, calsequestrin activates purified RyRs lacking triadin and junctin. Further roles for calsequestrin are indicated by the kinase activity of the protein, its thioredoxin-like structure and its influence over store operated Ca2+ entry. Clearly, calsequestrin plays a major role in calcium homeostasis that extends well beyond its ability to buffer Ca2+ ions.  相似文献   

2.
Permeation of neutral molecules as well as Ca2+ through the Ca2+ channel in sarcoplasmic reticulum vesicles has been studied by the tracer and/or by the light scattering methods. In the absence of KCl, the Ca2+ channel was found not to be able to pass neutral molecules such as glucose, xylose, and glycine under the condition that the channel was open, although the channel could pass Ca2+. On the other hand, submolar concentrations of KCl made the channel become permeable to neutral molecules as well as Ca2+. Since the effect of KCl could be replaced by NaCl and KNO3, but not by sucrose and glucose, this effect of KCl is considered to be due to ionic strength and not to osmotic pressure. These results suggest that low ionic strength transforms the Ca2+ channel protein in such a manner as to block the permeation of neutral molecules without modifying the gating mechanism of the channel.  相似文献   

3.
The contribution of Na ions to the electrically excited response was studied in the muscle fibres of mealworm larvae, Tenebrio molitor, using microelectrode techniques. When Ca ions were omitted from the external solution, no action potential could be elicited. However, addition of Na ions to Ca-free medium rendered the fibre excitable again. The amplitude of these action potentials increased with a slope of about 40 mV for a 10-fold elevation of external Na concentrations. Tetrodotoxin had no effect on the initiation of the spike, and Co ions completely suppressed it. Therefore, it seems likely that a Ca-channel, which is utilized by both Na and Ca ions, is the sole factor responsible for the action potential in the mealworm larval muscle fibre membrane.  相似文献   

4.
A minimal gating model for the cardiac calcium release channel.   总被引:8,自引:1,他引:8       下载免费PDF全文
A Markovian model of the cardiac Ca release channel, based on experimental single-channel gating data, was constructed to understand the transient nature of Ca release. The rate constants for a minimal gating scheme with one Ca-free resting state, and with two open and three closed states with one bound Ca2+, were optimized to simulate the following experimental findings. In steady state the channel displays three modes of activity: inactivated 1 mode without openings, low-activity L mode with single openings, and high-activity H mode with bursts of openings. At the onset of a Ca2+ step, the channel first activates in H mode and then slowly relaxes to a mixture of all three modes, the distribution of which depends on the new Ca2+. The corresponding ensemble current shows rapid activation, which is followed by a slow partial inactivation. The transient reactivation of the channel (increment detection) in response to successive additions of Ca2+ is then explained by the model as a gradual recruitment of channels from the extant pool of channels in the resting state. For channels in a living cell, the model predicts a high level of peak activation, a high extent of inactivation, and rapid deactivation, which could underlie the observed characteristics of the elementary release events (calcium sparks).  相似文献   

5.
Metabolically (35)S-labeled calmodulin (CaM) was used to determine the CaM binding properties of the cardiac ryanodine receptor (RyR2) and to identify potential channel domains for CaM binding. In addition, regulation of RyR2 by CaM was assessed in [(3)H]ryanodine binding and single-channel measurements. Cardiac sarcoplasmic reticulum vesicles bound approximately four CaM molecules per RyR2 tetramer in the absence of Ca(2+); in the presence of 100 microm Ca(2+), the vesicles bound 7.5 CaM molecules per tetramer. Purified RyR2 bound approximately four [(35)S]CaM molecules per RyR tetramer, both in the presence and absence of Ca(2+). At least four CaM binding domains were identified in [(35)S]CaM overlays of fusion proteins spanning the full-length RyR2. The affinity (but not the stoichiometry) of CaM binding was altered by redox state as controlled by the presence of either GSH or GSSG. Inhibition of RyR2 activity by CaM was influenced by Ca(2+) concentration, redox state, and other channel modulators. Parallel experiments with the skeletal muscle isoform showed major differences in the CaM binding properties and regulation by CaM of the skeletal and cardiac ryanodine receptors.  相似文献   

6.
Current was measured from single open channels of the calcium release channel (CRC) of cardiac sarcoplasmic reticulum (over the range +/-180 mV) in pure and mixed solutions (e.g., biionic conditions) of the alkali metal ions Li+, K+, Na+, Rb+, Cs+, ranging in concentration from 25 mM to 2 M. The current-voltage (I-V) relations were analyzed by an extension of the Poisson-Nernst-Planck (PNP) formulation of electrodiffusion, which includes local chemical interaction described by an offset in chemical potential, which likely reflects the difference in dehydration/solvation/rehydration energies in the entry/exit steps of permeation. The theory fits all of the data with few adjustable parameters: the diffusion coefficient of each ion species, the average effective charge distribution on the wall of the pore, and an offset in chemical potential for lithium and sodium ions. In particular, the theory explains the discrepancy between "selectivities" defined by conductance sequence and "selectivities" determined by the permeability ratios (i.e., reversal potentials) in biionic conditions. The extended PNP formulation seems to offer a successful combined treatment of selectivity and permeation. Conductance selectivity in this channel arises mostly from friction: different species of ions have different diffusion coefficients in the channel. Permeability selectivity of an ion is determined by its electrochemical potential gradient and local chemical interaction with the channel. Neither selectivity (in CRC) seems to involve different electrostatic interaction of different ions with the channel protein, even though the ions have widely varying diameters.  相似文献   

7.
Nanomolar to micromolar ryanodine alters the gating kinetics of the Ca2+ release channel from skeletal sarcoplasmic reticulum (SR) fused with bilayer lipid membranes (BLM). In the presence of asymmetric CsCl and 100 microM CaCl2 cis, ryanodine (RY) (5-40 nM) activates the channel, increasing the open probability (po; maximum 300% of control) without changing unitary conductance (468 picosiemens (pS)). Statistical analyses of gating kinetics reveal that open and closed dwell times exhibit biexponential distributions and are significantly modified by nanomolar RY. Altered channel gating kinetics with low nanomolar RY is fully reversible and correlates well with binding kinetics of nanomolar [3H]RY with its high affinity site (Kd1 = 0.7 nM) under identical experimental conditions. RY (20-50 nM) induces occasional 1/2 conductance fluctuations which correlate with [3H]RY binding to a second site having lower affinity (Kd2 = 23 nM). RY (5-50 nM) in the presence of 500 mM CsCl significantly enhances Ca(2+)-induced Ca2+ release from actively loaded SR vesicles. Ryanodine > or = 50 nM stabilizes the channel in a 234-pS subconductance which is not readily reversible. RY (> or = 70 microM) produces a unidirectional transition from the 1/2 to a 1/4 conductance fluctuation, whereas RY > or = 200 microM causes complete closure of the channel. The RY required for stabilizing 1/4 conductance transitions and channel closure do not quantitatively correlate with [3H]RY equilibrium binding constants and is attributed to significant reduction in association kinetics with > 200 nM [3H]RY in the presence of 500 mM CsCl. These results demonstrate that RY stabilizes four discrete states of the SR release channel and supports the existence of multiple interacting RY effector sites on the channel protein.  相似文献   

8.
The calcium release channel of sarcoplasmic reticulum which triggers muscle contraction in excitation-contraction coupling has recently been isolated. The channel has been found to be morphologically identical with the feet structures of the junctional face membrane of terminal cisternae and consists of an oligomer of a unique high molecular weight polypeptide. In this study, we compare the target size of the calcium release channel from heart and skeletal muscle using target inactivation analysis. The target molecular weights of the calcium release channel estimated by measuring ryanodine binding after irradiation are similar for heart (139,000) and skeletal muscle (143,000) and are smaller than the monomeric unit (estimated to be about 360,000). The target size, estimated by measuring polypeptide remaining after irradiation, was essentially the same for heart and skeletal muscle, 1,061,000 and 1,070,000, respectively, indicating an oligomeric association of protomers. Thus, the calcium release channel of both cardiac and skeletal muscle reacts uniquely with regard to target inactivation analysis in that (1) the size by ryanodine binding is smaller than the monomeric unit and (2) a single hit leads to destruction of more than one polypeptide, by measuring polypeptide remaining. Our target inactivation analysis studies indicate that heart and skeletal muscle receptors are structurally very similar.  相似文献   

9.
10.
Ryanodine receptors (RyRs) are a family of calcium release channels found on intracellular calcium-handing organelles. Molecular cloning studies have identified three different RyR isoforms, which are 66-70% identical in amino acid sequence. In mammals, the three isoforms are encoded by three separate genes located on different chromosomes. The major variations among the isoforms occur in three regions, known as divergent regions 1, 2, and 3 (DR1, DR2, and DR3). In the present study, a modified RyR2 (cardiac isoform) cDNA was constructed, into which was inserted a green fluorescent protein (GFP)-encoding cDNA within DR2, specifically after amino acid residue Thr1366 (RyR2(T1366-GFP)). HEK293 cells expressing RyR2(T1366-GFP) cDNAs showed caffeine-sensitive and ryanodine-sensitive calcium release, demonstrating that RyR2(T1366-GFP) forms functional calcium release channels. Cells expressing RyR2(T1366-GFP) were identified readily by the characteristic fluorescence of GFP, indicating that the overall structure of the inserted GFP was retained. Cryo-electron microscopy (cryo-EM) of purified RyR2(T1366-GFP) showed structurally intact receptors, and a three-dimensional reconstruction was obtained by single-particle image processing. The location of the inserted GFP was obtained by comparing this three-dimensional reconstruction to one obtained for wild-type RyR2. The inserted GFP and, consequently Thr1366 within DR2, was mapped on the three-dimensional structure of RyR2 to domain 6, one of the characteristic cytoplasmic domains that form part of the multi-domain "clamp" regions of RyR2. The three-dimensional location of DR2 suggests that it plays roles in the RyR conformational changes that occur during channel gating, and possibly in RyR's interaction with the dihydropyridine receptor in excitation-contraction coupling. This study further demonstrates the feasibility and reliability of the GFP insertion/cryo-EM approach for correlating RyR's amino acid sequence with its three-dimensional structure, thereby enhancing our understanding of the structural basis of RyR function.  相似文献   

11.
We have recently reported [Mészáros L.G., Minarovic I., Zahradníková A. Inhibition of the skeletal muscle ryanodine receptor calcium release channel by nitric oxide. FEBS Lett 1996; 380: 49–52] that nitric oxide (NO) reduces the activity of the skeletal muscle ryanodine receptor Ca2+ release channel (RyRC), a principal component of the excitation-contraction coupling machinery in striated muscles. Since (i) as shown here, we have obtained evidence which indicates that the NO synthase (eNOS) of cardiac muscle origin co-purified with RyRC-containing sarcoplasmic reticulum (SR) fractions; and (ii) the effects of NO donors on the release channel, as well as on cardiac function, appear somewhat contradictory, we have made an attempt to investigate the response of the cardiac RyRC to NO that is generated in situ from L-arginine in the NOS reaction. We found that L-arginine-derived NO inactivates Ca2+ release from cardiac SR and reduces the steady-state activity (i.e. open probability) of single RyRCs fused into a planar lipid bilayer. This reduction was prevented by NOS inhibitors and the NO quencher hemoglobin and was reversed by 2-mercaptoethanol. We thus conclude that: (i) in isolated SR preparations, it is possible to assess the effects of NO that is generated from L-arginine in the NOS reaction; and (ii) cardiac RyRc responds to NO in a manner which is identical to that we have previously found with the skeletal channel. These findings suggest that the direct modulation of the RyRC by NO is a signaling mechanism which likely participates in earlier demonstrated NO-induced myocardial contractility changes.  相似文献   

12.
Single channel activity of the cardiac ryanodine-sensitive calcium-release channel in planar lipid membranes was studied in order to elucidate the calcium-dependent mechanism of its steady-state behavior. The single channel kinetics, observed with Cs+ as the charge carrier at different activating (cis) Ca2+ concentrations in the absence of ATP and Mg2+, were similar to earlier reports and were extended by analysis of channel modal behavior. The channel displayed three episodic levels of open probability defining three gating modes: H (high activity), L (low activity), and I (no activity). The large difference in open probabilities between the two active modes resulted from different bursting patterns and different proportions of two distinct channel open states. I-mode was without openings and can be regarded as the inactivated mode of the channel; L-mode was composed of short and sparse openings; and H-mode openings were longer and grouped into bursts. Modal gating may explain calcium-release channel adaptation (as transient prevalence of H-mode after Ca2+ binding) and the inhibitory effects of drugs (as stabilization of mode I), and it provides a basis for understanding the regulation of calcium release.  相似文献   

13.
We have previously demonstrated that H2O2 at millimolar concentrations induces Ca(2+) release from actively loaded sarcoplasmic reticulum (SR) vesicles and induces biphasic [(3)H]ryanodine binding behavior. Considering that hypochlorous acid (HOCl) is a related free radical and has been demonstrated to be a more effective oxidant of proteins, we evaluated the effects of HOCl on sarcoplasmic reticulum Ca(2+)-channel release mechanism. In a concentration-dependent manner, HOCl activates the SR Ca(2+) release channel and induces rapid release of Ca from actively loaded vesicles. HOCl-induced Ca(2+) release is inhibited in the presence of millimolar concentrations of DMSO. High-affinity [(3)H]ryanodine binding is also enhanced at concentrations from 10 to 100 microM. At HOCl concentrations of >100 microM, equilibrium binding is inhibited. HOCl stimulation of binding is inhibited by the addition of dithiothreitol. The direct interaction between HOCl and the Ca(2+) release mechanism was further demonstrated in single-channel reconstitution experiments. HOCl, at 20 microM, activated the Ca(2+) release channel after fusion of a SR vesicle to a bilayer lipid membrane. At 40 microM, Ca(2+)-channel activity was inhibited. Pretreatment of SR vesicles with HOCl inhibited the fluorescence development of a fluorogenic probe specific to thiol groups critical to channel function. These results suggest that HOCl at micromolar concentrations can modify SR Ca(2+) handling.  相似文献   

14.
In skeletal and cardiac muscle cells, specific isoforms of the Ryanodine receptor channels mediate Ca2+ release from the sarcoplasmic reticulum. These channels are highly susceptible to redox modifications, which regulate channel activity. In this work, we studied the effects of Ca2+ (endogenous agonist) and Mg2+ (endogenous inhibitor) on the kinetics of Ca2+ release from sarcoplasmic reticulum vesicles isolated from skeletal or cardiac mammalian muscle. Native skeletal vesicles exhibited maximal stimulation of release kinetics by 10-20 microM [Ca2+], whereas in native cardiac vesicles, maximal stimulation of release required only 1 microM [Ca2+]. In 10 microM [Ca2+], free [Mg2+] < 0.1 mM produced marked inhibition of release from skeletal vesicles but free [Mg2+] < or = 0.8 mM did not affect release from cardiac vesicles. Incubation of skeletal or cardiac vesicles with the oxidant thimerosal increased their susceptibility to stimulation by Ca2+ and decreased the inhibitory effect of Mg2+ in skeletal vesicles. Sulfhydryl-reducing agents fully reversed the effects of thimerosal. The endogenous redox species, glutathione disulfide and S-nitrosoglutathione, also stimulated release from skeletal sarcoplasmic reticulum vesicles. In 10 microM [Ca2+], 35S-nitrosoglutathione labeled a protein fraction enriched in release channels through S-glutathiolation. Free [Mg2+] 1 mM or decreasing free [Ca2+] to the nM range prevented this reaction. Possible physiological and pathological consequences of redox modification of release channels on Ca2+ signaling in heart and muscle cells are discussed.  相似文献   

15.
The effects of the two local anesthetics tetracaine and procaine and a quaternary amine derivative of lidocaine, QX314, on sarcoplasmic reticulum (SR) Ca2+ release have been examined by incorporating the purified rabbit skeletal muscle Ca2+ release channel complex into planar lipid bilayers. Recordings of potassium ion currents through single channels showed that Ca(2+)- and ATP-gated channel activity was reduced by the addition of the tertiary amines tetracaine and procaine to the cis (cytoplasmic side of SR membrane) or trans (SR lumenal) side of the bilayer. Channel open probability was lowered twofold at tetracaine and procaine concentrations of approximately 150 microM and 4 mM, respectively. Hill coefficients of 2.0 and greater indicated that the two drugs inhibited channel activity by binding to two or more cooperatively interacting sites. Unitary conductance of the K(+)- conducting channel was not changed by 1 mM tetracaine in the cis and trans chambers. In contrast, cis millimolar concentrations of the quaternary amine QX314 induced a fast blocking effect at positive holding potentials without an apparent change in channel open probability. A voltage-dependent block was observed at high concentrations (millimolar) of tetracaine, procaine, and QX314 in the presence of 2 microM ryanodine which induced the formation of a long open subconductance. Vesicle-45Ca2+ ion flux measurements also indicated an inhibition of the SR Ca2+ release channel by tetracaine and procaine. These results indicate that local anesthetics bind to two or more cooperatively interacting high-affinity regulatory sites of the Ca2+ release channel in or close to the SR membrane. Voltage-dependent blockade of the channel by QX314 in the absence of ryanodine, and by QX314, procaine and tetracaine in the presence of ryanodine, indicated one low-affinity site within the conduction pathway of the channel. Our results further suggest that tetracaine and procaine may primarily inhibit excitation-contraction coupling in skeletal muscle by binding to the high-affinity, regulatory sites of the SR Ca2+ release channel.  相似文献   

16.
Calmodulin (CaM) binding to the type 2 ryanodine receptor (RyR2) regulates Ca release from the cardiac sarcoplasmic reticulum (SR). However, the structural basis of CaM regulation of the RyR2 is poorly defined, and the presence of other potential CaM binding partners in cardiac myocytes complicates resolution of CaM's regulatory interactions with RyR2. Here, we show that a fluorescence-resonance-energy-transfer (FRET)-based approach can effectively resolve RyR2 CaM binding, both in isolated SR membrane vesicles and in permeabilized ventricular myocytes. A small FRET donor was targeted to the RyR2 cytoplasmic assembly via fluorescent labeling of the FKBP12.6 subunit. Acceptor fluorophore was attached at discrete positions within either the N- or the C-lobe of CaM. FRET between FKBP12.6 and CaM bound to SR vesicles indicated CaM binding at a single high-affinity site within 60 Å of FKBP12.6. Micromolar Ca increased the apparent affinity of CaM binding and slowed CaM dissociation, but did not significantly affect maximal FRET efficiency at saturating CaM. FRET was strongest when the acceptor was attached at either of two positions within CaM's N-lobe versus sites in CaM's C-lobe, providing CaM orientation information. In permeabilized ventricular myocytes, FKBP12.6 and CaM colocalized to Z-lines, and the efficiency of energy transfer to both the N- and C-lobes of CaM was comparable to that observed in SR vesicle experiments. Results also indicate that both the location and orientation of CaM binding on the RyR2 are very similar to the skeletal muscle RyR1 isoform. Specific binding of CaM to functional RyR2 channels in the cardiac myocyte environment can be monitored using FKBP biosensors and FRET.  相似文献   

17.
The effects of ruthenium red and the related compounds tetraamine palladium (4APd) and tetraamine platinum (4APt) were studied on the ryanodine activated Ca2+ release channel reconstituted in planar bilayers with the immunoaffinity purified ryanodine receptor. Ruthenium red, applied at submicromolar concentrations to the myoplasmic side (cis), induced an all-or-none flickery block of the ryanodine activated channel. The blocking effect was strongly voltage dependent, as large positive potentials that favored the movement of ruthenium red into the channel conduction pore produced stronger block. The half dissociation constants (Kd) for ruthenium red block of the 500 pS channel were 0.22, 0.38, and 0.62 microM, at +100, +80, and +60 mV, respectively. Multiple ruthenium red molecules seemed to be involved in the inhibition, because a Hill coefficient of close to 2 was obtained from the dose response curve. The half dissociation constant of ruthenium red block of the lower conductance state of the ryanodine activated channel (250 pS) was higher (Kd = 0.82 microM at +100 mV), while the Hill coefficient remained approximately the same (nH = 2.7). Ruthenium red block of the channel was highly asymmetric, as trans ruthenium red produced a different blocking effect. The blocking and unblocking events (induced by cis ruthenium red) can be resolved at the single channel level at a cutoff frequency of 2 kHz. The closing rate of the channel in the presence of ruthenium red increased linearly with ruthenium red concentration, and the unblocking rate of the channel was independent of ruthenium red concentrations. This suggests that ruthenium red block of the channel occurred via a simple blocking mechanism. The on-rate of ruthenium red binding to the channel was 1.32 x 10(9) M-1 s-1, and the off-rate of ruthenium red binding was 0.75 x 10(3) s-1 at +60 mV, in the presence of 200 nM ryanodine. The two related compounds, 4APd and 4APt, blocked the channel in a similar way to that of ruthenium red. These compounds inhibited the open channel with lower affinities (Kd = 170 microM, 4APd; Kd = 656 microM, 4APt), and had Hill coefficients of close to 1. The results suggest that ruthenium red block of the ryanodine receptor is due to binding to multiple sites located in the conduction pore of the channel.  相似文献   

18.
D Chen  J Lear    B Eisenberg 《Biophysical journal》1997,72(1):97-116
The synthetic channel [acetyl-(LeuSerSerLeuLeuSerLeu)3-CONH2]6 (pore diameter approximately 8 A, length approximately 30 A) is a bundle of six alpha-helices with blocked termini. This simple channel has complex properties, which are difficult to explain, even qualitatively, by traditional theories: its single-channel currents rectify in symmetrical solutions and its selectivity (defined by reversal potential) is a sensitive function of bathing solution. These complex properties can be fit quantitatively if the channel has fixed charge at its ends, forming a kind of macrodipole, bracketing a central charged region, and the shielding of the fixed charges is described by the Poisson-Nernst-Planck (PNP) equations. PNP fits current voltage relations measured in 15 solutions with an r.m.s. error of 3.6% using four adjustable parameters: the diffusion coefficients in the channel's pore DK = 2.1 x 10(-6) and DCl = 2.6 x 10(-7) cm2/s; and the fixed charge at the ends of the channel of +/- 0.12e (with unequal densities 0.71 M = 0.021e/A on the N-side and -1.9 M = -0.058e/A on the C-side). The fixed charge in the central region is 0.31e (with density P2 = 0.47 M = 0.014e/A). In contrast to traditional theories, PNP computes the electric field in the open channel from all of the charges in the system, by a rapid and accurate numerical procedure. In essence, PNP is a theory of the shielding of fixed (i.e., permanent) charge of the channel by mobile charge and by the ionic atmosphere in and near the channel's pore. The theory fits a wide range of data because the ionic contents and potential profile in the channel change significantly with experimental conditions, as they must, if the channel simultaneously satisfies the Poisson and Nernst-Planck equations and boundary conditions. Qualitatively speaking, the theory shows that small changes in the ionic atmosphere of the channel (i.e., shielding) make big changes in the potential profile and even bigger changes in flux, because potential is a sensitive function of charge and shielding, and flux is an exponential function of potential.  相似文献   

19.
The Ca(2+) mobilizing metabolite cyclic ADP-ribose has been shown to release Ca(2+) from intracellular ryanodine sensitive stores in many cells. However, the activation of the ryanodine receptor of skeletal muscle by cADP-ribose (cADPr) and its precursor and metabolite (beta-NAD(+) and ADPr) remains to be discussed. We studied the effect of ADPr on the Ca(2+) release channel of skeletal muscle RyR1 after incorporation of microsomes isolated from fast muscles of rat in planar lipid bilayers. We observed an increase in the electrophysiological activity of the channel after addition of ADPr (10 microM) at micromolar Ca(2+) concentrations, characterized by a time-lag. The increase in P(o) is mainly due to an increase in the open frequency. The long time course observed for the development of the ADPr effect may indicate that this activation induces a change in the conformation of the RyR1 channel, which increases its sensitivity to calcium.  相似文献   

20.
Combined patch-clamp and fura-2 measurements were performed to study the calcium release properties of Chinese hamster ovary (CHO) cells transfected with the rabbit skeletal muscle ryanodine receptor cDNA carried by an expression vector. Both caffeine (1-50 mM) and ryanodine (100 microM) induced release of calcium from intracellular stores of transformed CHO cells but not from control (non-transfected) CHO cells. The calcium responses to caffeine and ryanodine closely resembled those commonly observed in skeletal muscle. Repetitive applications of caffeine produced characteristic all-or-none rises in intracellular calcium. Inositol 1,4,5-trisphosphate (IP3) neither activated the ryanodine receptor channel nor interfered with the caffeine-elicited calcium release. These results indicate that functional calcium release channels are formed by expression of the ryanodine receptor cDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号