首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The amount of F1-ATPase in chromatophores from Rhodospirillum rubrum was determined by Western blotting using anti-RrF1 rabbit antibodies. 9.1 mmol F1 (mol bacteriochlorophyll)-1 was obtained or 14% of the total protein content of the chromatophores. The turnover rate of the F0F1-ATPase was 17 molecules ATP s-1 during synthesis, 2 molecules ATP s-1 during hydrolysis under coupled conditions with Mg2+ as the divalent cation, and 7 molecules ATP s-1 during hydrolysis in the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone. Binding of 1 mol oligomycin/mol F0F1-ATPase was found to inhibit the activities of the enzyme completely. A single binding site was found with a Kd of approximately 2 microM.  相似文献   

2.
Two interconvertible kinetic modes are described for ATP synthesis by bovine heart submitochondrial particles. One mode is characterized by low apparent Km values for ADP (6-10 microM) and Pi (less than or equal to 0.25 mM), and a limited capacity for ATP synthesis (apparent Vmax approximately 500 nmol ATP.min-1.mg of protein-1). ATP synthesis occurs predominantly in this mode when the coupled activity of the respiratory chain relative to the number of functional ATP synthase complexes is low. The second kinetic mode is characterized by high apparent Km values for ADP (50-100 microM) and Pi (approximately 2.0 mM) and a high capacity for ATP synthesis (Vmax greater than 1800 nmol ATP.min-1.mg of protein-1). This mode of ATP synthesis predominates when the available free energy relative to the number of functional ATP synthase units is high. These results suggest that energy pressure in mitochondria might regulate ATP synthesis such that at low levels of energy the ATP synthase operates economically (low substrate Km values, low turnover capacity for ATP synthesis), while at high levels of energy these kinetic constraints are relaxed (high substrate Km values, high turnover capacity for ATP synthesis). The implications of these findings are discussed in relation to the cooperative-type kinetics of ATP synthesis and hydrolysis, the differential effects of a number of F0-F1 inhibitors on the rates of ATP synthesis and hydrolysis, and the controversy as to whether protonic energy in mitochondria is localized or delocalized.  相似文献   

3.
C Hekman  A Matsuno-Yagi  Y Hatefi 《Biochemistry》1988,27(19):7559-7565
The kinetics of ATP synthesis by bovine heart submitochondrial particles (SMP) are modulated by the rate of energy production by the respiratory chain between two fixed limits characterized by apparent KmADP = 2-4 microM and Vmax approximately 200 nmol of ATP min-1 (mg of SMP protein)-1 at low energy levels and apparent KmADP = 120-160 microM and Vmax = 11,000 nmol of ATP min-1 (mg of SMP protein)-1 at high energy levels. These data indicate that KmADP and Vmax increase approximately 50-fold each; therefore, there is essentially no change in the catalytic efficiency of the ATP synthase complex in going from one extreme to the other. At intermediate rates of energy production, the kinetic data required introduction of a third, intermediate KmADP. A KmADP of 10-15 microM fitted all the data reported here and previously [Matsuno-Yagi, A., & Hatefi, Y. (1986) J. Biol. Chem. 261, 14031-14038]. However, this is not meant to suggest that there is a fixed intermediate KmADP, as the transition from one fixed limit to the other may be fluid or involve more than one intermediate state. In addition, it has been shown that kinetic plots of SMP-catalyzed and ATP-driven reverse electron transfer from succinate to NAD are curvilinear and resolvable into a minimum of two apparent KmNAD values of about 20-30 and 200-300 microM. These results have been discussed in relation to the three potentially active catalytic sites of F1-ATPase and the structure of the NADH:ubiquinone oxidoreductase complex, the curvilinear kinetics of ATP hydrolysis, and changes in KmADP and KmPi in photophosphorylation as affected by the duration and intensity of light.  相似文献   

4.
The known subunits of the membrane sector F0 of the bovine mitochondrial ATP synthase complex are subunits b, d, 6, F6, OSCP (oligomycin sensitivity-conferring protein), the DCCD (dicyclohexylcarbodiimide) binding proteolipid, and A6L. The first six subunits were purified from SMP or preparations of the ATP synthase complex, and monospecific antibodies were raised against each. The antisera were shown to be competent for immuno-blotting, and each antiserum recognized a single polypeptide of the expected Mr in preparations of the ATP synthase complex. Immunoblots utilizing antibodies to OSCP and subunits d and 6, which exhibit the same Mr on dodecyl sulfate-polyacrylamide gels, showed clearly that these polypeptides are immunologically distinct. Immunological cross-reactivity was demonstrated between bovine, human, rat, Saccharomyces cerevisiae, Paracoccus denitrificans, and Escherichia coli for subunit 6; between bovine, human, and rat for subunits b, d, OSCP, and F6; and between bovine and rat for the DCCD binding proteolipid. Anti-subunit 6 antiserum, before or after immunopurification against the ATP synthase complex, recognized a single polypeptide in the bovine ATP synthase complex and S. cerevisiae mitochondria, but two polypeptides of different Mr in bovine SMP, human, and rat mitochondria, and Paracoccus and E. coli membranes.  相似文献   

5.
By means of a yeast genome database search, we have identified an open reading frame located on chromosome XVI of Saccharomyces cerevisiae that encodes a protein with 53% amino acid similarity to the 11.3-kDa subunit g of bovine mitochondrial F1F0-ATP synthase. We have designated this ORF ATP20, and its product subunit g. A null mutant strain, constructed by insertion of the HIS3 gene into the coding region of ATP20, retained oxidative phosphorylation function. Assembly of F1F0-ATP synthase in the atp20-null strain was not affected in the absence of subunit g and levels of oligomycin-sensitive ATP hydrolase activity in mitochondria were normal. Immunoprecipitation of F1F0-ATP synthase from mitochondrial lysates prepared from atp20-null cells expressing a variant of subunit g with a hexahistidine motif indicated that this polypeptide was associated with other well-characterized subunits of the yeast complex. Whilst mitochondria isolated from the atp20-null strain had the same oxidative phosphorylation efficiency (ATP : O) as that of the control strain, the atp20-null strain displayed approximately a 30% reduction in both respiratory capacity and ATP synthetic rate. The absence of subunit g also reduced the activity of cytochrome c oxidase, and altered the kinetic control of this complex as demonstrated by experiments titrating ATP synthetic activity with cyanide. These results indicate that subunit g is associated with F1F0-ATP synthase and is required for maximal levels of respiration, ATP synthesis and cytochrome c oxidase activity in yeast.  相似文献   

6.
Purified pea mitochondrial F1-ATPase reconstituted oxidative phosphorylation in both partially and completely F1-depleted bovine heart mitochondrial membranes. The isolated plant enzyme exhibited high rates of ATP synthesis when combined with bovine heart membranes, suggesting great evolutionary conservation of the ATP synthase complex in mitochondria.  相似文献   

7.
The effect of increased expression or reconstitution of the mitochondrial inhibitor protein (IF1) on the dimer/monomer ratio (D/M) of the rat liver and bovine heart F1F0-ATP synthase was studied. The 2-fold increased expression of IF1 in AS-30D hepatoma mitochondria correlated with a 1.4-fold increase in the D/M ratio of the ATP synthase extracted with digitonin as determined by blue native electrophoresis and averaged densitometry analyses. Removal of IF1 from rat liver or bovine heart submitochondrial particles increased the F1F0-ATPase activity and decreased the D/M ratio of the ATP synthase. Reconstitution of recombinant IF1 into submitochondrial particles devoid of IF1 inhibited the F1F0-ATPase activity by 90% and restored partially the D/M ratio of the whole F1F0 complex as revealed by blue native electrophoresis and subsequent SDS-PAGE or glycerol density gradient centrifugation. Thus, the inhibitor protein promotes or stabilizes the dimeric form of the intact F1F0-ATP synthase. A possible location of the IF1 protein in the dimeric structure of the rat liver F1F0 complex is proposed. According to crystallographic and electron microscopy analyses, dimeric IF1 could bridge the F1-F1 part of the dimeric F1F0-ATP synthase in the inner mitochondrial membrane.  相似文献   

8.
Plant chloroplasts are particularly threatened by free radical attack. We incubated purified soluble spinach chloroplast F(0)F(1) (CF(0)F(1), EC 3.6.3.34) with an Fe(2+)/H(2)O(2)/ascorbate system, and about 60% inactivation of the ATPase activity was reached after 60 min. Inactivation was not prevented by omission of H(2)O(2), by addition of catalase or superoxide dismutase, nor by the scavengers mannitol, DMSO, or BHT. No evidence for enzyme fragmentation or oligomerization was detected by SDS-PAGE. The chloroplast ATP synthase is resistant to attack by the reactive oxygen species commonly found at the chloroplast level. DTT in the medium completely prevented the inhibition, and its addition after the inhibition partially recovered the activity of the enzyme. CF(0)F(1) thiol residues were lost upon oxidation. The rate of thiol modification was faster than the rate of enzyme inactivation, suggesting that the thiol residues accounting for the inhibition may be hindered. Enzyme previously oxidized by iodobenzoate was not further inhibited by the oxidative system. The production of ascorbyl radical was identified by EPR and is possibly related to CF(0)F(1) inactivation. It is thus suggested that the ascorbyl radical, which accumulates under plant stress, might regulate CF(0)F(1).  相似文献   

9.
F(0).F(1)-ATP synthase in tightly coupled inside-out vesicles derived from Paracoccus denitrificans catalyzes rapid respiration-supported ATP synthesis, whereas their ATPase activity is very low. In the present study, the conditions required to reveal the Deltamu(H+)-generating ATP hydrolase activity of the bacterial enzyme have been elucidated. Energization of the membranes by respiration results in strong activation of the venturicidin-sensitive ATP hydrolysis, which is coupled with generation of Deltam?(H+). Partial uncoupling stimulates the proton-translocating ATP hydrolysis, whereas complete uncoupling results in inhibition of the ATPase activity. The presence of inorganic phosphate is indispensable for the steady-state turnover of the Deltam?(H+)-activated ATPase. The collapse of Deltam?(H+) brings about rapid deactivation of the enzyme, which has been subjected to pre-energization. The rate and extent of the deactivation depend on protein concentration, i.e. the more vesicles are present in the assay mixture, the higher the rate and extent of the deactivation is seen. Sulfite and the ADP-trapping system protect ATPase against the Deltam?(H+) collapse-induced deactivation, whereas phosphate delays the rate of deactivation. A low concentration of ADP (<1 microm) increases the rate of deactivation. Taken together, the results suggest that latent proton-translocating ATPase in P. denitrificans is kinetically equivalent to the previously characterized ADP(Mg2+)-inhibited, azide-trapped bovine heart mitochondrial F(0).F(1)-ATPase (Galkin, M. A., and Vinogradov, A. D. (1999) FEBS Lett. 448, 123-126). A Deltam?(H+)-sensitive mechanism operates in P. denitrificans that prevents physiologically wasteful consumption of ATP by F(0).F(1)-ATPase (synthase) complex when the latter is unable to maintain certain value of Deltam?(H+).  相似文献   

10.
A pregnant-induced clone was identified by differential screening from a cDNA library of mouse mammary gland. The clone was identified as a full-length cDNA encoding the F1F0-ATP synthase g subunit. Comparison of the deduced amino acid sequences of mouse ATP synthase g subunit with those of bovine species showed 86% identity. The high levels of ATP synthase g subunit mRNA were detected in heart and uterine tissues.  相似文献   

11.
The binding of ATP radiolabeled in the adenine ring or in the gamma- or alpha-phosphate to F1-ATPase in complex with the endogenous inhibitor protein was measured in bovine heart submitochondrial particles by filtration in Sephadex centrifuge columns or by Millipore filtration techniques. These particles had 0.44 +/- 0.05 nmol of F1 mg-1 as determined by the method of Ferguson et al. [(1976) Biochem. J. 153, 347]. By incubation of the particles with 50 microM ATP, and low magnesium concentrations (less than 0.1 microM MgATP), it was possible to observe that 3.5 mol of [gamma-32P]ATP was tightly bound per mole of F1 before the completion of one catalytic cycle. With [gamma-32P]ITP, only one tight binding site was detected. Half-maximal binding of adenine nucleotides took place with about 10 microM. All the bound radioactive nucleotides were released from the enzyme after a chase with cold ATP or ADP; 1.5 sites exchanged with a rate constant of 2.8 s-1 and 2 with a rate constant of 0.45 s-1. Only one of the tightly bound adenine nucleotides was released by 1 mM ITP; the rate constant was 3.2 s-1. It was also observed that two of the bound [gamma-32P]ATP were slowly hydrolyzed after removal of medium ATP; when the same experiment was repeated with [alpha-32P]ATP, all the label remained bound to F1, suggesting that ADP remained bound after completion of ATP hydrolysis. Particles in which the natural ATPase inhibitor protein had been released bound tightly only one adenine nucleotide per enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A method has been developed to allow the level of F(0)F(1)ATP synthase capacity and the quantity of IF(1) bound to this enzyme be measured in single biopsy samples of goat heart. ATP synthase capacity was determined from the maximal mitochondrial ATP hydrolysis rate and IF(1) content was determined by detergent extraction followed by blue native gel electrophoresis, two-dimensional SDS-PAGE and immunoblotting with anti-IF(1) antibodies. Anaesthetized open-chest goats were subjected to ischemic preconditioning and/or sudden increases of coronary blood flow (CBF) (reactive hyperemia). When hyperemia was induced before ischemic preconditioning, a steep increase in synthase capacity, followed by a deep decrease, was observed. In contrast, hyperemia did not affect synthase capacity when applied after ischemic preconditioning. Similar effects could be produced in vitro by treatment of heart biopsy samples with anoxia (down-regulation of the ATP synthase) or high-salt or high-pH buffers (up-regulation). We show that both in vitro and in vivo the same close inverse correlation exists between enzyme activity and IF(1) content, demonstrating that under all conditions tested the only significant modulator of the enzyme activity was IF(1). In addition, both in vivo and in vitro, 1.3-1.4 mol of IF(1) was predicted to fully inactivate 1 mol of synthase, thus excluding the existence of significant numbers of non-inhibitory binding sites for IF(1) in the F(0) sector.  相似文献   

13.
Thermodynamic properties of 12 different F1-ATPase enzymes were analyzed in order to gain insights into the catalytic mechanism and the nature of energy coupling to delta mu H+. The enzymes were normal soluble Escherichia coli F1, a group of nine beta-subunit mutant soluble E. coli F1 enzymes (G142S, K155Q, K155E, E181Q, E192Q, M209I, D242N, D242V, R246C), and both soluble and membrane-bound bovine heart mitochondrial F1. Unisite activity was studied by use of Gibbs free energy diagrams, difference energy diagrams, and derivation of linear free energy relationships. This allowed construction of binding energy diagrams for both the unisite ATP hydrolysis and ATP synthesis reaction pathways, which were in agreement. The binding energy diagrams showed that the step of Pi binding is a major energy-requiring step in ATP synthesis, as is the step of ATP release. It is suggested that there are two major catalytic enzyme conformations, and ATP- and an ADP-binding conformation. The effects of the mutations on the rate-limiting steps of multisite as compared to unisite activity were correlated, suggesting a direct link between the rate-limiting steps of the two types of activity. Multisite activity was analyzed by Arrhenius plots and by study of relative promotion from unisite to multisite rate. Changes in binding energy due to mutation were seen to have direct effects on multisite catalysis. From all the data, a model is derived to describe the mechanism of ATP synthesis. ATP hydrolysis, and energy coupling to delta mu H+ in F1F0-ATPases.  相似文献   

14.
F1-ATPase isolated from bovine heart mitochondria catalyzes the synthesis of enzyme-bound ATP from externally added ADP and Pi in the presence of dimethylsulfoxide (DMSO) (Sakamoto, J. & Tonomura, Y. (1983) J. Biochem. 93, 1601-1614). When the concentration of DMSO in the reaction medium was decreased from 40% to 10% (w/v), the maximal amount of ATP formed decreased from 0.50 to 0.14 mol/mol F1 and the Pi concentration required for the half-maximal amount of ATP formed increased from 0.7 to 11 mM. On the other hand, the ADP concentration required for the half-maximal value and the rate of ATP formation were unaffected by the decrease in the DMSO concentration. These results suggest that DMSO increases the affinity of F1 and Pi and shifts the equilibrium from the enzyme-ADP-Pi complex to the enzyme-ATP complex during the ATP synthesis.  相似文献   

15.
The half-ABC transporter Mdl1 is localized in the inner membrane of mitochondria and mediates the export of peptides generated upon proteolysis of mitochondrial proteins. The physiological role of the peptides released from mitochondria is currently not understood. Here, we have analyzed the oligomeric state of Mdl1 in the inner membrane and demonstrate nucleotide-dependent binding to the F(1)F(0)-ATP synthase. Mdl1 forms homo-oligomeric, presumably dimeric complexes in the presence of ATP, but was found in association with the F(1)F(0)-ATP synthase at low ATP levels. Mdl1 binds membrane-embedded parts of the ATP synthase complex after the assembly of the F(1) and F(0) moieties. Although independent of Mdl1 activity, complex formation is impaired upon inhibition of the F(1)F(0)-ATP synthase with oligomycin or N,N'-dicyclohexylcarbodiimide. These results are consistent with an activation of Mdl1 upon dissociation from the ATP synthase and suggest a link of peptide export from mitochondria to the activity of the F(1)F(0)-ATP synthase and the cellular energy metabolism.  相似文献   

16.
Mitochondrial F(1)F(0)-ATPase normally synthesizes ATP in the heart, but under ischemic conditions this enzyme paradoxically causes ATP hydrolysis. Nonselective inhibitors of this enzyme (aurovertin, oligomycin) inhibit ATP synthesis in normal tissue but also inhibit ATP hydrolysis in ischemic myocardium. We characterized the profile of aurovertin and oligomycin in ischemic and nonischemic rat myocardium and compared this with the profile of BMS-199264, which only inhibits F(1)F(0)-ATP hydrolase activity. In isolated rat hearts, aurovertin (1-10 microM) and oligomycin (10 microM), at concentrations inhibiting ATPase activity, reduced ATP concentration and contractile function in the nonischemic heart but significantly reduced the rate of ATP depletion during ischemia. They also inhibited recovery of reperfusion ATP and contractile function, consistent with nonselective F(1)F(0)-ATPase inhibitory activity, which suggests that upon reperfusion, the hydrolase activity switches back to ATP synthesis. BMS-199264 inhibits F(1)F(0) hydrolase activity in submitochondrial particles with no effect on ATP synthase activity. BMS-199264 (1-10 microM) conserved ATP in rat hearts during ischemia while having no effect on preischemic contractile function or ATP concentration. Reperfusion ATP levels were replenished faster and necrosis was reduced by BMS-199264. ATP hydrolase activity ex vivo was selectively inhibited by BMS-199264. Therefore, excessive ATP hydrolysis by F(1)F(0)-ATPase contributes to the decline in cardiac energy reserve during ischemia and selective inhibition of ATP hydrolase activity can protect ischemic myocardium.  相似文献   

17.
Bovine heart submitochondrial particles in suspension were heated at a designated temperature for 3 min, then cooled for biochemical assays at 30 degrees C. By enzyme activity measurements and polarographic assay of oxygen consumption, it is shown that the thermal denaturation of the respiratory chain takes place in at least four stages and each stage is irreversible. The first stage occurs at 51.0 +/- 1.0 degrees C, with the inactivation of NADH-linked respiration, ATP-driven reverse electron transport, F0F1 catalyzed ATP/Pi exchange, NADH and succinate-driven ATP synthesis. The second stage occurs at 56.0 +/- 1.0 degrees C, with the inactivation of succinate-linked proton pumping and respiration. The third stage occurs at 59.0 +/- 1.0 degrees C, with the inactivation of electron transfer from cytochrome c to cytochrome oxidase and ATP-dependent proton pumping. The ATP hydrolysis activity of F0F1 persists to 61.0 +/- 1.0 degrees C. An additional transition, detectable by differential scanning calorimetry, occurring around 70.0 +/- 2.0 degrees C, is probably associated with thermal denaturation of cytochrome c and other stable membrane proteins. In the presence of either mitochondrial matrix fluid or 2 mM mercaptoethanol, all five stages give rise to endothermic effects, with the absorption of approx. 25 J/g protein. Under aerobic conditions, however, the first four transitions become strongly exothermic, and release a total of approx. 105 J/g protein. Solubilized and reconstituted F0F1 vesicles also exhibit different inactivation temperatures for the ATP/Pi exchange, proton pumping and ATP hydrolysis activities. The first two activities are abolished at 49.0 +/- 1.0 degrees C, but the latter at 58.0 +/- 2.0 degrees C. Differential scanning calorimetry also detects biphasic transitions of F0F1, with similar temperatures of denaturation (49.0 and 54.0 degrees C). From these and other results presented in this communication, the following is concluded. (1) A selective inactivation, by the temperature treatment, of various functions of the electron-transport chain and of the F0F1 complex can be done. (2) The ATP synthesis activity of the F0F1 complex involves either a catalytic or a regulation subunit(s) which is not essential for ATP hydrolysis and the proton translocation. This subunit is 10 degrees C less stable than the hydrolytic site. Micromolar ADP stabilizes it from thermal denaturation by 4-5 degrees C, although ADP up to millimolar concentration does not protect the hydrolytic site and the proton-translocation site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
It was shown previously that the ATP synthase complex of bovine heart mitochondria contains an essential set of thiols or dithiols in its membrane sector (F0), whose modification by various reagents results in uncoupling [Yagi, T., and Hatefi, Y. (1984) Biochemistry 23, 2449-2455]. The sensitivity to modifiers was increased by membrane energization, and the uncoupling was reversed by membrane-permeable thiol compounds when modifiers other than alkylating agents were used to uncouple. The present paper demonstrates that there exists in the F0 of bovine ATP synthase another set of essential thiols, whose modification results in reversible inhibition of ATPase activity. These thiols are most susceptible to modification by mercurials (p-chloromercuribenzoate greater than p-chloromercuribenzene sulfonate) and do not appear to be modified by N-ethylmaleimide. The reversible modification of these thiols by mercurials protects the ATP synthase against irreversible inhibition in F0 by N,N-dicyclohexylcarbodiimide. The possible location of these two sets of thiols in the F0 of bovine ATP synthase is discussed.  相似文献   

19.
The stoichiometry of subunit 8 in yeast mitochondrial F(1)F(0)-ATP synthase (mtATPase) has been evaluated using an immunoprecipitation approach. Single HA or FLAG epitopes were introduced at the N-terminus of subunit 8. Expression of each tagged subunit 8 variant in yeast cells lacking endogenous subunit 8 restored a respiratory phenotype and had little measurable effect on ATP hydrolase activity of the isolated enzyme. Moreover, the two epitope-tagged subunit 8 variants could be stably co-expressed in the same host cells and both of HA-Y8 and FLAG-Y8 could be detected in ATP synthase complexes isolated by native gel electrophoresis. Mitochondria isolated from each yeast strain were solubilized to release ATP synthase complexes in either the monomeric or dimeric forms. In each case, monoclonal antibodies directed against either the FLAG or HA epitope could immunoprecipitate intact ATP synthase complexes. When both HA-Y8 and FLAG-Y8 were co-expressed in cells, monomeric ATP synthases contained only a single subunit 8 variant after immunoprecipitation, corresponding to the particular antibody used (HA or FLAG). By contrast, both subunit 8 variants were recovered in samples of immunoprecipitated dimeric ATP synthase complexes, irrespective of the antibody used. We conclude that each monomeric yeast mitochondrial ATP synthase complex contains a single copy of subunit 8.  相似文献   

20.
The first part of this paper is a brief review of works concerned with the mechanisms of functioning of F0F1-ATP synthases. F0F1-ATP syntheses operate as rotating molecular machines that provide the synthesis of ATP from ADP and inorganic phosphate (Pi) in mitochondria, chloroplasts, and bacteria at the expense of the energy of electrochemical gradient of hydrogen ions generated across energy-transducing mitochondrial, chloroplast or, bacterial membranes. A distinguishing feature of these enzymes is that they operate as rotary molecular motors. In the second part of the work, we calculated the contribution of electrostatic interactions between charged groups of a substrate (MgATP), reaction products (MgADP and Pi), and charged amino acid residues of the F1-ATPase molecule to energy changes associated with the binding of ATP and its chemical transformations in the catalytic centers located at the interface of the alpha- and beta-subunits of the enzyme (oligomer complex alpha 3 beta 3 gamma of bovine mitochondrial ATPase). The catalytic cycle of ATP hydrolysis considered in the work includes conformational changes of alpha- and beta-subunits caused by unidirectional rotations of the central gamma-subunit. The results of our calculations are consistent with the idea that the energetically favorable process of ATP binding to the "open" catalytic center of F1-ATPase initiates the rotation of the gamma-subunit followed by ATP hydrolysis in another ("closed") catalytic center of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号