首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The syndrome of benign familial neonatal convulsions (BFNC) is a rare, autosomal dominant form of epilepsy. It is characterized by spontanous seizures beginning within the first 6 months of life. In the majority of families linkage is to chromosome 20q markers. Based on the linkage results in one large BFNC kindred, genetic heterogeneity and existence of a second locus on chromosome 8 have been suggested. Here we report on a second BFNC family in which linkage to the EBN1 locus on chromosome 20q was excluded, confirming the genetic heterogeneity of this disorder. All affected family members experienced onset of seizures before the age of 2 months. Three BFNC subjects showed subsequent epileptic seizures after 12 months of age, showing that the risk of subsequent epilepsy is not restricted to the chromosome 20q linked BFNC families. A lod score of 0.99 was obtained with the marker D8S274, suggesting linkage to chromosome 8.  相似文献   

2.
In 1997, a locus for benign familial infantile convulsions (BFIC) was mapped to chromosome 19q. Further data suggested that this locus is not involved in all families with BFIC. In the present report, we studied eight Italian families and mapped a novel BFIC locus within a 0.7-cM interval of chromosome 2q24, between markers D2S399 and D2S2330. A maximum multipoint HLOD score of 6.29 was obtained under the hypothesis of genetic heterogeneity. Furthermore, the clustering of chromosome 2q24-linked families in southern Italy may indicate a recent founder effect. In our series, 40% of the families are linked to neither chromosome 19q or 2q loci, suggesting that at least three loci are involved in BFIC. This finding is consistent with other autosomal dominant idiopathic epilepsies in which different genes were found to be implicated.  相似文献   

3.
Progressive familial intrahepatic cholestasis (PFIC) is the second most common form of familial intrahepatic cholestasis. The genes for PFIC and for a milder form of the disease, benign recurrent intrahepatic cholestasis (BRIC), were recently mapped to a 19-cM region on chromosome 18q21–q22. The results suggest that PFIC and BRIC are allelic diseases. We have studied 11 Swedish patients from eight families with clinical and biochemical features consistent with PFIC. The families were genotyped for markers D18S69, D18S64, D18S55 and D18S68, spanning the PFIC candidate region. Unexpectedly, the segregation of haplotypes excluded the entire region in three families, and no indications for shared haplotypes were found in the patients of the six remaining families. A four-point linkage analysis of all families excluded linkage from D18S69 to D18S55 (Zmax < –5). Thus, our data strongly suggest the presence of a second, yet unknown, locus for PFIC. The results indicate that great care should be taken when using 18q markers for prenatal diagnosis and genetic counseling for the disease. Received: 12 February 1997 / Accepted: 11 April 1997  相似文献   

4.
In several cases of familial glucocorticoid deficiency (FGD), referred to as FGD type 1, mutations have been described in the coding exon of the adrenocorticotropin receptor (melanonocortin receptor type 2, MC2R) gene. However, for the majority of cases (FGD type 2), no mutations were found in this gene. In the more informative families, the involvement of the MC2R locus could be excluded by linkage or sequencing analysis and, as there was no obvious candidate gene, a genome linkage scan was performed. Fourteen families were studied in this report. Evidence of linkage was found with markers on chromosome 8q in three out of the 14 families (maximum heterogeneity LOD score of 2.81 at D8S1763). These three families were consanguineous and the gene could be located by homozygosity mapping between markers D8S285 and D8S1718 in a 8.8-cM region. No potential candidate genes were apparent in the region. Linkage to this region could be excluded in some families from our sample giving highly negative LOD scores with the markers of the region. This result suggests that at least one other gene, located on a different region, must be responsible for FGD in these families and provides new evidence of genetic heterogeneity of this disorder.  相似文献   

5.
Mapping of a Gene for Long QT Syndrome to Chromosome 4q25-27   总被引:21,自引:0,他引:21  
Long QT syndrome (LQTS) is a heterogeneous inherited disorder causing syncope and sudden death from ventricular arrhythmias. A first locus for this disorder was mapped to chromosome 11p15.5. However, locus heterogeneity has been demonstrated in several families, and two other loci have recently been located on chromosomes 7q35-36 and 3p21-24. We used linkage analysis to map the locus in a 65-member family in which LQTS was associated with more marked sinus bradycardia than usual, leading to sinus node dysfunction. Linkage to chromosome 11p15.5, 7q35-36, or 3p21-24 was excluded. Positive linkage was obtained for markers located on chromosome 4q25-27. A maximal LOD score of 7.05 was found for marker D4S402. The identification of a fourth locus for LQTS confirms its genetic heterogeneity. Locus 4q25-27 is associated with a peculiar phenotype within the LQTS entity.  相似文献   

6.
Autosomal recessive Charcot–Marie–Tooth disease type 4B (CMT4B) is a demyelinating hereditary motor and sensory neuropathy characterized by abnormal folding of myelin sheaths. A locus for CMT4B has previously been mapped to chromosome 11q23 in a southern Italian pedigree. We initially excluded linkage in two Tunisian families with CMT4B to chromosome 11q23, demonstrating genetic heterogeneity within the CMT4B phenotype. Subsequently, using homozygosity mapping and linkage analysis in the largest Tunisian pedigree, we mapped a new locus to chromosome 11p15. A maximum two-point lod score of 6.05 was obtained with the marker D11S1329. Recombination events refined the CMT4B locus region to a 5.6-cM interval between markers D11S1331 and D11S4194. The second Tunisian CMT4B family was excluded from linkage to the new locus, demonstrating the existence of at least a third locus for the CMT4B phenotype.  相似文献   

7.
The syndrome of benign familial neonatal convulsions (BFNC) is a rare autosomal dominant disorder characterized by unprovoked seizures in the first few weeks of life. One locus for BFNC has been mapped to chromosome 20 in several pedigrees, but we have excluded linkage to chromosome 20 in one large kindred. In order to identify this novel BFNC locus, dinucleotide repeat markers distributed throughout the genome were used to screen this family. Maximum pairwise LOD scores of 4.43 were obtained with markers D8S284 and D8S256 on chromosome 8q. Multipoint analysis placed the BFNC locus in the interval spanned by D8S198-D8S274. This study establishes the presence of a new BFNC locus and confirms genetic heterogeneity of this disorder.  相似文献   

8.
Restless legs syndrome (RLS) is a common neurological condition with three loci (12q, 14q, and 9p) described so far, although none of these genes has yet been identified. We report a genomewide linkage scan of patients with RLS (n=37) assessed in a population isolate (n=530) of South Tyrol (Italy). Using both nonparametric and parametric analyses, we initially obtained suggestive evidence of a novel locus on chromosome 2q, with nominal evidence of linkage on chromosomes 5p and 17p. Follow-up genotyping yielded significant evidence of linkage (nonparametric LOD score 5.5, P相似文献   

9.
Dilated cardiomyopathy (DCM) is a leading cause of heart failure and the most frequent indication for heart transplantation in young patients. Probably >25% of DCM cases are of familial etiology. We report here genetic localization in a three-generation German family with 12 affected individuals with autosomal dominant familial DCM characterized by ventricular dilatation, impaired systolic function, and conduction disease. After exclusion of known DCM loci, we performed a whole-genome screen and detected linkage of DCM to chromosome 2q14-q22. Investigation of only affected individuals defines a 24-cM interval between markers D2S2224 and D2S2324; when unaffected individuals are also included, the critical region decreases to 11 cM between markers D2S2224 and D2S112, with a peak LOD score of 3.73 at recombination fraction 0 at D2S2339. The identification of an additional locus for familial autosomal dominant DCM underlines the genetic heterogeneity and may assist in the elucidation of the causes of this disease.  相似文献   

10.
Wolfram syndrome, which is sometimes referred to as "DIDMOAD" (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness), is an autosomal recessive neurodegenerative disorder for which only insulin-dependent diabetes mellitus and optic atrophy are necessary to make the diagnosis. Researchers have mapped Wolfram syndrome to chromosome 4p16.1, and, recently, a gene encoding a putative transmembrane protein has been cloned and mutations have been identified in patients. To pursue the possibility of locus heterogeneity, 16 patients from four different families were recruited. These patients, who have the Wolfram syndrome phenotype, also have additional features that have not previously been reported. There is an absence of diabetes insipidus in all affected family members. In addition, several patients have profound upper gastrointestinal ulceration and bleeding. With the use of three microsatellite markers (D4S432, D4S3023, and D4S2366) reported to be linked to the chromosome 4p16.1 locus, we significantly excluded linkage in three of the four families. The two affected individuals in one family showed homozygosity for all three markers from the region of linkage on chromosome 4p16.1. For the other three families, genetic heterogeneity for Wolfram syndrome was verified by demonstration of linkage to chromosome 4q22-24. In conclusion, we report the unique clinical findings and linkage-analysis results of 16 patients with Wolfram syndrome and provide further evidence for the genetic heterogeneity of this disorder. We also provide data on a new locus that plays a role in the etiology of insulin-dependent diabetes mellitus.  相似文献   

11.
Myoclonus-dystonia (M-D) is an autosomal dominant disorder characterized by myoclonic and dystonic muscle contractions that are often responsive to alcohol. The dopamine D2 receptor gene (DRD2) on chromosome 11q has been implicated in one family with this syndrome, and linkage to a 28-cM region on 7q has been reported in another. We performed genetic studies, using eight additional families with M-D, to assess these two loci. No evidence for linkage was found for 11q markers. However, all eight of these families showed linkage to chromosome 7 markers, with a combined multipoint LOD score of 11.71. Recombination events in the families define the disease gene within a 14-cM interval flanked by D7S2212 and D7S821. These data provide evidence for a major locus for M-D on chromosome 7q21.  相似文献   

12.
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset disease in which motor neurons in the brain and spinal cord degenerate by largely unknown mechanisms. ALS is familial (FALS) in 10% of cases, and the inheritance is usually dominant, with variable penetrance. Mutations in copper/zinc super oxide dismutase (SOD1) are found in 20% of familial and 3% of sporadic ALS cases. Five families with ALS and frontotemporal dementia (ALS-FTD) are linked to 9q21, whereas one family with pure ALS is linked to 18q21. We identified two large European families with ALS without SOD1 mutations or linkage to known FALS loci and conducted a genomewide linkage screen using 400 microsatellite markers. In both families, two-point LOD scores >1 and a haplotype segregating with disease were demonstrated only across regions of chromosome 16. Subsequent fine mapping in family 1 gave a maximum two-point LOD score of 3.62 at D16S3137 and a three-point LOD score of 3.85 for markers D16S415 and D16S3137. Haplotype analysis revealed no recombination > approximately 30 cM, (flanking markers at D16S3075 and D16S3112). The maximum two-point LOD score for family 2 was 1.84 at D16S415, and the three-point LOD score was 2.10 for markers D16S419 and D16S415. Definite recombination occurred in several individuals, which narrowed the shared haplotype in affected individuals to a 10.1-cM region (flanking markers: D16S3396 and D16S3112). The region shared by both families on chromosome 16q12 corresponds to approximately 4.5 Mb on the Marshfield map. Bioinformatic analysis of the region has identified 18 known genes and 70 predicted genes in this region, and sequencing of candidate genes has now begun.  相似文献   

13.
Benign adult familial myoclonic epilepsy is an autosomal dominant idiopathic epileptic syndrome characterized by adult-onset tremulous finger movement, myoclonus, epileptic seizures, and nonprogressive course. It was recently recognized in Japanese families. In this study, we report that the gene locus is assigned to the distal long arm of chromosome 8, by linkage analysis in a large Japanese kindred with a maximum two-point LOD score of 4.31 for D8S555 at recombination fraction of 0 (maximum multipoint LOD score of 5.42 for the interval between D8S555 and D8S1779). Analyses of recombinations place the locus within an 8-cM interval, between D8S1784 and D8S1694, in which three markers, D8S1830, D8S555, and D8S1779, show no recombination with the phenotypes. Although three other epilepsy-related loci on chromosome 8q have been recognized-one on chromosome 8q13-21 (familial febrile convulsion) and two others on chromosome 8q24 (KCNQ3 and childhood absence epilepsy)-the locus assigned here is distinct from these three epilepsy-related loci. This study establishes the presence of a new epilepsy-related locus on 8q23.3-q24.11.  相似文献   

14.
Chordoma is a rare tumor originating from notochordal remnants that is usually diagnosed during midlife. We performed a genomewide analysis for linkage in a family with 10 individuals affected by chordoma. The maximum two-point LOD score based on only the affected individuals was 2.21, at recombination fraction 0, at marker D7S2195 on chromosome 7q. Combined analysis of additional members of this family (11 affected individuals) and of two unrelated families (one with 2 affected individuals and the other with 3 affected individuals), with 20 markers on 7q, showed a maximum two-point LOD score of 4.05 at marker D7S500. Multipoint analysis based on only the affected individuals gave a maximum LOD score of 4.78, with an approximate 2-LOD support interval from marker D7S512 to marker D7S684. Haplotype analysis of the three families showed a minimal disease-gene region from D7S512 to D7S684, a distance of 11.1 cM and approximately 7.1 Mb. No loss of heterozygosity was found at markers D7S1804, D7S1824, and D7S2195 in four tumor samples from affected family members. These results map a locus for familial chordoma to 7q33. Further analysis of this region, to identify this gene, is ongoing.  相似文献   

15.
Autosomal dominant familial exudative vitreoretinopathy (adFEVR) is a hereditary disorder characterized by the incomplete vascularization of the peripheral retina. The primary biochemical defect in adFEVR is unknown. The adFEVR locus has tentatively been assigned to 11q by linkage studies. We report the results of an extended multipoint linkage analysis of two families with adFEVR by using five markers (INT2, D11S533, D11S527, D11S35, and CD3D) from 11q13-q23. Pairwise linkage data obtained in the two families were rather similar and hence have not provided evidence for genetic heterogeneity. The highest complied two-point lod score (3.67, at a recombination fraction of .07) was obtained for the disease locus versus D11S533. Multipoint analyses showed that the adFEVR locus maps most likely, with a maximum location score of over 20, between D11S533/D11S527 and D11S35, at recombination rates of .147 and .104, respectively. Close linkage without recombination (maximum lod score 11.26) has been found between D11S533 and D11S527.  相似文献   

16.
Congenital hypothyroidism affects 1/3000-4000 newborns and it has been estimated that 10-20% are familial cases with an autosomal recessive mode of inheritance. Previous studies of mostly individual cases have led to the identification of mutations in a number of genes, indicating that it is a genetically heterogeneous disease, but no major gene has been identified. In the present investigation, a population-based sample of 23 families with autosomal recessive congenital hypothyroidism, but no signs of goitre, were subject to linkage analysis. When markers located close to the thyroglobulin gene on chromosome 8q24 were used in a two-point analysis allowing for heterogeneity, a Z(max) of 4.10 was obtained with the microsatellite marker D8S557, indicating heterogeneity with 43% of the families being linked. A multipoint analysis using the markers D8S557 and D8S1835 gave a Z(max) of 3.51, assuming homogeneity. There was significant evidence of heterogeneity with 44.5% of the families being linked. The results indicate that a gene in 8q24 is a common cause of familial congenital hypothyroidism. Since thyroglobulin is essential for thyroid physiology, the gene encoding this protein is the obvious candidate for mutation analysis in the linked families.  相似文献   

17.
Familial combined hyperlipidemia (FCHL) is a common familial lipid disorder characterized by a variable pattern of elevated levels of plasma cholesterol and/or triglycerides. It is present in 10%-20% of patients with premature coronary heart disease. The genetic etiology of the disease, including the number of genes involved and the magnitude of their effects, is unknown. Using a subset of 35 Dutch families ascertained for FCHL, we screened the genome, with a panel of 399 genetic markers, for chromosomal regions linked to genes contributing to FCHL. The results were analyzed by use of parametric-linkage methods in a two-stage study design. Four loci, on chromosomes 2p, 11p, 16q, and 19q, exhibited suggestive evidence for linkage with FCHL (LOD scores of 1.3-2.6). Markers within each of these regions were then examined in the original sample and in additional Dutch families with FCHL. The locus on chromosome 2 failed to show evidence for linkage, and the loci on chromosome 16q and 19q yielded only equivocal or suggestive evidence for linkage. However, one locus, near marker D11S1324 on the short arm of human chromosome 11, continued to show evidence for linkage with FCHL, in the second stage of this design. This region does not contain any strong candidate genes. These results provide evidence for a candidate chromosomal region for FCHL and support the concept that FCHL is complex and heterogeneous.  相似文献   

18.
Linkage studies with 17q and 18q markers in a breast/ovarian cancer family.   总被引:2,自引:1,他引:1  
Genes on chromosomes 17q and 18q have been shown to code for putative tumor suppressors. By a combination of allele-loss studies on sporadic ovarian carcinomas and linkage analysis on a breast/ovarian cancer family, we have investigated the involvement of such genes in these diseases. Allele loss occurred in sporadic tumors from both chromosome 17p, in 18/26 (69%) cases, and chromosome 17q, in 15/22 (68%) cases. In the three familial tumors studied, allele loss also occurred on chromosome 17 (in 2/3 cases for 17p markers and in 2/2 cases for a 17q allele). Allele loss on chromosome 18q, at the DCC (deleted in colorectal carcinomas) locus, was not as common (6/16 cases [38%]) in sporadic ovarian tumors but had occurred in all three familial tumors. The results of linkage analysis on the breast/ovarian cancer family suggested linkage between the disease locus and 17q markers, with a maximum lod score of 1.507 obtained with Mfd188 (D17S579) polymorphism at 5% recombination. The maximum lod score for DCC was 0.323 at 0.1% recombination. In this family our results are consistent with a predisposing gene for breast/ovarian cancer being located at chromosome 17q21.  相似文献   

19.
Chromosome 21 markers were tested for linkage to familial Alzheimer disease (FAD) in 48 kindreds. These families had multiple cases of Alzheimer disease (AD) in 2 or more generations with family age-at-onset means (M) ranging from 41 to 83 years. Included in this group are seven Volga German families which are thought to be genetically homogeneous with respect to FAD. Autopsy documentation of AD was available for 32 families. Linkage to the 21 q11-q21 region was tested using D21S16, D21S13, D21S110, D21S1/S11, and the APP gene as genetic markers. When linkage results for all the families were summed, the LOD scores for these markers were consistently negative and the entire region was formally excluded. Linkage results were also summed for the following family groups; late-onset (M greater than 60), early-onset (M less than or equal to 60), Volga Germans (M = 56), and early-onset non-Volga Germans (M less than or equal to 60). For the first three groups, LOD scores were negative for this region. For the early-onset non-Volga German group (six families), small positive LOD scores of Zmax = 0.78 (recombination fraction theta = .15), Zmax = 0.27 (theta = .15), and Zmax = 0.64 (theta = .0), were observed for D21S13, D21S16, and D21S110, respectively. The remainder of the long arm of chromosome 21 was tested for linkage to FAD using seven markers spanning the q22 region. Results for these markers were also predominantly negative. Thus it is highly unlikely that a chromosome 21 gene is responsible for late-onset FAD and at least some forms of early-onset FAD represented by the Volga German kindreds.  相似文献   

20.
The long QT syndrome is an autosomally dominantly inherited cardiac disorder characterized by abnormalities of myocardial repolarization, exercise- or stress-related syncopal attacks and risk of sudden death due to cardiac arrhythmias. Genetic linkage studies have defined three LQT loci on chromosomes 11p15.5, 3q21–24 and 7p35–36. We performed linkage analyses in three Finnish LQT families using five amplifiable markers assigned to chromosome 11p15. By multipoint linkage analyses we obtained a maximal lod score of 5.503, suggesting that the LQT1 locus maps between D11S922 and D11S1338 on chromosome 11. Our data provide a step towards closer definition of the exact borderlines of the LQT1 locus in chromosome 11 and demonstrate markers with high utility in identification of gene carriers in the affected families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号