首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetic properties of phosphoenolpyruvate (PEP) carboxylasehave been studied among several Flaveria species: the C3 speciesF. cronquistii, the C3–C4 species F. pubescens and F.linearis, and the C4 species F. trinervia. At either pH 7 or8, the maximum activities (in µmol.mg Chl–1.h–1)for F. pubescens and linearis (187–513) were intermediateto those of the C3 species (12–19) and the C4 species(2,182–2,627). The response curves of velocity versusPEP concentration were hyperbolic for the C3 and C3–C4species at either pH 7 or 8 while they were sigmoidal for theC4 species at pH 7 and hyperbolic at pH 8. The Km values forPEP determined from reciprocal plots were lowest in the C3 species,and of intermediate value in the C3–C4 species comparedto the K' values of the C4 species determined from Hill plotsat either pH 7 or 8. Glucose-6-phosphate (G6P) decreased theKm values for PEP at both pH 7 and 8 in the C3 and C3–C4species. In the C4 species, G6P decreased the K' values at pH8 but increased the K' values at pH 7. In all cases, G6P hadits effect by influencing the activity at limiting PEP concentrationswith little or no effect on the maximum activity. At pH 8 andlimiting concentrations of PEP the degree of stimulation ofthe activity by G6P was greatest in the C4 species, intermediatein F. linearis, a C3–C4 species, and lowest in the C3species. In several respects, the PEP carboxylases of the C3–C4Flaveria species have properties intermediate to those of theC3 and C4 species. (Received April 30, 1983; Accepted August 22, 1983)  相似文献   

2.
This is the first report showing that ribulose bisphosphatecarboxylase/oxygenase has the non-catalytic sites to bind ribulosebisphosphate (RuBP). A plot of the binding number against theRuBP concentration in the equilibrium binding assay gave a bumpycurve with an intermediate plateau at 0.3 to 0.5 mM RuBP. Thebinding was saturated with 1.5 mM RuBP. The concentrations offree and binding forms of RuBP and the functioning forms ofthe enzyme in chloroplasts could be predicted using the kineticdata of the binding. (Received October 5, 1993; Accepted November 22, 1993)  相似文献   

3.
The initial products of photosynthesis by the C3 species Flaveria cronquistii, the C4 species F. trinervia, and the C3-C4 intermediate species F. ramosissima were determined using a pulse-chase technique with 14CO2-12CO2. The intermediate species F. ramosissima incorporated at least 42% of the total soluble 14C fixed into malate and aspartate after 10 seconds of photosynthesis in 14CO2, as compared with 90% for the C4 species F. trinervia and 5% for the C3 species F. cronquistii. In both F. ramosissima and F. trinervia, turnover of labeled malate and aspartate occurred during a chase period in 12CO2, although the rate of turnover was slower in the intermediate species. Relative to F. cronquistii, F. ramosissima showed a reduced incorporation of radioactivity into serine and glycine during the pulse period. These results indicate that a functional C4 pathway of photosynthesis is operating in F. ramosissima which can account for its reduced level of photorespiration, and that this species is a true biochemical intermediate between C3 and C4 plants.  相似文献   

4.
The reaction of spinach RuBisCO activated with CO2 and Mg2+proceeded in two phases, an initial burst for a few minutesand the subsequent linear phase, in the presence of saturatingconcentrations of CO2, ribulose 1,5-bisphosphate (RuBP), andMg2+. The percentage of the activity in the linear phase tothat in the initial burst was 55% with RuBisCO prepared withpolyethylene glycol, and very close to the value with the enzymereleased immediately from isolated chloro-plasts. RuBisCO preparedwith ammonium sulfate had a much larger decrease of the activityin the linear phase. The Euglena enzyme had a linear courseof reaction with time for up to 20 minutes. The Km for CO2 of spinach RuBisCO activated beforehand was 20µM in the initial burst, and 28 µM in the linearphase. In the carboxylase reaction initiated with inactive enzyme,the activity was initially negligible, but in 5 minutes increasedto the level observed in the linear phase of the activated enzyme.The Km for CO2 in the linear phase of the pre-inactivated enzymewas 70 µM. The concentration of RuBP was the immediate cause of the two-phasiccourse of the carboxylase reaction of spinach RuBisCO. The curvatureof the time course was not observed below 35 µM RuBP.The enzyme required over 88 µM RuBP for the conventionaltwo-phasic course. Further increase of the concentration ofRuBP increased the extent of the curvature, but did not startthe curvature sooner after the start of the reaction. Even ifspinach RuBisCO was in the linear phase, dilution of RuBP orits consumption by the enzymatic reaction to less than 30 µMcaused the enzyme to show the resumed biphasic reaction courseafter addition of a high concentration of RuBP. 1This paper is the twenty-fourth in a series on PhotosyntheticCarbon Metabolism in Euglena gracilis. (Received September 19, 1988; Accepted November 25, 1988)  相似文献   

5.
The purpose of this research was to test the hypothesis that acclimation of the unicellular marine alga, Thalassiosira fluviatilis Hustedt, to short photoperiods results in decreased cellular concentrations of ribulose 1,5-bisphosphate carboxylase/oxygenase and decreased rates of light-saturated CO2 uptake. Cells were acclimated to photoperiods of 6:18, 12:12, and 18:6 h:h light:dark, and concentrations of the large subunit of the enzyme and responses of CO2 uptake to varying irradiance were measured. Concentrations of the large subunit, which weighed approximately 50 kilodaltons, were conserved while rates of CO2 uptake under light saturation and limitation, and cellular contents of chlorophyll a increased as photoperiod decreased. Apparently, these cells acclimate to short photoperiods by increasing rates of CO2 uptake under saturating irradiances by increasing in vivo activation of ribulose 1,5-bisphosphate carboxylase/oxygenase. Also, chlorophyll-specific concentrations and specific activities of the enzyme appear to be lower and higher, respectively, in diatomaceous algae than in higher plants.  相似文献   

6.
When the amount of activation of ribulose 1,5-bisphosphate carboxylase has been measured, two forms of the enzyme, not one, are actually determined experimentally. Only the enzyme-activator CO2-Mg2+ form can bind ribulose bisphosphate for reaction with substrate CO2 or O2. A method is presented which measures only this catalytically active form by stabilizing it with ribulose bisphosphate just before dilution and assay in Mg2+-free reaction medium.  相似文献   

7.
8.
Photosynthetic characteristics were studied in several F1 hybrids between C4 and C3-C4 species of Flaveria. Stable carbon isotope ratios, O2 inhibition of apparent photosynthesis, and phosphoenolpyruvate carboxylase activities in the hybrids were similar to the means for the parents. Values of CO2 compensation concentrations were nearer to those of the C4 parent and apparent photosynthesis was below that of both parents, being only 60 and 74% of that of the lowest (C3-C4) parent in two experiments. Reductions of CO2 compensation concentration and O2 inhibition of apparent photosynthesis as well as increases in carbon isotope ratios and phosphoenolpyruvate carboxylase activities compared to values in C3-C4 species suggest transfer of a limited degree of C4 photosynthesis to the F1 hybrids. However, the lower apparent photosynthesis of the hybrids suggests that transfer of C4 characteristics to non-C4 species is detrimental unless characteristics associated with C4 photosynthesis are fully developed. There was a highly significant negative correlation (r = −0.90) between CO2 compensation concentration and the logarithm of phosphoenolpyruvate carboxylase activity in the parents and hybrids, suggesting involvement of this enzyme in controlling the CO2 compensation concentration. Although bundle-sheath cells were more developed in leaves of hybrids than in C3-C4 parents, they appeared to contain lower quantities of organelles than those of the C4 parent. Reduced quantities of organelles in bundle-sheath cells could indicate incomplete compartmentation of partial pathways of the C4 cycle in the hybrids. This may mean that the reduction of CO2 compensation and O2 inhibition of apparent photosynthesis relative to the C3-C4 parents is less dependent on fully developed Kranz anatomy than is increased apparent photosynthesis.  相似文献   

9.
We have used the pH variation in the kinetic parameters with respect to malate of NADP-malic enzyme purified from the C4 species, Flaveria trinervia, to compare the pK values of its functional groups with those for the pigeon liver NADP-malic enzyme (MI Schimerlik, WW Cleland [1977] Biochemistry 16: 576-583) and the plant NAD-malic enzyme (KO Willeford, RT Wedding [1987] Plant Physiol 84: 1084-1087). Like the other enzymes, the C4 enzyme has a group with a pK of about 6.0 (6.6 for the C4 enzyme), as indicated from plots of the log Vmax/Km (Vmax = maximum rate of catalysis) versus pH, which must lose a proton for malate binding and subsequent catalysis. The optimum ionization for the C4 enzyme-NADP-Mg2+ complex occurs at pH 7.1 to 7.5. From pH 7.5 to 8.4, the Km increases, but Vmax remains constant. The log Vmax/Km plot in this pH range indicates a group with a pK of about 7.7. The other malic enzymes exhibit a similar pK. Above pH 8.4, deprotonation leads to a marked increase in Km and a decrease in Vmax for the C4 enzyme. As in the case of the animal enzyme, the log Vmax/Km plot for the C4 enzyme appears to approach a slope of two. The curve suggests an average pK of 8.4 for the groups involved, while the animal enzyme exhibits an average pK of 9.0. The NAD-malic enzyme does not exhibit any pK values at these high pK values. We hypothesize that the putative groups with the high pK values may be at least partially responsible for the ability of the C4 NADP-malic enzyme to maintain high activity at pH 8.0 in illuminated chloroplasts.  相似文献   

10.
The activity of ribulose 1,5-bisphosphate carboxylase (RuBPCase, E. C. 4. 1. 1. 395, fructose 1,6-bisphosphatase (FBPase, E. C. 3. 1. 3. 11) and sedoheptulose 1,7-bisphosphatase (SBPase, E. C. 3. 1. 3. 37) was assayed in the etiolated cotyledons of Brassica juncea after red light or far- red light stimulation. There seemed to be a light-sensitive phase in the course of germination as indicated by the response of leaves to light. During this phase red light stimulated the synthesis of RuBPCase and FBPase, but not SBPase. This effect of red light could be reversed by farred light. Therefore, the initiation of the synthesis of the two enzymes was mediated by phytochrome. The amount of enzyme synthesized was not concerned with the number of light quanta. Phytochrome is only involved in the initiation of the synthesis of certain enzymes, but whether the synthesis will proceed continuosely ro not depends on many other factors, e. g. the availability of substrate and energy.  相似文献   

11.
Brown RH  Byrd GT  Black CC 《Plant physiology》1992,100(2):947-950
Hybrids have been made between species of Flaveria exhibiting varying levels of C4 photosynthesis. The degree of C4 photosynthesis expressed in four interspecific hybrids (Flaveria trinervia [C4] × F. linearis [C3-C4], F. brownii [C4-like] × F. linearis, and two three-species hybrids from F. trinervia × [F. brownii × F. linearis]) was estimated by inhibiting phosphoenolpyruvate carboxylase in vivo with 3,3-dichloro-2-dihydroxyphosphinoylmethyl-2-propenoate (DCDP). The inhibitor was fed to detached leaves at a concentration of 4 mm, and apparent photosynthesis was measured at atmospheric levels of CO2 and at 20 and 210 mL L−1 of O2. Photosynthesis at 210 mL L−1 of O2 was inhibited 32% by DCDP in F. linearis, by 60% in F. brownii, and by 87% in F. trinervia. Inhibition in the hybrids ranged from 38 to 52%. The inhibition of photosynthesis by 210 mL L−1 of O2 was increased when DCDP was used, except in the C4 species, F. trinervia, in which photosynthesis was insensitive to O2. Except for F. trinervia, control plants with less O2 sensitivity (more C4-like) exhibited a progressively greater change in O2 inhibition of photosynthesis when treated with DCDP. This increased O2 inhibition probably resulted from decreased CO2 concentrations in bundle sheath cells due to inhibition of phosphoenolpyruvate carboxylase. The inhibition of photosynthesis by DCDP is concluded to underestimate the degree of C4 photosynthesis in the interspecific hybrids because increased direct assimilation of atmospheric CO2 by ribulose bisphosphate carboxylase may compensate for inhibition of phosphoenolpyruvate carboxylase.  相似文献   

12.
Leaves of Flaveria brownii exhibited slightly higher amounts of oxygen inhibition of photosynthesis than the C4 species, Flaveria trinervia, but considerably less than the C3 species, Flaveria cronquistii. The photosynthetic responses to intercellular CO2, light and leaf temperature were much more C4-like than C3-like, although 21% oxygen inhibited the photosynthetic rate, depending on conditions, up to 17% of the photosynthesis rate observed in 2% O2. The quantum yield for CO2 uptake in F. brownii was slightly higher than that for the C4 species F. trinervia in 2% O2, but not significantly different in 21% O2. The quantum yield was inhibited 10% in the presence of 21% O2 in F. brownii, yet no significant inhibition was observed in F. trinervia. An inhibition of 27% was observed for the quantum yield of F. cronquistii in the presence of 21% O2. The photosynthetic response to very low intercellular CO2 partial pressures exhibited a unique pattern in F. brownii, with a break in the linear slope observed at intercellular CO2 partial pressure values between 15 and 20 μbar when analyzed in 21% O2. No significant break was observed when analyzed in 2% O2. When taken collectively, the gas-exchange results reported here are consistent with previous biochemical studies that report incomplete intercellular compartmentation of the C3 and C4 enzymes in this species, and suggest that F. brownii is an advanced, C4-like C3-C4 intermediate.  相似文献   

13.
CO2 gas exchange, ribulose-1,5-bisphosphate, and electron transport have been measured in leaves of a yellow-green mutant of wheat (Triticum durum var Cappelli) and its wild type strain grown in the field. All these parameters, expressed on leaf area basis, were similar in both genotypes except electron transport which was more than double in the wild type. These results, treated according to a recent photosynthesis model for C3 plants, seem to indicate that the electron transport rate of mutant leaves is not sufficient to support the carboxylation derived through both the assimilation rate and the in vitro ribulose-1,5-bisphosphate carboxylase activity. It is suggested that under our experimental conditions photosynthetic electron transport is not the sole energy-dependent determinant of ribulose-1,5-bisphosphate regeneration in the mutant.  相似文献   

14.
Plants using the C(4) pathway of carbon metabolism are marked by greater photosynthetic water and nitrogen-use efficiencies (PWUE and PNUE, respectively) than C(3) species, but it is unclear to what extent this is the case in C(3) -C(4) intermediate species. In this study, we examined the PWUE and PNUE of 14 species of Flaveria Juss. (Asteraceae), including two C(3) , three C(4) and nine C(3) -C(4) species, the latter containing a gradient of C(4) -cycle activities (as determined by initial fixation of (14) C into C-4 acids). We found that PWUE, PNUE, leaf ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) content and intercellular CO(2) concentration in air (C(i) ) do not change gradually with C(4) -cycle activity. These traits were not significantly different between C(3) species and C(3) -C(4) species with less than 50% C(4) -cycle activity. C(4) -like intermediates with greater than 65% C(4) -cycle activity were not significantly different from plants with fully expressed C(4) photosynthesis. These results indicate that a gradual increase in C(4) -cycle activity has not resulted in a gradual change in PWUE, PNUE, intercellular CO(2) concentration and leaf Rubisco content towards C(4) levels in the intermediate species. Rather, these traits arose in a stepwise manner during the evolutionary transition to the C(4) -like intermediates, which are contained in two different clades within Flaveria.  相似文献   

15.
The effects of pH on catalysis and activation characteristics of spinach ribulose 1,5-bisphosphate (RuBP) carboxylase were examined at air level of CO2. Catalysis at limiting CO2 was independent of pH over the range of pH 8.2 to 8.8 However, the kinetics of activation and the apparent equilibrium between the activated and inactivated forms of the enzyme were strongly dependent upon the pH and the presence or absence of the substrate RuBP. When incubated at air level of CO2 at pH 8.2 in the absence of RuBP, the enzyme activation state was approximately 75% of that achieved with saturating CO2 at that pH. The extent of activation increased with pH reaching 100% at pH values of 8.6 or higher. Adding RuBP to the activation medium after equilibrium activation state had been established decreased the apparent equilibrium activation level at pH values below 8.6. This effect was reversed at pH values above 8.6. Activation of inactive enzyme by CO2 and Mg2+ was inhibited dramatically at pH values below 8.6 and less so at pH values above 8.6. Studies showed that binding of RuBP to the inactive form of the enzyme was pH dependent with tighter binding occurring at lower pH values. It is suggested that the tight binding of RuBP to the inactive enzyme tends to decrease the equilibrium concentration of the activated form at pH values less than 8.6. These studies indicate that stromal pH could have a strong effect on the activation state of this enzyme in vivo, and possible feedback interactions which might adjust the apparent Vmax to match the rate of RuBP regeneration are discussed.  相似文献   

16.
The biphasic reaction course, fallover, of carboxyla-tion catalysedby ribulose 1,5-bisphosphate carboxylase/ox-ygenase (RuBisCO)has been known as a characteristic of the enzyme from higherland plants. Fallover consists of hysteresis in the reactionseen during the initial several minutes and a very slow suicideinhibition by inhibitors formed from the substrate ribulose-l,5-bisphosphate(RuBP). This study examined the relationship between occurrenceof fallover and non-catalytic RuBP-binding sites, and the putativehysteresis-inducible sites (Lys-21 and Lys-30S of the largesubunit in spinach RuBisCO) amongst RuBisCOs of a wide varietyof photosynthetic organisms. Fallover could be detected by followingthe course of the carboxylase reaction at 1 mM RuBP and thenon-catalytic binding sites by alleviation of fallover at 5mM RuBP. RuBisCO from Euglena gracilis showed the same linearreaction course at both RuBP concentrations, indicating an associationbetween an absence of fallover and an absence of the non-catalyticbinding sites. This was supported by the results of an equilibriumbinding assay for this enzyme with a transition state analogue.Green macroalgae and non-green algae contained the plant-type,fallover enzyme. RuBisCOs from Conjugatae, Closterium ehrenbergii,Gona-tozygon monotaenium and Netrium digitus, showed a muchsmaller decrease in activity at 1 mM RuBP than the spinach enzymeand the reaction courses of these enzymes at 5 mM RuBP werealmost linear. RuBisCO of a primitive type Conjugatae, Mesotaeniumcaldariorum, showed the same linear course at both RuBP concentrations.Sequencing of rbcL of these organisms indicated that Lys-305was changed into arginine with Lys-21 conserved. 7 On leave from Research and Development Center, Unitika Ltd.,23 Kozakura, Uji, Kyoto, 611 Japan. 8 Present address: Department of Applied Biological Chemistry,Faculty of Agriculture, Tohoku University, Tsutsumidori-Ama-miyamachi, Sendai, 981 Japan. 9 Present address: National Institute for Basic Biology, Myodaiji,Okazaki, 444 Japan. 10 Present address: Department of Environmental Biology, TokyoPharmaceutical University, Hachioji, Tokyo, 192-03 Japan.  相似文献   

17.
Characteristics related to C4 photosynthesis were studied in reciprocal F1 hybrids and F2 plants from Flaveria brownii (C4 like) and Flaveria linearis (C3-C4). The reciprocal F1 plants differed in 13C/12C ratios of leaves and the percentage of 14C initially incorporated into C4 acids, being more like the pollen parents in these traits. They did not differ in apparent photosynthesis or in O2 inhibition of apparent photosynthesis and differed only slightly in CO2 compensation concentration at 175 [mu]mol quanta m-2 s-1 and 400 mL L-1 O2. The 13C/12C ratios of 78 F2 progeny from the two F1 plants exhibited a normal distribution centered between those of the parents, with a few values slightly higher and lower than the parents. Apparent photosynthesis at 130 [mu]L L-1 CO2 and inhibition of photosynthesis by O2 was nearly normally distributed in the F2 population, but no values for F2 plants approached those for F. brownii (15.4 [mu]mol m-2 s-1 and 7.8%, respectively). Distribution of the CO2 compensation concentration measured at 1000 [mu]mol quanta m-2 s-1 and 400 mL L-1 of O2 in the F2 population was skewed toward F. brownii with 72% of the progeny having values <9 [mu]L of CO2 L-1 compared to 1.5 and 27.2 [mu]L L-1 for F. brownii and F. linearis, respectively. Correlations among traits of F2 plants were low (coefficients of 0.30 to -0.49), indicating that the C4- related traits are not closely linked in segregating populations. Plants in the F2 population selected for high or low apparent photosynthesis at 130 [mu]L of CO2 L-1 (six each) did not rank consistently high or low for 13C/12C ratios, O2 inhibition of apparent photosynthesis, CO2 compensation concentration, or activities of phosphoenolpyruvate carboxylase or NADP-malic enzyme. This study confirms results of earlier work that indicates independent segregation of C4 traits and also shows that the C4-like parental type can be recovered, at least for some characteristics (13C/12C ratio), in segregating populations. Recovery of fully functional C4 plants awaits further experimentation with C4 x C3 or C4 x C3-C4 hybrid plants that produce fertile progeny.  相似文献   

18.
Effects of external nitrogen supply on quantity and activityof ribulose 1,5-bisphosphate carboxylase (RuBPCase) in mulberryleaves (Morus alba L. cv. Shin-ichinose) were examined. PhotosyntheticCO2 fixation and the contents of chlorophyll and phosphoruswere increased by the increased N supply. RuBPCase-protein concentrationand its proportion to total soluble-protein or to total-N rosecorrespondingly as the N supply increased. Specific enzyme activityexpressed on a RuBPCase protein basis was not affected by theN supply. Morus alba L. (mulberry), N nutrition, RuBPCase protein content, photosynthesis  相似文献   

19.
Lord JM  Brown RH 《Plant physiology》1975,55(2):360-364
Ribulose 1,5-diphosphate carboxylase has been purified from extracts of autotrophically grown Chlorella fusca by ammonium sulfate precipitation and centrifugation on a linear sucrose density gradient. The enzyme was homogeneous by the criterion of polyacrylamide gel electrophoresis. The molecular weight of the enzyme was 530,000, and it was composed of two types of subunit of molecular weight 53,000 and 14,000. Ribulose 1,5-diphosphate, CO(2), and Mg(2+) had Michaelis constant values of 15 mum, 0.3 mm, and 0.37 mm, respectively. At high bicarbonate concentration (17 mm and 50 mm), 6-phosphogluconate inhibited the enzyme, the inhibition being noncompetitive with respect to ribulose 1,5-diphosphate (Ki 0.065 mm), whereas at low bicarbonate concentration (1 mm), 6-phosphogluconate activated the enzyme. Oxygen was a competitive inhibitor with respect to CO(2), suggesting the enzyme also functions as an oxygenase. This was confirmed by direct assay, a 1: 1 stoichiometry between ribulose 1,5-diphosphate consumed and O(2) uptake being observed.  相似文献   

20.
The degree of C4 photosynthesis was assessed in four hybrids among C4, C4-like, and C3-C4 species in the genus Flaveria using 14C labeling, CO2 exchange, 13C discrimination, and C4 enzyme activities. The hybrids incorporated from 57 to 88% of the 14C assimilated in a 10-s exposure into C4 acids compared with 26% for the C3-C4 species Flaveria linearis, 91% for the C4 species Flaveria trinervia, and 87% for the C4-like Flaveria brownii. Those plants with high percentages of 14C initially fixed into C4 acids also metabolized the C4 acids quickly, and the percentage of 14C in 3-phosphoglyceric acid plus sugar phosphates increased for at least a 30-s exposure to 12CO2. This indicated a high degree of coordination between the carbon accumulation and reduction phases of the C4 and C3 cycles. Synthesis and metabolism of C4 acids by the species and their hybrids were highly and linearly correlated with discrimination against 13C. The relationship of 13C discrimination or 14C metabolism to O2 inhibition of photosynthesis was curvilinear, changing more rapidly at C4-like values of 14C metabolism and 13C discrimination. Incorporation of initial 14C into C4 acids showed a biphasic increase with increased activities of phosphoenolpyruvate carboxylase and NADP-malic enzyme (steep at low activities), but turnover of C4 acids was linearly related to NADP-malic enzyme activity. Several other traits were closely related to the in vitro activity of NADP-malic enzyme but not phosphoenolpyruvate carboxylase. The data indicate that the hybrids have variable degrees of C4 photosynthesis but that the carbon accumulation and reduction portions of the C4 and C3 cycles are well coordinated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号