首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three triple-helical hairpin DNAs with substitution of 5-bromocytosine for cytosine in different strands have been investigated by molecular mechanics and Raman spectroscopy. The stability of the three substituted triplexes were compared with the corresponding unsubstituted triplex DNA by the molecular mechanics method. Base stacking interactions and strand--strand interactions of each triplex were analyzed in detail. Sugar conformations in these triplexes have been determined by both vibrational spectroscopy and molecular dynamics simulation. The hairpin triplexes with substitution occurring in strand I or both in strands I and III have the main sugar conformation of C3'-endo, while the triplex with substitution occurring in strand III is the combination of C3'-endo and C2'-endo sugar conformation. Theoretical results are basically in agreement with experiments.  相似文献   

2.
The immunologically important (1 → 6) comb‐like branched (1 → 3)‐β‐D ‐glucans scleroglucan, schizophyllan, lentinan, and others, exist mainly as linear triple‐helical structures in aqueous solution. Partial interconversion from linear to circular topology has been reported to take place following conformational transition of the triple‐helical structure and subsequent regeneration of the triplex conformation. We here report on experimental data indicating that complete strand separation of the triple‐helical structure is required for this interconversion. NaOH or dimethylsulfoxide was used to induce dissociation of the triplex at combinations of concentrations and temperatures shown by calorimetry to yield a conformational transition of the triplex structures. For the alkaline treatment at 55°C, it is found that up to about 30% of the material readily can be converted to the cyclic topology. This fraction increased to about 60% when the subsequent annealing of the scleroglucan in aqueous solution at pH 7 was carried out at 100°C. Further increase of the annealing temperature yielded a smaller relative amount of cyclic species. The data indicate that the lower molecular weight fraction of the molecular weight distributions can be converted selectively to the macrocyclic topology by conditions that do not yield complete strand separation of the whole sample. These findings add to previous reports by providing more details about how the conditions required for the linear triplex to macrocycle interconversion relate to the conformational properties of the triple‐helical structure. © 1999 John Wiley & Sons, Inc. Biopoly 50: 496–512, 1999  相似文献   

3.
Selective, quantitative oxidation of pendant 1,6-β-linked glucopyranose residues along scleroglucan chains has yielded a new carboxylated polyelectrolyte. Study of the aqueous solution properties of the latter (named sclerox-I) has disclosed rather anomalous behaviour. Viscosity, calorimetric and chiro-optical measurements show that the interaction of sclerox-I with Ca2+ ions leads to a change in conformation of the polyanions, probably of the type random coils → ordered, elongated forms.  相似文献   

4.
The association of dicationic polycyclic ligands, namely, four diazoniapentaphene derivatives, three diazoniaanthra[1,2-a]anthracenes, diazoniahexaphene, and a partly saturated hydroxy-substituted diazoniapentaphene with double-stranded and triple-helical DNA, was investigated by spectrophotometric and viscosimetric titrations, CD and LD spectroscopy, DNA melting experiments, and molecular modeling studies. All experimental and theoretical data reveal an intercalative DNA-binding mode of the diazoniapentaphenes and diazoniaanthra[1,2-a]anthracenes; the latter have approximately 10-fold higher affinity for the DNA duplex. CD spectroscopic investigations and molecular modeling studies show that only one azonianaphthalene part of the ligand is intercalated between the DNA base pairs, whereas the remaining part of the ligand points outside the intercalation pocket. In contrast, the diazoniahexaphene is a DNA groove binder, which binds selectively to [poly(dAdT)]2. At low ligand-to-DNA ratios (r < 0.15), the diazoniahexaphene also behaves as an intercalator; however, all spectroscopic and viscosimetric data are consistent with significant groove binding of this ligand at r > 0.2. Studies of the interaction of diazoniapolycyclic ions with triplex DNA reveal a preferential binding of both diazoniapentaphenes and diazoniaanthra[1,2-a]anthracenes to the triplex and stabilization thereof. These properties are more pronounced in the case of the hexacyclic diazoniaanthra[1,2-a]anthracenes; however, the diazoniahexaphene shows no preferential binding to the triplex. The DNA binding properties of the diazoniapentaphene derivatives remain essentially the same upon variation of the positions of nitrogen atoms or substitution with methyl groups. In contrast, the interactions of the diazoniaanthra[1,2-a]anthracence isomers with triplex DNA are slightly different. Notably, the 14a,16a-diazoniaanthra[1,2-a]anthracene is among the most efficient triplex stabilizers, with a 9-fold larger binding affinity for the triplex than for the DNA duplex. Moreover, the diazoniapentaphene and diazoniaanthra[1,2-a]anthracene derivatives represent the first examples of triplex-DNA binders that do not require additional aminoalkyl side chains for efficient triplex stabilization.  相似文献   

5.
DNA triple helices offer exciting perspectives toward oligonucleotide-directed control of gene expression. Oligonucleotide analogues are routinely used with modifications in either the backbone or the bases to form more stable triple-helical structures or to prevent their degradation in cells. In this article, different chemical modifications are tested in a model system, which sets up a competition between the purine and pyrimidine motifs. For most modifications, the DeltaH degrees of purine triplex formation is close to zero, implying a nearly temperature-independent affinity constant. In contrast, the pyrimidine triplex is strongly favored at lower temperatures. The stabilization induced by modifications previously known to be favorable to the pyrimidine motif was quantified. Interestingly, modifications favorable to the GT motif (propynyl-U and dU replacing T) were also discovered. In a system where two third strands compete for triplex formation, replacement of the GA or GT strand by a pyrimidine strand may be observed at neutral pH upon lowering the temperature. This purine-to-pyrimidine triplex conversion depends on the chemical nature of the triplex-forming strands and the stability of the corresponding triplexes.  相似文献   

6.
Triple helix-forming oligonucleotides covalently linked to topoisomerase I inhibitors, in particular the antitumor agent camptothecin, trigger topoisomerase I-mediated DNA cleavage selectively in the proximity of the binding site of the oligonucleotide vector. In the present study, we have performed a systematic analysis of the DNA cleavage efficiency as a function of the positioning of the camptothecin derivative, either on the 3′ or the 5′ side of the triplex, and the location of the cleavage site. A previously identified cleavage site was inserted at different positions within two triplex site-containing 59 bp duplexes. Sequence-specific DNA cleavage by topoisomerase I occurs only with triplex conjugates bearing the inhibitor at the 3′-end of the oligonucleotide and on the oligopyrimidine strand of the duplex. The lack of targeted cleavage on the 5′ side is attributed to the structural differences of the 3′ and 5′ duplex–triplex DNA junctions. The changes induced in the double helix by the triple-helical structure interfere with the action of the enzyme according to a preferred spatial organization. Camptothecin conjugates of oligonucleotides provide efficient tools to probe the organization of the topoisomerase I–DNA complex and will be useful to understand the functioning of topoisomerase I in living cells.  相似文献   

7.
Oligonucleotides can be used as sequence-specific DNA ligands by forming a local triple helix. In order to form more stable triple-helical structures or prevent their degradation in cells, oligonucleotide analogues that are modified at either the backbone or base level are routinely used. Morpholino oligonucleotides appeared recently as a promising modification for antisense applications. We report here a study that indicates the possibility of a triple helix formation with a morpholino pyrimidine TFO and its comparison with a phosphodiester and a phosphoramidate oligonucleotide. At a neutral pH and in the presence of a high magnesium ion concentration (10 mM), the phosphoramidate oligomer forms the most stable triple helix, whereas in the absence of magnesium ion but at a physiological monovalent cation concentration (0.14 M) only morpholino oligonucleotides form a stable triplex. To our knowledge, this is the first report of a stable triple helix in the pyrimidine motif formed by a noncharged oligonucleotide third strand (the morpholino oligonucleotide) and a DNA duplex. We show here that the structure formed with the morpholino oligomer is a bona fide triple helix and it is destabilized by high concentrations of potassium ions or divalent cations (Mg(2+)).  相似文献   

8.
The synthesis and properties of triple-helical hybrids containing non-nucleosidic polyaromatic building blocks are described. Clamp-type oligonucleotides containing a non-nucleosidic pyrene linker form stable triple helices with a polypurine target strand containing a terminal pyrene or phenanthrene moiety. Stacking interactions between the unnatural building blocks enhance triplex stability and lead to strong excimer or exciplex formation, which is monitored by fluorescence spectroscopy.  相似文献   

9.
H Torigoe  R Shimizume  A Sarai  H Shindo 《Biochemistry》1999,38(44):14653-14659
We have investigated effects of chemical modifications of a third strand on the thermodynamic and kinetic properties of the triplex formation between a 23-bp duplex and each of four kinds of 15-mer chemically modified third strands using isothermal titration calorimetry and interaction analysis system. The chemical modifications of the third strand included one base modification, with replacement of thymine by uracil; two sugar moiety modifications, RNA and 2'-O-methyl-RNA; and one phosphate backbone modification, with replacement of phosphodiester by phosphorothioate backbone. The thermodynamic and kinetic parameters obtained were similar in magnitude at room temperature for the triplex formation with the base-modified and the sugar-modified third strands. By contrast, binding constant for the triplex formation with the third strand containing phosphorothioate backbone was much smaller by a factor of 10 than that for the other triplex formations. Kinetic analyses have also demonstrated that the third strand containing phosphorothioate backbone was much slower in the association step and much faster in the dissociation step than the other third strands, which resulted in the much smaller binding constant. The reason for the instability of the triplex with the third strand containing phosphorothioate backbone will be discussed. We conclude that, at least in the triplex formation with the chemically modified third strands studied in the present work, the modification of phosphate backbone of the third strand produces more significant effect on the triplex formation than the modifications of base and sugar moiety.  相似文献   

10.
The contribution of amino acid side chains to the recognition of DNA by peptides or proteins is evaluated by substituting single nucleobases of a DNA double strand by amino acid side chains. C-nucleosides with the side chains of phenylalanine and asparagine were synthesized and incorporated in DNA. This modification should allow to keep the double strand conformation. Hydrogen bonds, pi-pi-interactions and solvation have an influence on the double strand stability.  相似文献   

11.
Sletmoen M  Stokke BT 《Biopolymers》2005,79(3):115-127
Successive changes of solvent conditions can be used to dissociate and reassociate the triple-helical structure of (1,3)-beta-D-glucans. Ultramicroscopic techniques have revealed a blend of circular and other structures following renaturation. When this solvent exchange process is carried out in the presence of certain polynucleotides, the process creates a novel macromolecular complex. Here, we use size exclusion chromatography (SEC) to study such (1,3)-beta-D-glucan-polynucleotide complexes. Online multi-angle laser-light scattering (MALLS) and refractive index (RI) detectors allowed determination of molecular weight and radius of gyration of the molecules. An ultraviolet (UV) detector allowed specific detection of the polynucleotide. The poly-cytidylic acid (poly C) shifted to coelution with the linear fraction of the scleroglucan following the renaturation of poly C-scleroglucan blends, indicating that poly C is incorporated in linear, but not in circular, structures of scleroglucan. This conclusion was consistent with AFM topographs that revealed a decreased fraction of circular structures upon addition of poly C during the renaturation process. The combined information about radius of gyration (R(g)) and molecular weight (M(w)) allowed us to conclude that the poly C-scleroglucan complexes are more dense and have a higher persistence length than linear scleroglucan triple helixes. The experimentally determined mass per unit length was used as a basis for elucidating possible molecular arrangements within the poly C-scleroglucan complex.  相似文献   

12.
Bacterial cell wall peptidoglycans are built from unbranched β-(1 → 4)-linked glycan chains composed of alternately repeating units of N-acetylglucosamine and N-acetylmuramic acid residues, with peptide side chains attached to the muramic acid residues. The glycan chains are interconnected by peptide bonds formed between the peptide side chains. Through the use of three-dimensional molecular models, two configurations of the glycan strands and the peptide side chains are described, which by their constancy of form reflect the fundamental constancies of the covalent structures. Each of these two models will accommodate any chemical modification that has been observed in bacteria without change in the configuration of the peptide backbone. Some alterations in the chemical structure, which have been sought in bacteria, but not found, would not be tolerated by the models. In these models, glycan strands are parallel, with their lengths and widths predominantly in the plane of the cell wall. The cross-bridging portions of the peptide side chains are at right angles to the glycan strand, in a separate, parallel plane. A compact model is presented in which the peptide side chain is closely appressed to the glycan strand and is stabilized by three hydrogen bonds per disaccharide–peptide subunit. In a second model, the peptide side chain is raised away from the glycan strand in an entirely extended configuration. The compact and extended forms are interconvertible. The thickness of a sheet of peptidoglycan would be from 10.6 to 11.1 Å for the compact model, and 19.1 Å for the extended model.  相似文献   

13.
A controlled oxidation of scleroglucan was performed with sodium periodate to prepare aldehyde derivatives (scleraldehyde) with a low degree of oxidation (10 and 20%), which were utilized for crosslinking reactions with hexamethylenediamine. The structural characterization of scleraldehydes and their corresponding hydrogels was attempted by small-angle X-ray scattering (SAXS). While scleraldehyde with a higher degree of oxidation (≥50%), according to an earlier research, was found to disentangle into single chains as the degree of oxidation increases; scleroglucan bearing a low percentage of aldehydic groups (up to 20%) retains mainly the conformation of the natural polysaccharide, thus the system can be represented as composed of triple helices with only minor disentanglements at the sites where the aldehyde groups are present. The hydrogel prepared from scleraldehyde with a low degree of oxidation is brittle and fragmented, in contrast to the elastic/homogeneous hydrogel earlier prepared from scleraldehyde with a high degree of oxidation. The hydrogel from scleraldehyde with a low degree of oxidation was found to possess a network structure that consisted mostly of the triple helices crosslinked in specific points where the triple helices are disentangled into single chains because of the presence of the aldehyde groups.  相似文献   

14.
The simple repeating homopurine/homopyrimidine sequences dispersed throughout many eukaryotic genomes are known to form triple helical structures comprising three-stranded and single-stranded DNA. Several lines of evidence suggest that these structures influence DNA replication in cells. Homopurine/homopyrimidine sequences cloned into simian virus 40 (SV40) or SV40 origin-containing plasmids caused a reduced rate of DNA synthesis due to the pausing of replication forks. More prominent arrests were observed in in vitro experiments using single-stranded and double-stranded DNA with triplex-forming sequences. Nucleotides unable to form triplexes when present in the template DNA or when incorporated into the nascent strand prevented termination. Similarly, mutations destroying the triplex potential did not cause arrest while compensatory mutations restoring triplex potential restored it. These and other observations from a number of laboratories indicating that homopurine/homopyrimidine sequences act as arrest signals in vitro and as pause sites in vivo during replication fork movement suggest that these naturally occurring sequences play a regulatory role in DNA replication and gene amplification.  相似文献   

15.
Suicidal nucleotide sequences for DNA polymerization.   总被引:4,自引:0,他引:4       下载免费PDF全文
G M Samadashwily  A Dayn    S M Mirkin 《The EMBO journal》1993,12(13):4975-4983
Studying the activity of T7 DNA polymerase (Sequenase) on open circular DNAs, we observed virtually complete termination within potential triplex-forming sequences. Mutations destroying the triplex potential of the sequences prevented termination, while compensatory mutations restoring triplex potential restored it. We hypothesize that strand displacement during DNA polymerization of double-helical templates brings three DNA strands (duplex DNA downstream of the polymerase plus a displaced overhang) into close proximity, provoking triplex formation, which in turn prevents further DNA synthesis. Supporting this idea, we found that Sequenase is unable to propagate through short triple-helical stretches within single-stranded DNA templates. Thus, DNA polymerase, by inducing triplex formation at specific sequences in front of the replication fork, causes self-termination. Possible biological implications of such 'conformational suicide' are discussed. Our data also provide a novel way to target DNA polymerases at specific sequences using triplex-forming oligonucleotides.  相似文献   

16.
Matrix metalloproteinases (MMPs) are involved in physiological remodeling as well as pathological destruction of tissues. The turnover of the collagen triple-helical structure has been ascribed to several members of the MMP family, but the determinants for collagenolytic specificity have not been identified. The present study has compared the triple-helical peptidase activities of MMP-1 and MMP-14 (membrane-type 1 MMP; MT1-MMP). The ability of each enzyme to efficiently hydrolyze the triple helix was quantified using chemically synthesized fluorogenic triple-helical substrates that, via addition of N-terminal alkyl chains, differ in their thermal stabilities. One series of substrates was modeled after a collagenolytic MMP consensus cleavage site from types I-III collagen, while the other series had a single substitution in the P(1)' subsite of the consensus sequence. The substitution of Cys(4-methoxybenzyl) for Leu in the P(1)' subsite was greatly favored by MMP-14 but disfavored by MMP-1. An increase in substrate triple-helical thermal stability led to the decreased ability of the enzyme to cleave such substrates, but with a much more pronounced effect for MMP-1. Increased thermal stability was detrimental to enzyme turnover of substrate (k(cat)), but not binding (K(M)). Activation energies were considerably lower for MMP-14 hydrolysis of triple-helical substrates compared with MMP-1. Overall, MMP-1 was found to be less efficient at processing triple-helical structures than MMP-14. These results demonstrate that collagenolytic MMPs have subtle differences in their abilities to hydrolyze triple helices and may explain the relative collagen specificity of MMP-1.  相似文献   

17.
Solution properties of polycarboxylates obtained by periodate oxidation of scleroglucan, with different degrees of oxidation, have been studied as a function of pH. Viscosity, calorimetric, optical and chiro-optical measurements show that the two carboxylated samples with higher degrees of oxidation (S-1·0 and S-0·7) can assume an ordered conformation at low pH. On the contrary the sample characterized by a lower extent of oxidation (S-0·2) shows no conformational changes. Optical measurements suggest that this polymer would be in an ordered helical form in dilute aqueous solution.  相似文献   

18.
The structure and physical properties of 2'-sugar substituted O -(2-methoxyethyl) (MOE) nucleic acids have been studied using molecular dynamics simulations. Nanosecond simulations on the duplex MOE[CCAACGTTGG]-r[CCAACGUUGG] in aqueous solution have been carried out using the particle mesh Ewald method. Parameters for the simulation have been developed from ab initio calculations on dimethoxyethyl fragments in a manner consistent with the AMBER 4.1 force field database. The simulated duplex is compared with the crystal structure of the self-complementary duplex d[GCGTATMOEACGC]2, which contains a single modification in each strand. Structural details from each sequence have been analyzed to rationalize the stability imparted by substitution with 2'- O -(2-methoxyethyl) side chains. Both duplexes have an A-form structure, as indicated by several parameters, most notably a C3' endo sugar pucker in all residues. The simulated structure maintains a stable A-form geometry throughout the duration of the simulation with an average RMS deviation of 2.0 A from the starting A-form structure. The presence of the 2' substitution appears to lock the sugars in the C3' endo conformation, causing the duplex to adopt a stable A-form geometry. The side chains themselves have a fairly rigid geometry with trans , trans , gauche +/- and trans rotations about the C2'-O2', O2'-CA', CA'-CB' and CB'-OC' bonds respectively.  相似文献   

19.
The replacement of phosphodiester linkages of the polyanion DNA with S-methylthiourea linkers provides the polycation deoxyribonucleic S-methylthiourea (DNmt). Molecular dynamics studies to 1,220 ps of the hybrid triplex formed from octameric DNmt strands d(Tmt)8 with a complementary DNA oligomer strand d(Ap)8 have been carried out with explicit water solvent and Na+Cl- counterions under periodic boundary conditions using the CHARMM force field and the Ewald summation method. The Watson-Crick and Hoogsteen hydrogen-bonding patterns of the A/T tracts remained intact without any structural restraints for triplex structures throughout the simulation. The duplex portion of the triplex structure equilibrated at a B-DNA conformation in terms of the helical rise and other helical parameters. The dynamic structures of the DNmt x DNA x DNmt triplex were determined by examining histograms from the last 800 ps of the dynamics run. These included the hydrogen-bonding pattern (sequence recognition), three-centered bifurcating occurrences, minor groove width variations, and bending of tracts for the hybrid triplex structures. Together with the Watson-Crick hydrogen-bondings, the strong Hoogsteen hydrogen-bondings, the partially maintained three-centered bifurcatings in the Watson-Crick pair, and the medium-strength three-centered bifurcatings in the Hoogsteen pair suggest that the hybrid triplex is energetically favorable as compared to a duplex with similar base stacking, van der Waals interactions, and helical parameters. This is in agreement with our previously reported thermodynamic study, in which only triplex structures were observed in solution. The bending angle measured between the local axis vectors of the first and last helical axis segments is about 20 degrees for the Watson-Crick portion of the averaged structure. Propeller twist (associated with three-centered hydrogen-bonding) up to -30 degrees, native to DNA AT base pairing, was also observed for the triplex structure. The sugar pseudorotation phase angles and the ring rotation angles for the DNA strand are within the C3'-endo domain and C2'-endo domain for the DNmt strand. Water spines are observed in both minor and major grooves throughout the dynamics run. The molecular dynamics simulations of the structural properties of DNmt x DNA x DNmt hybrid triplex is compared to the DNG x DNA x DNG hybrid triplex (In DNG the -O-(PO2-)-O- linkers in DNA is replaced by -NH-C(=N+H2)-NH-).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号