首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Small amounts of a higher inositol phosphate with chromatographic properties of [3H]inositol (1,3,4,5,6)pentakisphosphate were formed from [3H]inositol (1,4,5)trisphosphate added to homogenates of ovarian follicles of Xenopus laevis, and from [3H]inositol (1,3,4,5)tetrakisphosphate after injection into follicular oocytes. Other intermediate forms of inositol tetrakisphosphate were not detectable. [3H]inositol (1,3,4,5,6)pentakisphosphate prepared from chicken erythrocytes was metabolized in homogenates to an inositol tetrakisphosphate eluting later than the (1,3,4,5) isomer. Activation of receptors in ovarian follicles of Xenopus laevis with acetylcholine or stimulation with injected GTP gamma S caused formation not only of inositol trisphosphate and its expected metabolites but also of small amounts of inositol pentakisphosphate. These results suggest that the latter may be formed from metabolites of inositol (1,4,5)trisphosphate in this tissue during receptor activation.  相似文献   

2.
D L Aub  J W Putney 《Life sciences》1984,34(14):1347-1355
Rat parotid acinar cells were used to investigate the time course of formation and breakdown of inositol phosphates in response to receptor-active agents. In cells preincubated with [3H]inositol and in the presence of 10 mM LiCl (which blocks hydrolysis of inositol phosphate), methacholine (10(-4)M) caused a substantial increase in cellular content of [3H]inositol phosphate, [3H]inositol bisphosphate and [3H]inositol trisphosphate. Subsequent addition of atropine (10(-4) M) caused breakdown of [3H]inositol trisphosphate and [3H]inositol bisphosphate and little change in accumulated [3H]inositol phosphate. The data could be fit to a model whereby inositol trisphosphate and inositol bisphosphate are formed from phosphodiesteratic breakdown of phosphatidylinositol bisphosphate and phosphatidylinositol phosphate respectively, and inositol phosphate is formed from hydrolysis of inositol bisphosphate rather than from phosphatidyl-inositol. Consistent with this model was the finding that [3H]inositol trisphosphate and [3H]inositol bisphosphate levels were substantially increased in 5 sec while an increase in [3H]inositol phosphate was barely detectable at 60 sec. These results indicate that in the parotid gland the phosphoinositide cycle is activated primarily by phosphodiesteratic breakdown of the polyphosphoinositides rather than phosphatidyl-inositol. Also, the results show that formation of inositol trisphosphate is probably sufficiently rapid for it to act as a second messenger signalling internal Ca2+ release in this tissue.  相似文献   

3.
Rat PC-12 pheochromocytoma cells respond to stimulation with bradykinin, angiotensin II, and carbachol with an increased formation of labeled inositol phosphates after preincubation of the cells with [3H]inositol. Li+ potentiates greatly the agonist-induced increase in amount of inositol mono-, bis-, and trisphosphate but not the increase in amount of inositol tetrakisphosphate. Separation of the isomers of inositol trisphosphate shows that the lithium-induced increase in amount of inositol trisphosphate is due to potentiation evoked by lithium of the accumulation of inositol-1,3,4-trisphosphate.  相似文献   

4.
To investigate the relationship between inositol lipid hydrolysis and reactive oxygen-intermediate (ROI) production in macrophages we have examined the effect of platelet-activating factor (PAF) on normal bone marrow-derived macrophages. Addition of PAF to macrophages prelabelled with [3H]inositol caused a marked and rapid increase in [3H]inositol trisphosphate levels. Similarly when PAF was added to [3H]-glycerol prelabelled macrophages there was a rapid increase in 1,2-diacyl[3H]glycerol levels. These events preceded any increase in the rate of PAF-stimulated ROI production by a discernible period of several seconds. Increasing concentrations of PAF led to a markedly similar increase in both ROI production and [3H]inositol lipid hydrolysis suggesting that inositol lipid hydrolysis may lead to the generation of ROI in macrophages. Further evidence that this is the case came from experiments in which pretreatment of macrophages with phorbol esters was shown to inhibit both PAF-stimulated [3H]inositol phosphate production and ROI production to a markedly similar degree. Similarly pertussis toxin inhibited both PAF-stimulated ROI production and [3H]inositol phosphate production. Phorbol esters were shown to activate ROI production in normal bone marrow-derived macrophages whereas the Ca2+ ionophore, A23187, did not. These experiments suggest that PAF stimulates a pertussis toxin-sensitive activation of inositol lipid hydrolysis leading to the formation of inositol trisphosphate and diacylglycerol. The diacylglycerol formed can then activate protein kinase C leading to the stimulation of ROI production in normal bone marrow-derived macrophages.  相似文献   

5.
A complete separation of myo-inositol 1,4,5-[4,5-(32)P]trisphosphate prepared from human erythrocytes, and myo-[2-3H]inositol 1,3,4-trisphosphate prepared from carbachol-stimulated rat parotid glands [Irvine, Letcher, Lander & Downes (1984) Biochem. J. 223, 237-243], was achieved by anion-exchange high-performance liquid chromatography. This separation technique was then used to study the metabolism of these two isomers of inositol trisphosphate in carbachol-stimulated rat parotid glands. Fragments of glands were pre-labelled with myo-[2-3H]inositol, washed, and then stimulated with carbachol. At 5s after stimulation a clear increase in inositol 1,4,5-trisphosphate was detected, with no significant increase in inositol 1,3,4-trisphosphate. After this initial lag however, inositol 1,3,4-phosphate rose rapidly; by 15s it predominated over inositol 1,4,5-trisphosphate, and continued to rise so that after 15 min it was at 10-20 times the radiolabelling level of the 1,4,5-isomer. In contrast, after the initial rapid rise (maximal within 15s), inositol 1,4,5-trisphosphate levels declined to near control levels after 1 min and then rose again very gradually over the next 15 min. When a muscarinic blocker (atropine) was added after 15 min of carbachol stimulation, inositol 1,4,5-trisphosphate levels dropped to control levels within 2-3 min, whereas inositol 1,3,4-trisphosphate levels took at least 15 min to fall, consistent with the kinetics observed earlier for total parotid inositol trisphosphates [Downes & Wusteman (1983) Biochem. J. 216, 633-640]. Phosphatidylinositol bisphosphate (PtdInsP2) from stimulated and control cells were degraded chemically to inositol trisphosphate to seek evidence for 3H-labelled PtdIns(3,4)P2. No evidence could be obtained that a significant proportion of PtdInsP2 was this isomer; in control tissues it must be less than 5% of the total PtdInsP2 radiolabelled by myo-[2-3H]inositol. These data indicate that, provided that inositol 1,4,5-trisphosphate is studied independently of inositol 1,3,4-trisphosphate, the former shows metabolic characteristics consistent with its proposed role as a second messenger for calcium mobilization. The metabolic profile of inositol 1,3,4-trisphosphate is entirely different, and its function and source remain unclear.  相似文献   

6.
NaF stimulated phosphoinositide hydrolysis in rat cortical slices. The production of [3H]inositol monophosphate was rapid for the first 15 min of incubation with NaF, followed by a plateau. The major product detected was [3H]inositol monophosphate, although significant amounts of [3H]inositol bisphosphate and [3H]inositol trisphosphate were also produced. The stimulation of [3H]inositol monophosphate production by NaF was concentration dependent between 2 and 20 mM NaF. Addition of 10 or 100 microM AlCl3 or aluminum maltol did not alter the effect of NaF, whereas at 500 microM, these aluminum preparations resulted in significant inhibition. Increasing the concentration of K+ from 5 to 20 mM potentiated [3H]inositol monophosphate production induced by carbachol but not by NaF. Incubation with 1 microM phorbol 12-myristate 13-acetate, a phorbol ester, inhibited carbachol-induced, but not NaF-induced, [3H]inositol monophosphate production. These results further support the hypothesis that a guanine nucleotide binding protein that can be activated by NaF is involved in phosphoinositide hydrolysis in brain. The use of NaF provides a means to bypass receptors to study intracellular regulatory sites of phosphoinositide metabolism without disrupting cells.  相似文献   

7.
When [3H]inositol-prelabelled rat parotid-gland slices were stimulated with carbachol, noradrenaline or Substance P, the major inositol trisphosphate produced with prolonged exposure to agonists was, in each case, inositol 1,3,4-trisphosphate. Much lower amounts of radioactivity were present in the inositol 1,4,5-trisphosphate fraction separated by anion-exchange h.p.l.c. Analysis of the inositol trisphosphate head group of phosphatidylinositol bisphosphate in [32P]Pi-labelled parotid glands showed the presence of phosphatidylinositol 4,5-bisphosphate, but no detectable phosphatidylinositol 3,4-bisphosphate. Carbachol-stimulated [3H]inositol-labelled parotid glands contained an inositol polyphosphate with the chromatographic properties and electrophoretic mobility of an inositol tetrakisphosphate, the probable structure of which was determined to be inositol 1,3,4,5-tetrakisphosphate. Since an enzyme in erythrocyte membranes is capable of degrading this tetrakisphosphate to inositol 1,3,4-trisphosphate, it is suggested to be the precursor of inositol 1,3,4-trisphosphate in parotid glands.  相似文献   

8.
Metabolism of inositol 1,4,5-trisphosphate was investigated in permeabilized guinea-pig hepatocytes. The conversion of [3H]inositol 1,4,5-trisphosphate to a more polar 3H-labelled compound occurred rapidly and was detected as early as 5 s. This material co-eluted from h.p.l.c. with inositol 1,3,4,5 tetrakis[32P]phosphate and is presumably an inositol tetrakisphosphate. A significant increase in the 3H-labelled material co-eluting from h.p.l.c. with inositol 1,3,4-trisphosphate occurred only after a definite lag period. Incubation of permeabilized hepatocytes with inositol 1,3,4,5-tetrakis[32P]phosphate resulted in the formation of 32P-labelled material that co-eluted with inositol 1,3,4-trisphosphate; no inositol 1,4,5-tris[32P]phosphate was produced, suggesting the action of a 5-phosphomonoesterase. The half-time of hydrolysis of inositol 1,3,4,5-tetrakis[32P]phosphate of approx. 1 min was increased to 3 min by 2,3-bisphosphoglyceric acid. Similarly, the rate of production of material tentatively designed as inositol 1,3,4-tris[32P]phosphate from the tetrakisphosphate was reduced by 10 mM-2,3-bisphosphoglyceric acid. In the absence of ATP there was no conversion of [3H]inositol 1,4,5-trisphosphate to [3H]inositol tetrakisphosphate or to [3H]inositol 1,3,4-trisphosphate, which suggests that the 1,3,4 isomer does not result from isomerization of inositol 1,4,5-trisphosphate. The results of this study suggest that the origin of the 1,3,4 isomer of inositol trisphosphate in isolated hepatocytes is inositol 1,3,4,5-tetrakisphosphate and that inositol 1,4,5-trisphosphate is rapidly converted to this tetrakisphosphate. The ability of 2,3-bisphosphoglyceric acid, an inhibitor of 5-phosphomonoesterase of red blood cell membrane, to inhibit the breakdown of the tetrakisphosphate suggests that the enzyme which removes the 5-phosphate from inositol 1,4,5-trisphosphate may also act to convert the tetrakisphosphate to inositol 1,3,4-trisphosphate. It is not known if the role of inositol 1,4,5-trisphosphate kinase is to inactivate inositol 1,4,5-trisphosphate or whether the tetrakisphosphate product may have a messenger function in the cell.  相似文献   

9.
Studies were undertaken to further elucidate the mechanism(s) by which bradykinin-dependent phosphoinositide metabolism takes place in neuroblastoma X glioma hybrid NG108-15 cells [(1984) J. Biol. Chem. 259, 10201-10207] using [3H]inositol-labelled cells. Bradykinin produced net increases in the level of [3H]inositol phosphates, especially of [3H]inositol trisphosphate which is formed transiently and most rapidly. The results indicate that bradykinin activates a phosphodiesterase to break down phosphatidylinositol 4,5-bisphosphate, generating two recently recognized intracellular messengers, 1,2-diacylglycerol and inositol trisphosphate.  相似文献   

10.
The production of inositol phosphates in response to gonadotropin releasing hormone (GnRH) was studied in rat anterior pituitary tissue preincubated with [3H]inositol. Prelabelled paired hemipituitaries from prepubertal female rats were incubated in the presence or absence of GnRH in medium containing 10 mM-Li+ X Li+, which inhibits myo-inositol-1-phosphatase, greatly amplified the stimulation of inositol phosphate production by GnRH (10(-7) M) to 159, 198 and 313% of paired control values for inositol 1-phosphate, inositol bisphosphate and inositol trisphosphate respectively after 20 min. The percentage distribution of [3H]inositol within the phosphoinositides was 91.3, 6.3 and 2.4 for phosphatidylinositol, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate respectively and was unaffected by GnRH. The stimulation of inositol trisphosphate production by GnRH was evident after 5 min incubation, was dose-dependent with a half-maximal effect around 11 nM, and was not inhibited by removal of extracellular Ca2+. Elevation of cytosolic Ca2+ by membrane depolarization with 50 mM-K+ had no significant effect on inositol phosphate production. These findings are consistent with the hypothesis that GnRH action in the anterior pituitary involves the hydrolysis of phosphatidylinositol 4,5-bisphosphate. The resulting elevation of inositol trisphosphate may in turn lead to intracellular Ca2+ mobilization and subsequent stimulation of gonadotropin secretion.  相似文献   

11.
Synaptosomes have been isolated from rat cerebral cortex and labelled in vitro with [32P]orthophosphate and myo-[2-3H]inositol. Subsequent addition of the Ca2+ ionophore A23187 in the presence of 2 mM extrasynaptosomal Ca2+ raised intrasynaptosomal free [Ca2+] to greater than 2 microM from a resting level of 200 nM and led to rapid breakdown of polyphosphoinositides. This was accompanied by a small increase in the level of inositol monophosphate, greatly enhanced accumulation in inositol bisphosphate, but no detectable increase in inositol trisphosphate. Depolarising (25 mM) extrasynaptosomal K+ produced a smaller increase in intrasynaptosomal free [Ca2+] (to around 400 nM) and a proportional increase in inositol bisphosphate radioactivity. Carbachol (1 mM) alone elicited only limited polyphosphoinositide breakdown and inositol mono- and bisphosphate formation, but this was greatly increased in the presence of 25 mM K+. The effect of carbachol in the presence of depolarising K+ was time- and dose-dependent and was antagonised by atropine (10 microM). There was no detectable accumulation of inositol trisphosphate in the presence of carbachol, K+, or carbachol plus K+, even after short (30 s.) incubations. The lack of inositol trisphosphate accumulation does not appear to result from rapid formation of inositol tetrakisphosphate or from enhanced breakdown of the trisphosphate in synaptosomes.  相似文献   

12.
Does the inositol tris/tetrakisphosphate pathway exist in rat heart?   总被引:2,自引:0,他引:2  
D Renard  J Poggioli 《FEBS letters》1987,217(1):117-123
Appearance of two isomers of inositol trisphosphate (InsP3) was observed when [3H]inositol prelabelled rat heart ventricles were stimulated for 10 and 30 s with noradrenaline. In contrast, inositol tetrakisphosphate (InsP4) could not be detected. However the existence of the inositol tris/tetrakisphosphate pathway was demonstrated by studying [3H]inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) metabolism in a soluble fraction of rat heart. There, [3H]Ins-1,4,5-P3 was phosphorylated to form [3H]Ins-1,3,4,5-P4. Raising [Ca2+] from 1 nM to 1 microM increased InsP3 kinase activity by 2-fold (EC50 for Ca2+ approx. 56 nM). This effect appeared to be due to an increase of the apparent Vmax of the enzyme while the apparent Km was unchanged.  相似文献   

13.
In order to investigate the ionic requirements for inositol trisphosphate production, brown adipocytes were prelabelled with myo-[3H]inositol and the formation of inositol trisphosphates and inositol bisphosphates as a consequence of alpha 1-adrenergic stimulation was monitored. Omission of Ca2+ from the incubation medium diminished the norepinephrine-induced increase in inositol trisphosphate levels, but it would seem that this reduction can be fully accounted for by a decreased level of the 'inactive' isomer inositol 1,3,4-trisphosphate. Omission of Na+ fully abolished the norepinephrine-induced inositol trisphosphate response. However, it was observed that the presence of Li+ in the incubation medium could fully reconstitute the ability of the cells to yield the early response of inositol trisphosphate production; Li+ could, however, not substitute for Na+ in the entire alpha 1-adrenergic cellular pathway. It was concluded that the Na+-dependent step is found in the coupling mechanism between the alpha 1-receptor and the activation of the phosphodiesterase responsible for inositol trisphosphate production. Thus, all events in the alpha 1-adrenergic pathway which are consequences of IP3 production should appear to be Na+-dependent in these cells.  相似文献   

14.
The metabolic pathway of inositol phospholipids represents a series of synthetic and hydrolytic reactions with inositol as a by-product. Hence, the rate of [3H]inositol release from prelabeled phospholipids can be used as a reflection of activity of this pathway. In the frog sympathetic ganglion prelabeled with [3H]inositol, we studied the effect of synaptic activity (orthodromic stimulation) on release of 3H-label into the medium. This release was interpreted as [3H]inositol release. The value was low at rest and increased significantly by 32% during orthodromic stimulation (20 Hz for 5 min). However, on cessation of the stimulation, [3H]inositol release increased rapidly by 148% and remained elevated for at least 45 min. This increase in [3H]inositol release during and after the stimulation period was reduced by suffusion of the ganglia with adenosine. We hypothesized that synaptic activation releases a long-lasting stimulatory agonist and a short-lasting inhibitory (adenosine) agonist or agonists affecting [3H]inositol release. To demonstrate the presence of a stimulatory agonist, two sympathetic ganglia were used. One was prelabeled with [3H]inositol, and the other was not. The two ganglia were placed together in a 5-microliter droplet of Ringer's solution containing atropine. Orthodromic stimuli applied to the nonlabeled ganglion elicited release of [3H]inositol from the nonstimulated ganglion. To test whether the adenosine formed during orthodromic stimulation inhibits [3H]inositol release, we destroyed endogenous adenosine by suffusion of the ganglia with adenosine deaminase during the stimulation period. We found that adenosine deaminase induced large increases in [3H]inositol release during the stimulation period, in contrast to an increase seen only during the poststimulation period when adenosine deaminase was omitted. Because [3H]inositol release is assumed to parallel changes in content of inositol phosphates, we anticipated no changes of the levels of these compounds during orthodromic stimulation. However, measurements showed that levels of inositol phosphates and inositol phospholipids were all elevated except for phosphatidylinositol 4-phosphate. On termination of the stimulus, they remained elevated, with a further increase in levels of inositol trisphosphate and phosphatidylinositol 4-phosphate. We conclude that endogenous adenosine inhibits [3H]inositol release, possibly by modulating several of the steps of the inositol phospholipid pathway.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Cells of the murine mast-cell clone MC9 grown in suspension culture were sensitized with an anti-DNP (dinitrophenol) IgE and subsequently prelabelled by incubating with [32P]Pi. Stimulation of these cells with DNP-BSA (bovine serum albumin) caused marked decreases in [32P]polyphosphoinositides (but not [32P]phosphatidylinositol) with concomitant appearance of [32P]phosphatidic acid. Whereas phosphatidylinositol monophosphate levels returned to baseline values after prolonged stimulation, phosphatidylinositol bisphosphate levels remained depressed. Stimulation of sensitized MC9 cells with DNP-BSA increased rates of incorporation of [32P]Pi into other phospholipids in the order: phosphatidylcholine greater than phosphatidylinositol greater than phosphatidylethanolamine. In sensitized cells prelabelled with [3H]inositol, release of inositol monophosphate, inositol bisphosphate and inositol trisphosphate, was observed after stimulation with DNP-BSA. When Li+ was added to inhibit the phosphatase activity that hydrolysed the phosphomonoester bonds in the sugar phosphates, greater increases were observed in all three inositol phosphates, particularly in inositol trisphosphate. The IgE-stimulated release of inositol trisphosphate was independent of the presence of extracellular Ca2+. In addition, the Ca2+ ionophore A23187 caused neither the decrease in [32P]polyphosphoinositides nor the stimulation of the release of inositol phosphates. These results demonstrate that stimulation of the MC9 cell via its receptor for IgE causes increased phospholipid turnover, with effects on polyphosphoinositides predominating. These data support the hypothesis that hapten cross-bridging of IgE receptors stimulates phospholipase C activity, which may be an early event in stimulus-secretion coupling of mast cells. The results with the Ca2+ ionophore A23187 indicate that an increase in intracellular Ca2+ alone is not sufficient for activation of this enzyme.  相似文献   

16.
Several T-cell functions are controlled by the regulatory peptide interleukin 2 (IL-2). Binding of IL-2 with specific receptors has been well documented, but the molecular mechanism by which IL-2/IL-2 receptor interaction is transduced is not known. We have found that treatment of IL-2-dependent T-cell lines with IL-2 is followed by a rapid stimulation of inositol phospholipid metabolism, as determined by isotopic methodology employing myo-[1,2-3H]inositol. Increased incorporation of the metabolic precursor into phosphatidylinositol and phosphatidylinositol 4-monophosphate, together with the appearance of radiolabeled phosphatidylinositol 4,5-bisphosphate, occurred within minutes of treatment with IL-2 of factor-dependent CT6 cells. Analysis of labeled water-soluble compounds from prelabeled cells indicated a rapid (within 1 min) stimulation of inositol phospholipid hydrolysis following IL-2 treatment. Increased recovery of [3H] inositol phosphates and appearance of [3H]inositol trisphosphate were observed after treatment with IL-2 of CT6 cells, as well as of a second IL-2-dependent cell line, CTB6. These findings suggests that inositol phospholipid-derived metabolites (i.e. diacylglycerol and inositol trisphosphate) may be part of the mechanism by which certain IL-2 signals are transduced.  相似文献   

17.
The ability of alcohols to regulate inositol lipid-specific phospholipase C (phosphoinositidase C) was examined in turkey erythrocyte ghosts prepared by cell lysis of erythrocytes which were prelabeled with [3H] inositol. Guanosine 5'-[gamma-thiotriphosphate] GTP[S] stimulated the production of both [3H]inositol bisphosphate (18-fold) and [3H]inositol trisphosphate (6-fold) in this system. The accumulation of [3H]inositol bisphosphate and [3H]inositol trisphosphate was linear up to 8 min following an initial lag period of 1-2 min. Ethanol (300 mM) reduced the lag period for [3H]inositol phosphate accumulation at submaximal GTP[S] concentrations and caused a shift to the left (3-fold) in the dose-response curve. Other short chain alcohols, methanol (300 mM), 1-propanol (200 mM), and 1-butanol (50 mM) also enhanced the accumulation of [3H] inositol phosphates in the presence of submaximal GTP[S] concentrations. Receptor activation by the purinergic agonist adenosine 5'-[beta-thio]disphosphate (ADP[S]) (10 microM) also reduced the lag period for [3H] inositol phosphate formation and shifted the GTP[S] dose response to the left (10-fold). In addition, ADP[S] increased the response to maximal GTP[S] concentrations. The formation of [3H]inositol phosphates induced by GTP[S] was associated with a concomitant decrease in labeling of both [3H]phosphatidylinositol monophosphate and [3H]phosphatidylinositol bisphosphate, but no decrease in [3H]phosphatidylinositol was observed. All of the alcohols tested enhanced the breakdown of [3H]polyphosphoinositides in the presence of GTP[S]. The dose response to guanosine 5'-[beta gamma-imino]triphosphate for [3H]inositol phosphate formation was displaced to the left by ethanol (300 mM) and ADP[S] (10 microM) (2- and 7-fold), respectively. ADP[S] also enhanced the maximal response to guanosine 5'-[beta gamma-imino]triphosphate. The [3H]inositol phosphate formation produced in response to NaF was unaffected by either ethanol or receptor activation. These results indicate that alcohols initiate an activation of phosphoinositidase C, mediated at the level of the regulatory guanine nucleotide-binding protein.  相似文献   

18.
Stimulation of the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) by a phospholipase C to produce inositol trisphosphate (InsP3) and 1,2-diacylglycerol appears to be the initial step in signal transduction for a number of cell-surface interacting stimuli, including thyrotropin-releasing hormone (TRH). In suspensions of membranes isolated from rat pituitary (GH3) cells that were prelabeled to isotopic steady state with [3H]inositol and incubated with ATP, [3H] PtdIns(4,5)P2, and [3H]phosphatidylinositol 4-phosphate, the polyphosphoinositides, and [3H]InsP3 and [3H]inositol bisphosphate, the inositol polyphosphates, accumulated. TRH and GTP stimulated the accumulation of [3H]inositol polyphosphates in time- and concentration-dependent manners; half-maximal effects occurred with 10-30 nM TRH and with 3 microM GTP. A nonhydrolyzable analog of GTP also stimulated [3H] inositol polyphosphate accumulation. Moreover, when TRH and GTP were added together their effects were more than additive. Fixing the free Ca2+ concentration in the incubation buffer at 20 nM, a value below that present in the cytoplasm in vivo did not inhibit stimulation by TRH and GTP of [3H]inositol polyphosphate accumulation. ATP was necessary for basal and stimulated accumulation of [3H]inositol polyphosphates, and a nonhydrolyzable analog of ATP could not substitute for ATP. These data demonstrate that TRH and GTP act synergistically to stimulate the accumulation of InsP3 in suspensions of pituitary membranes and that ATP, most likely acting as substrate for polyphosphoinositide synthesis, was necessary for this effect. These findings suggest that a guanine nucleotide-binding regulatory protein is involved in coupling the TRH receptor to a phospholipase C that hydrolyzes PtdIns(4,5)P2.  相似文献   

19.
Deoxycholate promotes phospholipase C degradation of endogenous phosphatidyl[3H]inositol (Pl), phosphatidyl[3H]inositol monophosphate (PIP) and phosphatidyl[3H]inositol bisphosphate (PIP2) in rat cornea and human platelets. Hydrolysis of phosphatidyl[3H]inositol significantly lags polyphospho[3H]inositide degradation. Concomitantly, formation of [3H]inositol monophosphate (IP1) lags behind [3H]inositol bisphosphate (IP2) and [3H]inositol trisphosphate (IP3) production. These results demonstrate that rat cornea and human platelet phospholipase C cause a preferential hydrolysis of the endogenous polyphosphoinositides rather than phosphatidylinositol.  相似文献   

20.
The effects of arachidonic acid (20:4) on phosphoinositide turnover were examined in rat pancreatic acinar cells prelabeled with myo-[3H]inositol. Arachidonic acid (50 microM) increased the accumulation of myo-[3H]inositol, but not that of [3H]inositol monophosphate, [3H]inositol bisphosphate, or [3H]inositol trisphosphate. By contrast, 10 microM carbamoylcholine increased the accumulation of all four compounds. A combination of arachidonic acid plus carbamoylcholine caused a selective and marked accumulation of myo-[3H]inositol, which was abolished by 10 mM LiCl. Arachidonic acid (10-100 microM) produced a concentration-dependent inhibition of myo-[3H]inositol incorporation into phosphoinositides and markedly depressed carbamoylcholine-induced increases in myo-[3H]inositol incorporation into inositol phospholipids. Several other unsaturated and saturated fatty acids failed to elicit a synergistic response with carbamoylcholine in stimulating myo-[3H]inositol accumulation and did not retard the incorporation of myo-[3H]inositol into phosphoinositides. The fact that eicosapentaenoic acid (20:5), but not arachidic acid (20:0), mimicked the depressant effect of arachidonate on phosphoinositide labeling suggests that the degree of unsaturation of the fatty acid, rather than chain length, is important for inhibition of phosphoinositide synthesis. The arachidonate-induced decrease in myo-[3H]inositol incorporation was accompanied by a reduction in the steady state level of [32P]phosphatidylinositol 4,5-bisphosphate. The mass of arachidonic acid liberated in response to carbamoylcholine was measured by gas chromatography-mass spectrometry, and the time course of stimulated arachidonate accumulation paralleled that of inositol phosphate accumulation and amylase release. These observations suggest that in exocrine pancreas, endogenous arachidonic acid serves as a negative feedback regulator of phosphoinositide turnover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号