首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of recombination on the equilibrium structures of two-locus systems of autosomal segregation distortion are studied. Exact conditions pertaining to the stability of polymorphic equilibria maintaining multiple distorters at the segregation-determination locus as well as their resistance to the invasion of mutant distorters are given. Evolutionary patterns of autosomal meiotic drive and the status of Mendelian segregation are reexamined.  相似文献   

2.
The equilibrium configurations for a two-locus multialle model of sex-linked meiotic drive are studied with regard to the recombination fraction:limit cycles can occur in the case of small recombination while stable equilibrium points associated with linkage equilibrium can exist for an intermediate range of recombination values depending on the equilibrium sex ratio, linkage disequilibrium at nearby equilibrium points taking turn with loser linkage. The evolutionary dynamics in two-locus sex-ratio distortion systems is enlightened: while equilibria with a sex ratio closer to 1/2 are more likely to be stable with respect to perturbations on the frequencies of sex-ratio distorters that are represented at equilibrium, such equilibria are also more vulnerable to the invasion of mutant distorters when there is some degree of linkage with the sex-determining locus. For X-linked multimodifier systems of sex-ratio distortion, differential fertilities and viabilities are incorporated and a maximum principle is suggested.  相似文献   

3.
Hiatt EN  Dawe RK 《Genetica》2003,117(1):67-76
In maize, a distal portion of abnormal chromosome 10 (Ab10) causes the meiotic drive of itself as well as many unlinked heterochromatic regions known as knobs. The Ab10 drive system, which encodes trans- as well as cis-acting components, occupies a large region of chromosome 10L equivalent to 3% of the genome. Here we describe five new structural mutations of Ab10 (five deletions and a duplication) that arose from a screen for meiotic drive mutants. The high frequency of breakage events, detected both genetically and cytologically, suggest that the chromosome may be especially unstable. Very large deletions within the drive system are female-transmissible and plants homozygous for deficiencies lacking much of this interval can be grown to maturity. The data suggest that few genes required for normal growth and development lie within the portion of Ab10 responsible for meiotic drive. These and other published data suggest that meiotic drive systems tend to evolve in gene-sparse or otherwise information-poor regions of the genome where they are less likely to negatively affect individual fitness.  相似文献   

4.
Female meiotic drive is the phenomenon where a selfish genetic element alters chromosome segregation during female meiosis to segregate to the egg and transmit to the next generation more frequently than Mendelian expectation. While several examples of female meiotic drive have been known for many decades, a molecular understanding of the underlying mechanisms has been elusive. Recent advances in this area in several model species prompts a comparative re-examination of these drive systems. In this review, we compare female meiotic drive of several animal and plant species, highlighting pertinent similarities.  相似文献   

5.
We compare the evolutionary pressures that direct the modification of gene conversion and meiotic drive at loci subject to purifying and overdominant viability selection. Gene conversion differs from meiotic drive in that modifers do not affect their own segregation ratios, even when linked to the viability locus. Segregation distortion generates gametic level disequilibria between alleles at the viability locus and modifiers of gene conversion and meiotic drive: enhancers of segregation distortion become positively associated with driven alleles. Suppression of gene conversion evolves if the driven allele is marginally disadvantageous (overdominant viability selection), and higher rates evolve if the driven alleles are relatively advantageous (purifying viability selection). Gametic disequilibria permit enhancers of meiotic drive that are linked to the driven locus to promote their own segregation. We attribute the failure of genetic modifiers of gene conversion and meiotic drive to maximinize mean fitness to the generation of such associations.  相似文献   

6.
Unisexual hybrid disruption can be accounted for by interactions between sex ratio distorters which have diverged in the species of the hybrid cross. One class of unisexual hybrid disruption is described by Haldane's rule, namely that the sex which is absent, inviable or sterile is the heterogametic sex. This effect is mainly due to incompatibility between X and Y chromosomes. We propose that this incompatibility is due to a mutual imbalance between meiotic drive genes, which are more likely to evolve on sex chromosomes than autosomes. The incidences of taxa with sex chromosome drive closely matches those where Haldane's rule applies: Aves, Mammalia, Lepidoptera and Diptera. We predict that Haldane's rule is not universal but is correct for taxa with sex chromosome meiotic drive. A second class of hybrid disruption affects the male of the species regardless of which sex is heterogametic. Typically the genes responsible for this form of disruption are cytoplasmic. These instances are accounted for by the release from suppression of cytoplasmic sex ratio distorters when in a novel nuclear cytotype. Due to the exclusively maternal transmission of cytoplasm, cytoplasmic sex ratio distorters cause only female-biased sex ratios. This asymmetry explains why hybrid disruption is limited to the male.  相似文献   

7.
Sandler and Novitski first pointed out in 1957 that chromosomes could selfishly exploit meiotic asymmetries to maximize their own transmission, in a process termed 'meiotic drive'. However, since then, only post-meiotic processes of non-Mendelian inheritance have received serious scientific attention in studies of transmission distortion. A recent study by Fishman and Willis puts the focus squarely back on meiotic drive. They found completely biased transmission of a centromere-linked locus from an outcrossing Mimulus species over that from an inbred species, providing the first direct evidence that centromeres can act as general, powerful meiotic drivers. This study suggests that, although difficult to detect experimentally, female meiotic drive is a major evolutionary force in nature.  相似文献   

8.
The factors maintaining sex chromosome meiotic drive, or sex ratio (SR), in natural populations remain uncertain. Coevolution between segregation distortion and modifiers should produce transient SR distortion while selection can result in a stable polymorphism. We hypothesize that if SR is maintained by selection, then phylogenetically related populations should exhibit similar SR frequency and intensity. Furthermore, when drive is present, females should mate with multiple males more often both to insure fertility and to increase the probability of producing male progeny. In this paper we report on variation in SR frequency and multiple mating among seven populations and three species of stalk-eyed flies, genus Cyrtodiopsis, from southeast Asia. Using a phylogenetic hypothesis based on 1100 bp of mtDNA sequence we find that while sex chromosome meiotic drive is present in all populations of C. whitei and C. dalmanni, the frequency and intensity of drive only differs between populations or species with greater than 4.8% sequence divergence. The frequency of females mating with multiple males is higher in populations with SR. In addition, SR males mate less often, possibly to compensate for sperm depletion. Our results suggest that sex chromosome drive is maintained by balancing selection in populations of C. whitei and C. dalmanni. Nevertheless, coevolution between drive and suppressors deserves further study.  相似文献   

9.
Equal transmission of the two alleles at a locus from a heterozygote parent to the offspring is rarely violated. Beside the differential embryonic mortality, nondisjunction and gene conversion that are rather irregular forms of transmission-ratio distortion (TRD), there are two major forms of departure from Mendelian segregation. The first, found in females, based on the asymmetric nature of female meiosis, is usually referred to as meiotic drive, and has been well documented in a few cases. The second is segregation distortion found in males. There are several known male-related segregation distortion systems that are caused by different fertilizing capacity of sperm cells carrying alternative alleles at a particular locus. Observation of TRD effects requires a sufficient number of offspring produced by a parental pair. As individuals in a population most likely have different genotypes in TRD affecting loci, the total transmission ratio is close to the expected Mendelian ratio and masks potential TRD effects. Highly inbred strains of laboratory mice provide a very good model for studying this phenomenon, because comparing two mice strains is effectively similar as comparison of two individuals in a population. This study tests both forms of TRD in progeny of F1 hybrids from reciprocal crosses of inbred mice. Three previously unknown instances of TRD in females were observed. Therefore, this study concludes that some genes in females may carry alleles that can cause segregation distortion.  相似文献   

10.
Robertsonian translocations are the most common structural rearrangements of human chromosomes. Although segregation of Robertsonian chromosomes has been examined in many families, there is little consensus on whether inheritance in the balanced progeny conforms to Mendelian ratios. To address this question, we have compiled previously reported segregation data, by sex of parent, for 677 balanced offspring of Robertsonian carriers from 82 informative families and from a prenatal diagnosis study on the risk of unbalanced offspring in carriers of chromosome rearrangements. Care was taken to avoid any source of ascertainment bias. Our analysis supports the following conclusions: (1) the transmission ratio is not independent of the sex of the carrier; (2) the transmission ratio distortion is observed consistently only among the offspring of carrier females; (3) the transmission ratio distortion does not appear to be dependent on the presence of a specific acrocentric chromosome in the rearrangement. The sex-of-parent-specific origin of the non-Mendelian inheritance, the finding that the rearranged ("mutant") chromosomes are recovered at significantly higher frequency than the acrocentric ("normal") chromosomes, and the similarities between these observations and the segregation of analogous rearrangements through female meiosis in other vertebrates strongly support the hypothesis that the transmission ratio distortion in favor of Robertsonian translocations in the human results from the preferential segregation of chromosomes during the first meiotic division. This non-Mendelian inheritance will result in increased overall risk of aneuploidies in the families of Robertsonian translocation carriers, independently of the origin of the transmission ratio distortion.  相似文献   

11.
There is a simple correspondence between discrete dynamical systems associated with evolutionary game dynamics and general locus multiallele selection models with non-Mendelian segregation. When interpreted properly the payoff matrix has two components, a fitness matrix component and a segregation matrix component. The presence of segregation distortion which corresponds to a non-symmetric payoff matrix, is a source of instability. With non-symmetric payoff an ESS does not usually correspond to a stable equilibrium. It is always externally stable but does not necessarily have an internally stable equilibrium.  相似文献   

12.
The consequences of cytoplasmic sex‐ratio distortion and host repression for the evolution of host sex‐determining mechanisms are examined. Analytical models and simulations are developed to investigate whether the interplay between sex‐ratio distorters and host masculinizers or resistance genes can cause heterogamety switching (changes between male and female heterogamety). Switches from female heterogamety to a system analogous to male heterogamety can occur when selection favours the spread of autosomal masculinizers. However, the evolutionary outcome depends on the type of repressor and costs associated with repression, and also on aspects of population structure. Under most conditions, systems evolved to a polymorphic sex‐determining state although many systems were characterized by numerical dominance of male heterogamety.  相似文献   

13.
Meiotic drive of chromosomal knobs reshaped the maize genome.   总被引:5,自引:0,他引:5  
Meiotic drive is the subversion of meiosis so that particular genes are preferentially transmitted to the progeny. Meiotic drive generally causes the preferential segregation of small regions of the genome; however, in maize we propose that meiotic drive is responsible for the evolution of large repetitive DNA arrays on all chromosomes. A maize meiotic drive locus found on an uncommon form of chromosome 10 [abnormal 10 (Ab10)] may be largely responsible for the evolution of heterochromatic chromosomal knobs, which can confer meiotic drive potential to every maize chromosome. Simulations were used to illustrate the dynamics of this meiotic drive model and suggest knobs might be deleterious in the absence of Ab10. Chromosomal knob data from maize's wild relatives (Zea mays ssp. parviglumis and mexicana) and phylogenetic comparisons demonstrated that the evolution of knob size, frequency, and chromosomal position agreed with the meiotic drive hypothesis. Knob chromosomal position was incompatible with the hypothesis that knob repetitive DNA is neutral or slightly deleterious to the genome. We also show that environmental factors and transposition may play a role in the evolution of knobs. Because knobs occur at multiple locations on all maize chromosomes, the combined effects of meiotic drive and genetic linkage may have reshaped genetic diversity throughout the maize genome in response to the presence of Ab10. Meiotic drive may be a major force of genome evolution, allowing revolutionary changes in genome structure and diversity over short evolutionary periods.  相似文献   

14.
Nonrandom segregation during meiosis: the unfairness of females   总被引:8,自引:0,他引:8  
Most geneticists assume that chromosome segregation during meiosis is Mendelian (i.e., each allele at each locus is represented equally in the gametes). The great majority of reports that discuss non-Mendelian transmission have focused on systems of gametic selection, such as the mouse t-haplotype and Segregation distorter in Drosophila, or on systems in which post-fertilization selection takes place. Because the segregation of chromosomes in such systems is Mendelian and unequal representation of alleles among offspring is achieved through gamete dysfunction or embryonic death, there is a common perception that true disturbances in the randomness of chromosome segregation are rare and of limited biological significance. In this review we summarize data on nonrandom segregation in a wide variety of genetic systems. Despite apparent differences between some systems, the basic requirements for nonrandom segregation can be deduced from their shared characteristics: i) asymmetrical meiotic division(s); ii) functional asymmetry of the meiotic spindle poles; and iii) functional heterozygosity at a locus that mediates attachment of a chromosome to the spindle. The frequency with which all three of these requirements are fulfilled in natural populations is unknown, but our analyses indicate that nonrandom segregation occurs with sufficient frequency during female meiosis, and in exceptional cases of male meiosis, that it has important biological, clinical, and evolutionary consequences. Received: 28 December 2000 / Accepted: 23 January 2001  相似文献   

15.
The abundance and composition of heterochromatin changes rapidly between species and contributes to hybrid incompatibility and reproductive isolation. Heterochromatin differences may also destabilize chromosome segregation and cause meiotic drive, the non-Mendelian segregation of homologous chromosomes. Here we use a range of genetic and cytological assays to examine the meiotic properties of a Drosophila simulans chromosome 4 (sim-IV) introgressed into D. melanogaster. These two species differ by ∼12–13% at synonymous sites and several genes essential for chromosome segregation have experienced recurrent adaptive evolution since their divergence. Furthermore, their chromosome 4s are visibly different due to heterochromatin divergence, including in the AATAT pericentromeric satellite DNA. We find a visible imbalance in the positioning of the two chromosome 4s in sim-IV/mel-IV heterozygote and also replicate this finding with a D. melanogaster 4 containing a heterochromatic deletion. These results demonstrate that heterochromatin abundance can have a visible effect on chromosome positioning during meiosis. Despite this effect, however, we find that sim-IV segregates normally in both diplo and triplo 4 D. melanogaster females and does not experience elevated nondisjunction. We conclude that segregation abnormalities and a high level of meiotic drive are not inevitable byproducts of extensive heterochromatin divergence. Animal chromosomes typically contain large amounts of noncoding repetitive DNA that nevertheless varies widely between species. This variation may potentially induce non-Mendelian transmission of chromosomes. We have examined the meiotic properties and transmission of a highly diverged chromosome 4 from a foreign species within the fruitfly Drosophila melanogaster. This chromosome has substantially less of a simple sequence repeat than does D. melanogaster 4, and we find that this difference results in altered positioning when chromosomes align during meiosis. Yet this foreign chromosome segregates at normal frequencies, demonstrating that chromosome segregation can be robust to major differences in repetitive DNA abundance.  相似文献   

16.
An aberrant chromosome 1 carrying an inverted fragment with two amplified DNA regions was isolated from natural populations of Mus musculus. A meiotic drive favouring the aberrant chromosome was previously demonstrated for heterozygous females. The cause for this was the preferential passage of the chromosome 1 to the oocyte. Genetic analysis made it possible to identify a two-component system conditioning the deviation from equal segregation of the homologues. The system consists of the postulated distorter and a responder. The distorter is located on the chromosome 1 distally to the responder, between the 1n and Pep 3 genes, the former acting on the responder when in the trans position. Polymorphism of the distorters was manifested as variation in their effect on the meiotic drive level in the laboratory strain and mice from natural populations.  相似文献   

17.
In hereditary retinoblastoma, different epidemiological studies have indicated a preferential paternal transmission of mutant retinoblastoma alleles to offspring, suggesting the occurrence of a meiotic drive. To investigate this mechanism, we analyzed sperm samples from six individuals from five unrelated families affected with hereditary retinoblastoma. Single-sperm typing techniques were performed for each sample by study of two informative short tandem repeats located either in or close to the retinoblastoma gene (RB1). The segregation probability of mutant RB1 alleles in sperm samples was assessed by use of the SPERMSEG program, which includes experimental parameters, recombination fractions between the markers, and segregation parameters. A total of 2,952 single sperm from the six donors were analyzed. We detected a significant segregation distortion in the data as a whole (P=.0099) and a significant heterogeneity in the segregation rate across donors (.0092). Further analysis shows that this result can be explained by segregation distortion in favor of the normal allele in one donor only and that it does not provide evidence of a significant segregation distortion in the other donors. The segregation distortion favoring the mutant RB1 allele does not seem to occur during spermatogenesis, and, thus, meiotic drive may result either from various mechanisms, including a fertilization advantage or a better mobility in sperm bearing a mutant RB1 gene, or from the existence of a defectively imprinted gene located on the human X chromosome.  相似文献   

18.
Ubeda F  Haig D 《Genetics》2005,170(3):1345-1357
We present a model of a primary locus subject to viability selection and an unlinked locus that causes sex-specific modification of the segregation ratio at the primary locus. If there is a balanced polymorphism at the primary locus, a population undergoing Mendelian segregation can be invaded by modifier alleles that cause sex-specific biases in the segregation ratio. Even though this effect is particularly strong if reciprocal heterozygotes at the primary locus have distinct viabilities, as might occur with genomic imprinting, it also applies if reciprocal heterozygotes have equal viabilities. The expected outcome of the evolution of sex-specific segregation distorters is all-and-none segregation schemes in which one allele at the primary locus undergoes complete drive in spermatogenesis and the other allele undergoes complete drive in oogenesis. All-and-none segregation results in a population in which all individuals are maximally fit heterozygotes. Unlinked modifiers that alter the segregation ratio are unable to invade such a population. These results raise questions about the reasons for the ubiquity of Mendelian segregation.  相似文献   

19.
We investigate the competition between alleles at a segregation distorter locus. The focus is on the invasion prospects of rare mutant distorter alleles in a population in which a wildtype and a resident distorter allele are present. The parameters are chosen to reflect the situation at the t complex of the house mouse, one of the best-studied examples of segregation distortion. By analyzing the invasion chances of rare alleles, we provide an analytical justification of earlier simulation results. We show that a new distorter allele can successfully invade even if it is inferior both at the gamete and at the individual level. In fact, newly arising distorter alleles have an inherent rareness advantage if their negative fitness consequences are restricted to homozygous condition. Likewise, rare mutant wildtype alleles may often invade even if their viability or fertility is reduced. As a consequence, the competition between alleles at a segregation distorter locus should lead to a high degree of polymorphism. We discuss the implications of this conclusion for the t complex of the house mouse and for the evolutionary stability of “honest” Mendelian segregation.  相似文献   

20.
The allelic segregation of 13 isozyme loci in hand-fertilized heterozygous cherimoya trees (Annona cherimola Mill.) has been studied. We analyzed 63 locus x progeny combinations and found non-Mendelian segregation in 12 cases. The sequential Bonferroni method revealed only eight cases of non-Mendelian segregation; these have been investigated with several chi-square tests to discover what processes were involved. Gametic selection appears to be the main contributor, although zygotic selection seems also to play a part.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号