首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mayer ML 《Neuron》2005,45(4):539-552
Little is known about the molecular mechanisms underlying differences in the ligand binding properties of AMPA, kainate, and NMDA subtype glutamate receptors. Crystal structures of the GluR5 and GluR6 kainate receptor ligand binding cores in complexes with glutamate, 2S,4R-4-methylglutamate, kainate, and quisqualate have now been solved. The structures reveal that the ligand binding cavities are 40% (GluR5) and 16% (GluR6) larger than for GluR2. The binding of AMPA- and GluR5-selective agonists to GluR6 is prevented by steric occlusion, which also interferes with the high-affinity binding of 2S,4R-4-methylglutamate to AMPA receptors. Strikingly, the extent of domain closure produced by the GluR6 partial agonist kainate is only 3 degrees less than for glutamate and 11 degrees greater than for the GluR2 kainate complex. This, together with extensive interdomain contacts between domains 1 and 2 of GluR5 and GluR6, absent from AMPA receptors, likely contributes to the high stability of GluR5 and GluR6 kainate complexes.  相似文献   

2.
Previous studies revealed a linkage of the kainate receptor GluR6 with autism, a pervasive developmental disorder. Mutational screening in autistic patients disclosed the amino acid exchange M836I in a highly conserved domain of the cytoplasmic C-terminal region of GluR6. Here, we show that this mutation leads to GluR6 gain-of-function. By using the two-electrode voltage clamp technique we observed a significant increase of current amplitudes of mutant GluR6 compared to wild type GluR6. Western blotting of oocytes injected with mutant or wild type GluR6 cRNA and transfection of EGFP-tagged GluR6 receptors into COS-7 cells revealed an enhanced plasma membrane expression of GluR6(M836I) compared to wild type GluR6. Membrane expression of GluR6(M836I) but not of wild type GluR6 seems to be regulated by Rab11 as indicated by our finding that GluR6(M836I) but not wild type GluR6 showed increased current amplitudes and protein expression when coexpressed with Rab11. Furthermore, injection of GTP plus Rab11A protein into oocytes increased current amplitudes in GluR6(M836I) but not in wild type GluR6. By contrast, Rab5 downregulated the currents in oocytes expressing wild type GluR6 but had only little, statistically not significant effects on currents in oocytes expressing GluR6(M836I). Our data on altered functional properties of GluR6(M836I) provide a functional basis for the postulated linkage of GluR6 to autism. Furthermore, we identified new mechanisms determining the plasma membrane abundance of wild type GluR6 and GluR6(M836I).  相似文献   

3.
A new ionotropic glutamate receptor subunit termed KA-2, cloned from rat brain cDNA, exhibits high affinity for [3H]kainate (KD approximately 15 nM). KA-2 mRNA is widely expressed in embryonic and adult brain. Homomeric KA-2 expression does not generate agonist-sensitive channels, but currents are observed when KA-2 is coexpressed with GluR5 or GluR6 subunits. Specifically, coexpression of GluR5(R) and KA-2 produces channel activity, whereas homomeric expression of either subunit does not. Currents through heteromeric GluR5(Q)/KA-2 channels show more rapid desensitization and different current-voltage relations when compared with GluR5(Q) currents. GluR6/KA-2 channels are gated by AMPA, which fails to gate homomeric GluR6 receptor channels. These results suggest possible in vivo partnership relations for high affinity kainate receptors.  相似文献   

4.
We tested the hypothesis that subtypes of glutamate receptors (GluRs) are differentially expressed during corticogenesis. The neocortex of fetal sheep (term = approximately 145 days) was evaluated by immunoblotting and immunohistochemistry to determine the protein expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (GluR1, GluR2/GluR3 [GluR2/3], and GluR4), kainate (KA) receptors (GluR6/GluR7 [GluR6/7]), and a metabotropic GluR (mGluR5). AMPA/KA receptors and mGluR5 were expressed in neocortex by midgestation. GluR1 and mGluR5 expression increased progressively, with expression being maximal just before birth and then decreasing postnatally. GluR2/3 and GluR6/7 levels increased progressively during corticogenesis to reach adult levels near term. GluR4 was expressed at low levels during corticogenesis and in adult neocortex. The localizations of GluRs in the developing neocortex were distinct. Each GluR had a differential localization within the marginal zone, cortical plate, and subplate. GluR subtypes were expressed in laminar patterns before major cytoarchitectonic segregation occurred based on Nissl staining, although connectional patterns were emergent by midgestation based on labeling of corticostriatal projections with DiI. The GluR localizations changed during cortical plate segregation, resulting in highly differential distributions in the neocortex at term. AMPA/KA receptors were expressed transiently in proliferative zones and in developing white matter. Oligodendrocytes in fetal brain expressed AMPA receptors. The expression of ion channel and metabotropic GluR subtypes is dynamic during corticogenesis, with subtype- and subunit-specific regulation occurring during the laminar segregation of the cortical plate and differentiation of the neocortex.  相似文献   

5.
Two 3-(5-tetrazolylmethoxy) analogues, 1a and 1b, of (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA), a selective AMPA receptor agonist, and (RS)-2-amino-3-(5-tert-butyl-3-hydroxy-4-isoxazolyl)propionic acid (ATPA), a GluR5-preferring agonist, were synthesized. Compounds 1a and 1b were pharmacologically characterized in receptor binding assays, and electrophysiologically on homomeric AMPA receptors (GluR1-4), homomeric (GluR5 and GluR6) and heteromeric (GluR6/KA2) kainic acid receptors, using two-electrode voltage-clamped Xenopus laevis oocytes expressing these receptors. Both analogues proved to be antagonists at all AMPA receptor subtypes, showing potencies (Kb=38-161 microM) similar to that of the AMPA receptor antagonist (RS)-2-amino-3-[3-(carboxymethoxy)-5-methyl-4-isoxazolyl]propionic acid (AMOA) (Kb=43-76 microM). Furthermore, the AMOA analogue, 1a, blocked two kainic acid receptor subtypes (GluR5 and GluR6/KA2), showing sevenfold preference for GluR6/KA2 (Kb=19 microM). Unlike the iGluR antagonist (S)-2-amino-3-[5-tert-butyl-3-(phosphonomethoxy)-4-isoxazolyl]propionic acid [(S)-ATPO], the corresponding tetrazolyl analogue, 1b, lacks kainic acid receptor effects. On the basis of docking to a crystal structure of the isolated extracellular ligand-binding core of the AMPA receptor subunit GluR2 and a homology model of the kainic acid receptor subunit GluR5, we were able to rationalize the observed structure-activity relationships.  相似文献   

6.
Abstract: Kainate (KA) is a potent neuroexcitatory agent that induces seizure and brain damage syndromes with increasing efficiency during maturation. It has been suggested that the selective neuronal damage induced by KA may result not only from its depolarizing actions, but also from intracellular accumulation of Ca2+. The effects of KA are mediated by specific high-affinity receptors, enriched in the hippocampus. Members of this class of receptors, GluR5 and GluR6, have been characterized by cDNA cloning. Ca2+ permeability of the GluR6 receptor is determined by editing in the corresponding RNA. We report here a rapid PCR-based approach to assess in all experimental conditions the levels of GluR5 and GluR6 editing in the transmembrane TMII region. We show that editing in both GluRS and GluR6 RNA is developmentally regulated and that different regions of the adult rat hippocampus demonstrate distinct levels of GluR6 editing.  相似文献   

7.
Subunit composition of kainate receptors in hippocampal interneurons   总被引:16,自引:0,他引:16  
Kainate receptor activation affects GABAergic inhibition in the hippocampus by mechanisms that are thought to involve the GluR5 subunit. We report that disruption of the GluR5 subunit gene does not cause the loss of functional KARs in CA1 interneurons, nor does it prevent kainate-induced inhibition of evoked GABAergic synaptic transmission onto CA1 pyramidal cells. However, KAR function is abolished in mice lacking both GluR5 and GluR6 subunits, indicating that KARs in CA1 stratum radiatum interneurons are heteromeric receptors composed of both subunits. In addition, we show the presence of presynaptic KARs comprising the GluR6 but not the GluR5 subunit that modulate synaptic transmission between inhibitory interneurons. The existence of two separate populations of KARs in hippocampal interneurons adds to the complexity of KAR localization and function.  相似文献   

8.
Twenty-four 4-alkylidene glutamic acids were synthesised and tested as potential subtype selective GluR5 and 6 ligands. It was found that a critical size of alkylidene group gave potent and selective GluR5 receptor agonists. LY339624 had Kis of 0.0326 and >100 microM on GluR5 and 6 receptors, respectively.  相似文献   

9.
10.
Summary 1. Glutamate is one of the main neurotransmitters in the retina. Its effects are mediated by a large number of ionotropic and metabotropic receptors. 2. The distribution of ionotropic AMPA receptor subunits GluR1–4, kainate receptor subunits GluR5–7 and KA2, as well as delta receptors 1–2 was studied in turtle retina. Indirect immunofluorescence was used to localize the different receptor subunits viewed using light microscopy. 3. Results show that all subunits, with excerption of GluR1 and GluR5, are widely distributed in the turtle retina. 4. They are mainly located in the both plexiform layers of the retina where punctate staining, a sign for synaptic localization, is observed. 5. The vast majority of the subunits possess specific pattern of staining that allow to suppose that they are involved in different retinal circuits. 6. It can be assumed that the GluR2/3 and GluR6/7 subunits are expressed on the dendrites of a subpopulation of bipolar cells that are immunopositive for α-isoform of protein kinase C (PKCα). The GluR2/3 and GluR6/7 subunits are most probably used by the same PKCα immunopositive bipolar cells in their synaptic contacts with the third-order retinal neurons, the amacrine and ganglion cells.  相似文献   

11.
12.
Kainate receptors (KARs) are heteromeric ionotropic glutamate receptors that play a variety of roles in the regulation of synaptic network activity. The function of glutamate receptors (GluRs) is highly dependent on their surface density in specific neuronal domains. Alternative splicing is known to regulate surface expression of GluR5 and GluR6 subunits. The KAR subunit GluR7 exists under different splice variant isoforms in the C-terminal domain (GluR7a and GluR7b). Here we have studied the trafficking of GluR7 splice variants in cultured hippocampal neurons from wild-type and KAR mutant mice. We have found that alternative splicing regulates surface expression of GluR7-containing KARs. GluR7a and GluR7b differentially traffic from the ER to the plasma membrane. GluR7a is highly expressed at the plasma membrane, and its trafficking is dependent on a stretch of positively charged amino acids also found in GluR6a. In contrast, GluR7b is detected at the plasma membrane at a low level and retained mostly in the endoplasmic reticulum (ER). The RXR motif of GluR7b does not act as an ER retention motif, at variance with other receptors and ion channels, but might be involved during the assembly process. Like GluR6a, GluR7a promotes surface expression of ER-retained subunit splice variants when assembled in heteromeric KARs. However, our results also suggest that this positive regulation of KAR trafficking is limited by the ability of different combinations of subunits to form heteromeric receptor assemblies. These data further define the complex rules that govern membrane delivery and subcellular distribution of KARs.  相似文献   

13.
14.
Desensitization is a universal feature of ligand-gated ion channels. Using the crystal structure of the GluR2 L483Y mutant channel as a guide, we attempted to build non-desensitizing kainate-subtype glutamate receptors. Success was achieved for GluR5, GluR6 and GluR7 with intermolecular disulfide cross-links but not by engineering the dimer interface. Crystallographic analysis of the GluR6 Y490C L752C dimer revealed relaxation from the active conformation, which functional studies reveal is not sufficient to trigger desensitization. The equivalent non-desensitizing cross-linked GluR2 mutant retained weak sensitivity to a positive allosteric modulator, which had no effect on GluR2 L483Y. These results establish that the active conformation of AMPA and kainate receptors is conserved and further show that their desensitization requires dimer rearrangements, that subtle structural differences account for their diverse functional properties and that the ligand-binding core dimer is a powerful regulator of ion-channel activity.  相似文献   

15.
16.
Kainate receptor (KAR) subunits are believed to be involved in abnormal GABAergic neurotransmission in the hippocampus (HIPP) in schizophrenia (SZ) and bipolar disorder. Postmortem studies have shown changes in the expression of the GluR5/6 subunits of KARs in the stratum oriens (SO) of sectors CA2/3, where the basolateral amygdala (BLA) sends a robust projection. Previous work using a rat model of SZ demonstrated that BLA activation leads to electrophysiological changes in fast-spiking interneurons in SO of CA2/3. The present study explores KAR modulation of interneurons in CA2/3 in response to BLA activation. Intrinsic firing properties of these interneurons through KAR-mediated activity were measured with patch-clamp recordings from rats that received 15 days of picrotoxin infusion into the BLA. Chronic BLA activation induced changes in the firing properties of CA2/3 interneurons associated with modifications in the function of KARs. Specifically, the responsiveness of these interneurons to activation of KARs was diminished in picrotoxin-treated rats, while the after-hyperpolarization (AHP) amplitude was increased. In addition, we tested blockers of KAR subunits which have been shown to have altered gene expression in SO sector CA2/3 of SZ subjects. The GluR5 antagonist UBP296 further decreased AP frequency and increased AHP amplitude in picrotoxin-treated rats. Application of the GluR6/7 antagonist NS102 suggested that activation of GluR6/7 KARs may be required to maintain the high firing rates in SO interneurons in the presence of KA. Moreover, the GluR6/7 KAR-mediated signaling may be suppressed in PICRO-treated rats. Our findings indicate that glutamatergic activity from the BLA may modulate the firing properties of CA2/3 interneurons through GluR5 and GluR6/7 KARs. These receptors are expressed in GABAergic interneurons and play a key role in the synchronization of gamma oscillations. Modulation of interneuronal activity through KARs in response to amygdala activation may lead to abnormal oscillatory rhythms reported in SZ subjects.  相似文献   

17.
We cultured a P19 mouse teratocarcinoma cell line and induced its neuronal differentiation to study the function of ionotropic glutamate receptors (GluRs) in early neuronal development. Immunocytochemical studies showed 85% neuronal population at 5 days in vitro (DIV) with microtubule-associated protein 2-positive staining. Thirty percent and 50% of the cells expressed the alpha-amino-3-hydroxy-5-methyl-4-isopropinonate (AMPA) receptor subunit, GluR2/3, and the kainate (kainic acid; KA) receptor subunit, GluR5/6/7, respectively. In Western blot analysis, the temporal expression of GluR2/3 began to appear at 3 DIV, whereas GluR5/6/7 was already expressed in the undifferentiated cells. P19-derived neurons began to respond to glutamate, AMPA and KA, but not to the metabotropic GluR agonist trans-1-aminocyclopentane-1,3-decarboxylic acid, by 5 DIV in terms of increases in intracellular calcium and phospholipase C-mediated poly-phosphoinositide turnover. Furthermore, KA reduced cell death of P19-derived neurons in both atmospheric and hypobaric conditions in a phospholipase C-dependent manner. The common AMPA/KA receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione, but not the AMPA receptor antagonist, 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide disodium, profoundly increased hypobaric insult-induced neurotoxicity. In a flow cytometry study, the nerve growth factor-mediated antiapoptotic effect was facilitated by AMPA, with an induction of TrkA, but not p75(NTR) expression. Therefore, AMPA and KA receptors might mediate neurotrophic functions to facilitate neurotrophic factor signaling to protect neurons against hypoxic insult in early neuronal development.  相似文献   

18.
Kainate receptors alter the excitability of mossy fiber axons and have been reported to play a role in the induction of long-term potentiation (LTP) at mossy fiber synapses in the hippocampus. These previous studies have relied primarily on the use of compounds whose selectivity is unclear. In this report, we investigate short- and long-term facilitation of mossy fiber synaptic transmission in kainate receptor knockout mice. We find that LTP is reduced in mice lacking the GluR6, but not the GluR5, kainate receptor subunit. Additionally, short-term synaptic facilitation is impaired in GluR6 knockout mice, suggesting that kainate receptors act as presynaptic autoreceptors on mossy fiber terminals to facilitate synaptic transmission. These data demonstrate that kainate receptors containing the GluR6 subunit are important modulators of mossy fiber synaptic strength.  相似文献   

19.
Glutamate receptor 6 (GluR6) is well documented to play a pivotal role in ischemic brain injury, which is mediated by the GluR6·PSD95·MLK3 signaling module and subsequent c-Jun N-terminal kinase (JNK) activation. Our recent studies show that GluR6 is S-nitrosylated in the early stages of ischemia-reperfusion. NO (Nitric Oxide) is mainly generated from neuronal nitric oxide synthase (nNOS) in cerebral neurons during the early stages of reperfusion. Here, the effect of nNOS downregulation on GluR6 S-nitrosylation and GluR6-mediated signaling was investigated in cerebral ischemia and reperfusion. Administration of nNOS oligonucleotides confirmed that GluR6 nitrosylation is induced by nNOS-derived endogenous NO and further activates the GluR6·PSD95·MLK3 signaling module and JNK signaling pathway. Moreover, this study revealed for the first time that nNOS can bind with GluR6 during ischemic reperfusion, and PSD95 is involved in this interaction. In summary, our results suggest that nNOS binds with GluR6 via PSD95 and then produces endogenous NO to S-nitrosylate GluR6 in cerebral ischemia-reperfusion, which provides a new approach for stroke therapy.  相似文献   

20.
The phosphono amino acid, (RS)-2-amino-3-[5-tert-butyl-3-(phosphonomethoxy)-4-isoxazolyl+ ++]propio nic acid (ATPO), is a structural hybrid between the NMDA antagonist (RS)-2-amino-7-phosphonoheptanoic acid (AP7) and the AMPA and GluR5 agonist, (RS)-2-amino-3-(5-tert-butyl-3-hydroxy-4-isoxazolyl)propionic acid (ATPA). ATPO has been resolved into (S)-ATPO and (R)-ATPO using chiral HPLC, and the absolute stereochemistry of the two enantiomers was established by an X-ray crystallographic analysis of (R)-ATPO. (S)-ATPO and (R)-ATPO were characterized pharmacologically using rat brain membrane binding and electrophysiologically using the cortical wedge preparation as well as homo- or heteromeric GluR1-4, GluR5-6, and KA2 receptors expressed in Xenopus oocytes. (R)-ATPO was essentially inactive as an agonist or antagonist in all test systems. (S)-ATPO was an inhibitor of the binding of [(3)H]AMPA (IC(50) = 16 +/- 1 microM) and of [(3)H]-6-cyano-7-nitroquinoxaline-2,3-dione ([(3)H]CNQX) (IC(50) = 1.8 +/- 0.2 microM), but was inactive in the [(3)H]kainic acid and the [(3)H]-(RS)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid ([(3)H]CPP) binding assays. (S)-ATPO did not show detectable agonist effects at any of the receptors under study, but antagonized AMPA-induced depolarization in the cortical wedge preparation (IC(50) = 15 +/- 1 microM). (S)-ATPO also blocked kainic acid agonist effects at GluR1 (K(i) = 2.0 microM), GluR1+2 (K(i) = 3.6 microM), GluR3 (K(i) = 3.6 microM), GluR4 (K(i) = 6.7 microM), and GluR5 (K(i) = 23 microM), but was inactive at GluR6 and GluR6+KA2. Thus, although ATPO is a structural analog of AP7 neither (S)-ATPO nor (R)-ATPO are recognized by NMDA receptor sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号