首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is generally considered that Parkinson's disease is induced by specific agents that degenerate a clearly defined population of dopaminergic neurons. Data commented in this review suggest that this assumption is not as clear as is often thought and that aging may be critical for Parkinson's disease. Neurons degenerating in Parkinson's disease also degenerate in normal aging, and the different agents involved in the etiology of this illness are also involved in aging. Senescence is a wider phenomenon affecting cells all over the body, whereas Parkinson's disease seems to be restricted to certain brain centers and cell populations. However, reviewed data suggest that Parkinson's disease may be a local expression of aging on cell populations which, by their characteristics (high number of synaptic terminals and mitochondria, unmyelinated axons, etc.), are highly vulnerable to the agents promoting aging. The development of new knowledge about Parkinson's disease could be accelerated if the research on aging and Parkinson's disease were planned together, and the perspective provided by gerontology gains relevance in this field.  相似文献   

2.
Aging (senescence) is characterized by a progressive accumulation of macromolecular damage, supposedly due to a continuous minor oxidative stress associated with mitochondrial respiration. Aging mainly affects long-lived postmitotic cells, such as neurons and cardiac myocytes, which neither divide and dilute damaged structures, nor are replaced by newly differentiated cells. Because of inherent imperfect lysosomal degradation (autophagy) and other self-repair mechanisms, damaged structures (biological "garbage") progressively accumulate within such cells, both extra- and intralysosomally. Defective mitochondria and aggregated proteins are the most typical forms of extralysosomal "garbage", while lipofuscin that forms due to iron-catalyzed oxidation of autophagocytosed or heterophagocytosed material, represents intralysosomal "garbage". Based on findings that autophagy is diminished in lipofuscin-loaded cells and that cellular lipofuscin content positively correlates with oxidative stress and mitochondrial damage, we have proposed the mitochondrial-lysosomal axis theory of aging, according to which mitochondrial turnover progressively declines with age, resulting in decreased ATP production and increased oxidative damage. Due to autophagy of ferruginous material, lysosomes contain a pool of redox-active iron, which makes these organelles particularly susceptible to oxidative damage. Oxidant-mediated destabilization of lysosomal membranes releases hydrolytic enzymes to the cytosol, eventuating in cell death (either apoptotic or necrotic depending on the magnitude of the insult), while chelation of the intralysosomal pool of redox-active iron prevents these effects. In relation to the onset of oxidant-induced apoptosis, but after the initiating lysosomal rupture, cytochrome c is released from mitochondria and caspases are activated. Mitochondrial damage follows the release of lysosomal hydrolases, which may act either directly or indirectly, through activation of phospholipases or pro-apoptotic proteins such as Bid. Additional lysosomal rupture seems to be a consequence of a transient oxidative stress of mitochondrial origin that follows the attack by lysosomal hydrolases and/or phospholipases, creating an amplifying loop system.  相似文献   

3.
4.
《Autophagy》2013,9(10):1633-1635
Mutations in the GBA gene encoding glucocerebrosidase cause Gaucher disease (GD), the most prevalent of the lysosomal storage disorders (LSDs) and increase susceptibility to Parkinson disease (PD). Clinically the two disorders can present in a similar manner with analogous pathological features, suggesting mechanistic links between the two disease states. An increasing body of evidence implicates defects in quality control pathways in both, and suggests that LSDs, as a group, can be classed as disorders of autophagy. Using a mouse model of type II neuronopathic GD, we observed global defects in cellular quality control pathways in midbrain neurons and astrocytes. Our data suggest that downregulation of autophagy, mitophagy, and the ubiquitin-proteasome system (UPS) results in accumulation of dysfunctional and fragmented mitochondria, insoluble SNCA/α-synuclein deposits and ubiquitinated proteins. These observations show that dysfunction of cellular quality control pathways lead to impaired energy and free radical homeostasis, providing new insights into the mechanisms of neurodegeneration in GD and illuminating the links between GD and PD.  相似文献   

5.
Mitochondria and other membranous organelles are frequently enriched in the nodes and paranodes of peripheral myelinated axons, particularly those of large caliber. The physiologic role(s) of this organelle enrichment and the rheologic factors that regulate it are not well understood. Previous studies suggest that axonal transport of organelles across the nodal/paranodal region is locally regulated. In this study, we have examined the ultrastructure of myelinated axons in the sciatic nerves of mice deficient in the contactin-associated protein (Caspr), an integral junctional component. These mice, which lack the normal septate-like junctions that promote attachment of the glial (paranodal) loops to the axon, contain aberrant mitochondria in their nodal/paranodal regions. These mitochondria are typically large and swollen and occupy prominent varicosities of the nodal axolemma. In contrast, mitochondria located outside the nodal/paranodal regions of the myelinated axons appear normal. These findings suggest that paranodal junctions regulate mitochondrial transport and function in the axoplasm of the nodal/paranodal region of myelinated axons of peripheral nerves. They further implicate the paranodal junctions in playing a role, either directly or indirectly, in the local regulation of energy metabolism in the nodal region.  相似文献   

6.
All life processes are subject to time constraints. At the cellular level, damage repair and cell cycle arrest are interrelated, allowing sufficient time for repair prior to cell cycle progression. Organisms have evolved so that developmental timing is linked to environmental conditions, such as nutrient availability and predation. Recent results in mammals regarding species-specific differences in cell cycle arrest and DNA damage suggest that a stable cell cycle arrest is a feature of longer-lived species. The implication of these results is that longer-lived species delay cell cycle progression to a greater degree than shorter-lived species, allowing for higher fidelity repair. We suggest that the ability to devote longer periods of time to repair and maintenance is a key feature of longer-lived species, and that evolutionary pressure to complete repair and resume cell division is a determinant of species lifespan. Thus, time is a resource that must be managed by the organism to attempt to maximize the fidelity of repair while completing development and reproduction in the limited window of opportunity afforded by environmental pressures. This viewpoint on time as a resource has implications for theories regarding the aging process and the development of species lifespan.  相似文献   

7.
8.
If life were created by intelligent design, we would indeed age from accumulation of molecular damage. Repair is costly and limited by energetic resources, and we would allocate resources rationally. But, albeit elegant, this design is fictional. Instead, nature blindly selects for short-term benefits of robust developmental growth. “Quasi-programmed” by the blind watchmaker, aging is a wasteful and aimless continuation of developmental growth, driven by nutrient-sensing, growth-promoting signaling pathways such as MTOR (mechanistic target of rapamycin). A continuous post-developmental activity of such gerogenic pathways leads to hyperfunctions (aging), loss of homeostasis, age-related diseases, non-random organ damage and death. This model is consistent with a view that (1) soma is disposable, (2) aging and menopause are not programmed and (3) accumulation of random molecular damage is not a cause of aging as we know it.  相似文献   

9.
1. Injection of rats with glucagon leads to an increased effective activity of glutaminase in subsequently isolated liver mitochondria. 2. This effect of glucagon is manifested as a decreased requirement of glutaminase for phosphate in the presence of HCO3-. The HCO3--concentration-dependence is unchanged. 3. The effect of glucagon is lost on disruption of the mitochondria. 4. In accordance with previous reports, incubation of mitochondria in hypo-osmotic media also increases the effective activity of glutaminase. Glucagon increases glutamine hydrolysis at intermediate osmolarities of the suspending medium, but does not affect glutaminase activity when it is already maximally activated by hypo-osmotic conditions. 5. From this and previous work, it seems that hypo-osmotic incubation conditions, EDTA and glucagon may all activate glutaminase by a common mechanism. It is postulated that this mechanism involves modification of the interaction of glutaminase with the mitochondrial inner membrane.  相似文献   

10.
Reliability theory is a general theory about systems failure. It allows researchers to predict the age-related failure kinetics for a system of given architecture (reliability structure) and given reliability of its components. Reliability theory predicts that even those systems that are entirely composed of non-aging elements (with a constant failure rate) will nevertheless deteriorate (fail more often) with age, if these systems are redundant in irreplaceable elements. Aging, therefore, is a direct consequence of systems redundancy. Reliability theory also predicts the late-life mortality deceleration with subsequent leveling-off, as well as the late-life mortality plateaus, as an inevitable consequence of redundancy exhaustion at extreme old ages. The theory explains why mortality rates increase exponentially with age (the Gompertz law) in many species, by taking into account the initial flaws (defects) in newly formed systems. It also explains why organisms "prefer" to die according to the Gompertz law, while technical devices usually fail according to the Weibull (power) law. Theoretical conditions are specified when organisms die according to the Weibull law: organisms should be relatively free of initial flaws and defects. The theory makes it possible to find a general failure law applicable to all adult and extreme old ages, where the Gompertz and the Weibull laws are just special cases of this more general failure law. The theory explains why relative differences in mortality rates of compared populations (within a given species) vanish with age, and mortality convergence is observed due to the exhaustion of initial differences in redundancy levels. Overall, reliability theory has an amazing predictive and explanatory power with a few, very general and realistic assumptions. Therefore, reliability theory seems to be a promising approach for developing a comprehensive theory of aging and longevity integrating mathematical methods with specific biological knowledge.  相似文献   

11.
12.
13.
We generated mice with deletion mutant mtDNA by its introduction from somatic cells into mouse zygotes. Expressions of disease phenotypes are limited to tissues expressing mitochondrial dysfunction. Considering that all these mice share the same nuclear background, these observations suggest that accumulation of the mutant mtDNA and resultant expressions of mitochondrial dysfunction are responsible for expression of disease phenotypes. On the other hand, mitochondrial dysfunction and expression of clinical abnormalities were not observed until the mutant mtDNA accumulated predominantly. This protection is due to the presence of extensive and continuous interaction between exogenous mitochondria from cybrids and recipient mitochondria from embryos. Thus, we would like to propose a new hypothesis on mitochondrial biogenesis, interaction theory of mitochondria: mammalian mitochondria exchange genetic contents, and thus lost the individuality and function as a single dynamic cellular unit.  相似文献   

14.
On the basis of the experimental discovery of characteristic eigenfrequencies of the human body, the living organism is considered as a quantum system and a dissipative structure, the long-range coherence of which is provided by electromagnetic interaction.Among dissipative structures a special class is discerned for stable intact systems. Included along with living objects in this class are other fundamental structural material units with discrete characteristic frequencies of single-particle type (the nucleus, atom, molecule).  相似文献   

15.
The mitochondrial theory of aging   总被引:3,自引:0,他引:3  
Mitochondria are not only the main source of energy for most eukaryotic cells, but also the main source of free radicals. These reactive molecules can damage all components of a cell such as membranes, proteins and DNA. Therefore they have long been suspected to be involved in the biological aging process. The fact that mitochondria posses their own genetic material (mtDNA) and that they only have a limited arsenal of DNA repair processes makes them one of the prime targets for reactive oxygen species. The idea that genetically damaged mitochondria accumulate with time and are causally responsible for the aging phenotype via a disturbed energy budget is at the core of the so called mitochondrial theory of aging. In recent years this idea has gained impetus from the discovery of mitochondrial diseases and mtDNA deletions in old organisms. However, there are still many open questions regarding the mechanism of the accumulation of these deletions and their physiological relevance. This review is therefore intended to give an overview of the current state of the mitochondrial theory of aging and to discuss some recent experimental findings.  相似文献   

16.
The dependence of the frequency of occurrence of excitation vortices rotating around unexcitable obstacles on the size and the number of the obstacles and also on the medium excitation threshold was studied. It was shown that the vortex formation takes place in a wide range of the model parameter values. The assumption was formulated that the mechanism of formation of excitation vortices under study underlies the increase in the heart arrhythmias associated with aging.  相似文献   

17.
The human erythrocyte does not behave as a perfect osmometer that is its volume does not change as predicted with the change of the tonicity of the medium, as if there was a fraction of the cell water not participating in the osmotic exchange. A mechanism of control of the erythrocyte shape has been previously proposed in which Band 3 (AE1), the protein anion exchanger of Cl(-) and HCO(3)(-), plays a central role. Specifically, decrease and increase of the ratio of its outward-facing conformation and inward-facing conformation (Band 3(o)/Band 3(i)) contract and relax the membrane skeleton, thus favoring echinocytosis and stomatocytosis, respectively. The equilibrium Band 3(o)/Band 3(i) ratio is determined by the Donnan equilibrium ratio of anions and protons, increasing with it (r=Cl(i)(-)/Cl(o)(-)=HCO 3(i)(-)/HCO 3(o)(-)=H(o)(+)/H(i)(+)). The Donnan ratio is influenced by the erythrocyte transport and metabolic activities. The volume change of the human erythrocyte alters the skeleton conformation as it is accompanied by a change of the membrane curvature. Thus, the mechanism could be a hypothesis for explaining the behavior of the human erythrocyte as an imperfect osmometer since the Donnan ratio controls the Band 3(o)/Band 3(i) ratio which controls the volume by a control of the degree of contraction or relaxation of the skeleton. Predictions made by the hypothesis on the Ponder's coefficient R' values in the presence of sucrose or Band 3 substrates slowly transported as well as on the participation of Band 3 in the osmotic hemolysis appear to be corroborated by previous observations. If the hypothesis was valid, it would follow that there is a pressure gradient across the erythrocyte membrane. The equilibrium volume is antagonistically determined by the Donnan ratio per se and Band 3. Band 3, rather than the ratio of surface-to-volume, primarily controls the osmotic hemolysis.  相似文献   

18.
The Immune Theory of Aging cannot explain the cause of immune decline. It is hypothesized that the pineal gland acting in utero and during neonatal life in altricial mammals serves as a component of the immune system. Evidence in support of the presence of a thymus-pineal axis is presented. It is postulated that the pineal gland carries a considerable burden of immunological defense during maturation of the thymus, and also acts in the programming of the immune system. By relating thymus and immune function to the pineal and its known role as a neuroendocrine transducer for the entrainment and control of biorhythms, a consilence is developed between the role of the immune system in senescence and the pineal function in biorhythmicity. The relationships developed thus permit an extension of the immune theory as regards causative mechanisms.  相似文献   

19.
Based on a series of experiments, using cultured postmitotic neonatal rat cardiac myocytes as a model system, we present a novel hypothesis of lipofuscin formation. This hypothesis proposes that lipofuscin is formed within secondary lysosomes due to an interplay of two processes, the production of partially reduced oxygen species by mitochondria and the autophagocytotic degradation within secondary lysosomes. Specifically, it is proposed that H2O2 generated by mitochondria and other organelles permeates into the lumen of secondary lysosomes, which contain iron derived from cellular structures undergoing intralysosomal degradation. The interaction between reactive ferrous iron and H2O2 results, via Fenton-type mechanisms, in the generation of hydroxyl free radicals (OH), inducing lipid peroxidation and eventually leading to intermolecular cross-linking and lipofuscin formation. Additionally, mitochondria undergoing intralysosomal decomposition might continue for a certain period to produce superoxide anion radicals (O2-) and thus also H2O2. This model of lipofuscinogenesis could satisfactorily explain the variations observed in the rates of lipofuscinogenesis among different postmitotic cell types in various species. Such variations might arise from a variety of factors including differences in the efficiency of the 'anti-oxidative shield', rate of H2O2 generation, amount of chain-breaking antioxidants, mode of intralysosomal iron chelation, rate of autophagocytosis as well as degree of efficiency of the intralysosomal hydrolytic enzymes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号