首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Rose Bengal (tetrachloro-tetraiodo-fluorescein) was not able to limit the spreading growth of the ligninolytic fungus, Phanerochaete chrysosporium in the presence of Tween 80, and when added to the 5 d old liquid cultures of this organism it was almost completely degraded in 5 h. Thin layer chromatography analysis showed the formation of a single degradation product.  相似文献   

2.
Umwounded raspberry canes were inoculated with Leptosphaeria coniothyrium. After penetration of the epidermis the fungus invaded the cortex readily. The accumulation of mycelium in this tissue lead to a partial digestion of the middle lamellae of the outermost cork layer within the polyderm. The fungus penetrated this single cell barrier through the openings between the separated cells and colonized the phelloid tissue between the first and second cork layer. After vigorous growth in this non-suberized tissue the fungus penetrated the second cork barrier in the same way as the first layer. This mode of penetration was repeated until the fungus had spread beyond the periderm and into the vascular tissues. The invasion process occurred rather slowly and was enhanced by weakening of the canes by defoliation at the time of inoculation.  相似文献   

3.
4.
The contribution of CD8 T cells in host defense against histoplasmosis is minor in the CD4 T cell-intact mouse, as it has been shown that depleting CD8 T cells only marginally affects fungal clearance. However, it remains to be determined whether the CD8 T cells are protective in a host lacking functional CD4 T cells. In this study, MHC class II-deficient mice infected with Histoplasma capsulatum (Histoplasma) kept the fungus in check for up to 16 wk, indicating that CD8 T cells are able to limit fungal replication. Ex vivo studies showed that CD8 T cells from Histoplasma-infected mice expressed both intracytoplasmic IFN-gamma and granzyme B. Furthermore, CD8 T cells exhibited cytotoxic activity against macrophage targets containing Histoplasma. We demonstrated that the macrophage, being the primary host cell as well as the effector cell, can also serve as Ag donor to dendritic cells. Histoplasma-specific CD8 T cells are stimulated by dendritic cells that present exogenous Histoplasma Ags, either through direct ingestion of yeasts or through uptake of apoptotic macrophage-associated fungal Ags, a process known as "cross-presentation." Based on these results, we present a model detailing the possible sequence of events leading to a cell-mediated immune response and fungal clearance in Histoplasma-infected hosts.  相似文献   

5.
Extensive biodegradation of pentachlorophenol (PCP) by the white rot fungus Phanerochaete chrysosporium was demonstrated by the disappearance and mineralization of [14C]PCP in nutrient nitrogen-limited culture. Mass balance analyses demonstrated the formation of water-soluble metabolites of [14C]PCP during degradation. Involvement of the lignin-degrading system of this fungus was suggested by the fact the time of onset, time course, and eventual decline in the rate of PCP mineralization were similar to those observed for [14C]lignin degradation. Also, a purified ligninase was shown to be able to catalyze the initial oxidation of PCP. Although biodegradation of PCP was decreased in nutrient nitrogen-sufficient (i.e., nonligninolytic) cultures of P. chrysosporium, substantial biodegradation of PCP did occur, suggesting that in addition to the lignin-degrading system, another degradation system may also be responsible for some of the PCP degradation observed. Toxicity studies showed that PCP concentrations above 4 mg/liter (15 microM) prevented growth when fungal cultures were initiated by inoculation with spores. The lethal effects of PCP could, however, be circumvented by allowing the fungus to establish a mycelial mat before adding PCP. With this procedure, the fungus was able to grow and mineralize [14C]PCP at concentrations as high as 500 mg/liter (1.9 mM).  相似文献   

6.
Extensive biodegradation of pentachlorophenol (PCP) by the white rot fungus Phanerochaete chrysosporium was demonstrated by the disappearance and mineralization of [14C]PCP in nutrient nitrogen-limited culture. Mass balance analyses demonstrated the formation of water-soluble metabolites of [14C]PCP during degradation. Involvement of the lignin-degrading system of this fungus was suggested by the fact the time of onset, time course, and eventual decline in the rate of PCP mineralization were similar to those observed for [14C]lignin degradation. Also, a purified ligninase was shown to be able to catalyze the initial oxidation of PCP. Although biodegradation of PCP was decreased in nutrient nitrogen-sufficient (i.e., nonligninolytic) cultures of P. chrysosporium, substantial biodegradation of PCP did occur, suggesting that in addition to the lignin-degrading system, another degradation system may also be responsible for some of the PCP degradation observed. Toxicity studies showed that PCP concentrations above 4 mg/liter (15 microM) prevented growth when fungal cultures were initiated by inoculation with spores. The lethal effects of PCP could, however, be circumvented by allowing the fungus to establish a mycelial mat before adding PCP. With this procedure, the fungus was able to grow and mineralize [14C]PCP at concentrations as high as 500 mg/liter (1.9 mM).  相似文献   

7.
Fungal hydrophobins are amphipathic self-assembling proteins. Vmh2 hydrophobin, prepared from mycelial cultures of the basidiomycete fungus Pleurotus ostreatus, spontaneously forms a stable and homogeneous layer on solid surfaces and is able to strongly absorb proteins even in their active forms. In this work, we have exploited the Vmh2 self-assembled layer as a novel coating of a matrix-assisted laser desorption/ionization (MALDI) steel sample-loading plate. Mixtures of standard proteins, as well as tryptic peptides, in the nanomolar–femtomolar range were analyzed in the presence of salts and denaturants. As evidence on a real complex sample, crude human serum was also analyzed and spectra over a wide mass range were acquired. A comparison of this novel coating method with both standard desalting techniques and recently reported on-plate desalting methods was also performed. The results demonstrate that Vmh2 coating of MALDI plates allows for a very simple and effective desalting method suitable for development of lab-on-a-plate platforms focused on proteomic applications.  相似文献   

8.
蝉花的人工培养及其药理作用研究   总被引:1,自引:0,他引:1  
蝉拟青霉(Paecilomyces cicadae)在马铃薯-蔗糖,Richnrd,Czapek等液体培养基上,室温静培14天,液面形成菌膜,产生大量产孢结构和分生孢子。深层培养只长菌丝团,未见有分生孢子产生。在一些自然基物上,菌丝体生长繁茂,并形成和寄主体上生长相似的孢梗束。蝉花及其人工培养物,经药理学实验显示出明显的镇痛、镇静和解热等功效。  相似文献   

9.
The fungus, Histoplasma capsulatum, produces a persistent infection. Reactivation histoplasmosis is largely a result of impaired immunity, but the perturbations associated with escape of the fungus from host defenses remain ill-defined. We analyzed a murine model of reactivation to elucidate the host defects that permit reactivation. C57BL/6 mice were infected intranasally and, 42 days later, they were depleted of CD4(+) and CD8(+) cells. Elimination of these cells, but not either alone, produced a persistent infection over several weeks. Neutralization of IFN-gamma, TNF-alpha, or both did not induce reactivation. Endogenous IL-10 exacerbated reactivation. Depletion of T cells in B cell(-/-) mice induced a markedly higher burden in organs when compared with wild type. However, the infection remained persistent. Elimination of CD4(+) cells alone or neutralization of cytokines increased the fungal load. The persistent infection was not dependent on gammadelta T cells or NK cells. Elimination of Thy-1.2(+) cells in mice given mAb to CD4 and CD8 transformed reactivation into a progressive, lethal infection in B cell(-/-) and wild-type mice, but the tempo of progression was accelerated in the former. The data reveal the complex control by the host to prevent reactivation of this fungus.  相似文献   

10.
A formaldehyde-degrading fungus was isolated from deep sea sediment of East Pacific by enrichment culture technique and was identified as Penicillium chrysogenum DY-F2 based on microscopic spore morphology and 18S rRNA gene sequence analysis. The fungus showed high formaldehyde resistance and was able to grow in the presence of formaldehyde up to 3000 mg l−1. The optimal temperature and pH for the growth of fungus in the presence of 1000 mg l−1 of formaldehyde was 25 °C and 6.0, respectively. The fungus was able to degrade formaldehyde as the sole source of carbon and energy with the formation of formic acid as the intermediate. Degradation of formaldehyde by the fungus conformed to a first-order kinetic model. This study showed that the deep sea sediment fungi are the potential microbial resources for bioremediation of formaldehyde pollution in marine environment.  相似文献   

11.
Consumption of hexoses and pentoses and production of ethanol by Mucor indicus were investigated in both synthetic media and dilute-acid hydrolyzates. The fungus was able to grow in a poor medium containing only carbon, nitrogen, phosphate, potassium, and magnesium sources. However, the cultivation took more than a week and the ethanol yield was only 0.2 gg(-1). Enrichment of the medium by addition of trace metals, particularly zinc and yeast extract, improved the growth rate and yield, such that the cultivation was completed in less than 24 h and the ethanol and biomass yields were increased to 0.40 and 0.20 gg(-1), respectively. The fungus was able to assimilate glucose, galactose, mannose, and xylose, and produced ethanol with yields of 0.40, 0.34, 0.39, and 0.18 gg(-1), respectively. However, arabinose was poorly consumed and no formation of ethanol was detected. Glycerol was the major by-product in the cultivation on the hexoses, while formation of glycerol and xylitol were detected in the cultivation of the fungus on xylose. The fungus was able to take up the sugars present in dilute-acid hydrolyzate as well as the inhibitors, acetic acid, furfural, and hydroxymethyl furfural. M. indicus was able to grow under anaerobic conditions when glucose was the sole carbon source, but not on xylose or the hydrolyzate. The yield of ethanol in anaerobic cultivation on glucose was 0.46 g g(-1).  相似文献   

12.
Manganese peroxidase (MnP) is the one of the important ligninolytic enzymes produced by lignin-degrading fungi which has the great application value in the field of environmental biotechnology. Searching for new MnP with stronger tolerance to metal ions and organic solvents is important for the maximization of potential of MnP in the biodegradation of recalcitrant xenobiotics. In this study, it was found that oxalic acid, veratryl alcohol and 2,6-Dimehoxyphenol could stimulate the synthesis of MnP in the white-rot fungus Irpex lacteus CD2. A novel manganese peroxidase named as CD2-MnP was purified and characterized from this fungus. CD2-MnP had a strong capability for tolerating different metal ions such as Ca2+, Cd2+, Co2+, Mg2+, Ni2+ and Zn2+ as well as organic solvents such as methanol, ethanol, DMSO, ethylene glycol, isopropyl alcohol, butanediol and glycerin. The different types of dyes including the azo dye (Remazol Brilliant Violet 5R, Direct Red 5B), anthraquinone dye (Remazol Brilliant Blue R), indigo dye (Indigo Carmine) and triphenylmethane dye (Methyl Green) as well as simulated textile wastewater could be efficiently decolorized by CD2-MnP. CD2-MnP also had a strong ability of decolorizing different dyes with the coexistence of metal ions and organic solvents. In summary, CD2-MnP from Irpex lacteus CD2 could effectively degrade a broad range of synthetic dyes and exhibit a great potential for environmental biotechnology.  相似文献   

13.
An isolated fungus, Aspergillus foetidus was found to effectively decolorize media containing azo reactive dyes namely, Drimarene dyes. The extent of color removal was greater than 95% within 48 h of growth of the fungus. The entire color was found to be strongly bioadsorbed to the rapidly settling fungal biomass pellets without undergoing significant biotransformation. Our investigations reveal that the process of decolorization is concomitant with the exponential growth phase of the fungus and has requirement for a biodegradable substrate such as glucose. The fungus was also able to decolorize media containing mixture of dyes to an extent of 85% within 72 h of growth. Kinetic analyses of fungal decolorization indicate that the process is time dependent and follows first order kinetics with respect to initial concentration of dye. The rates of color uptake (k values) decrease to a significant extent with increasing initial concentrations of dye. The fungus was able to grow and decolorize media in the presence of 5 ppm of chromium and 1% sodium chloride. An alternate and cheaper carbon source such as starch supported the growth and decolorization process. These results suggest that dye uptake process mediated by A. foetidus has a potential for large-scale treatment of textile mill discharges.  相似文献   

14.
A lead resistant fungus was isolated from the Pacific sediment. It was associated with Penicillium according to its partial sequences of 18S and ITS. The fungus could grow in the presence of 24 mM Pb(NO3)2 in a liquid medium, and no growth inhibition was observed at 4 mM and below. When growing in the presence of 4 mM Pb(NO3)2, the fungus accumulated a large amount of lead granules in the cell, as well as adsorbed on the outer layer of cell wall, as observed under a transmission electron microscope. The intracellular lead deposited either in the vicinity of the cytoplasm membrane or in the vacuoles, and also could aggregate into large particles in the cytoplasm. However, lead was not adsorbed on the thick inner wall of the fungus. Energy dispersive X-ray spectroscopy analysis showed that these granules or particles mainly consisted of lead, and other elements could hardly be detected. Selected area electron diffraction analysis showed that there were regular crystalline lattices in the lead precipitates, indicating that they were actually in the form of crystals to some extent. Therefore, both intracellular bioaccumulation and extracellular biosorption had contributed to the high resistance of this fungus to lead. These results suggest that this fungus can be used in biotreatment as a lead trapper.  相似文献   

15.
The aim of this study is to develop magnetically loaded nanosorbents carrying specific monoclonal antibodies (namely CD105 and CD73) for separation of mesenchymal stem cells from cell suspensions. Super-paramagnetic magnetite (Fe3O4) nanoparticles were produced and then coated with a polymer layer containing carboxylic acid functional groups (average diameter: 153 nm and polydispersity index: 0.229). In order to obtain the nanosorbents, the monoclonal antibodies were immobilized via these functional groups with quite high coupling efficiencies up to 80%. These nanosorbents and also a commercially available one (i.e., microbeads carrying CD105 antibodies from Miltenyi Biotec., Germany) were used for separation of CD105+ and CD73+ mesenchymal stem cells from model cell suspension composed of peripheral blood (97.6%), human bone marrow cells (1.2%) and fibroblastic cells (1.2%). The initial concentrations of the CD105+ and CD73+ cells in this suspension were measured as 5.86% and 6.56%, respectively. A flow-through separation system and a very simple homemade batch separator unit were used. We were able to increase the concentration of CD105+ cells up to about 86% in the flow-through separation system with the nanosorbents produced in this study, which was even significantly better than the commercial one. The separation efficiencies were also very high, especially for the CD73+ cells (reached to about 64%) with the very simple and inexpensive homemade batch unit.  相似文献   

16.
In a previous study, a spontaneous subtilisin pr1A and pr1B gene-deficient mutant of the entomopathogenic fungus Metarhizium anisopliae strain V275 has been identified [Wang, C.-S. et al. (2002) FEMS Microbiol. Lett. 213, 251-255]. The insecticidal metabolites of this mutant were studied further. High-performance liquid chromatography (HPLC) analysis indicated that the mutant isolate lost the ability to produce cyclic peptide toxins, destruxins, both in vitro and in vivo. Pulsed-field gel electrophoresis revealed that the mutant concurrently lost a 1.05 Mb (approximately) chromosome, demonstrating for the first time that a conditionally dispensable (CD) chromosome exists in the insect pathogenic fungus, M. anisopliae. Concurrence of losing the ability to produce destruxins and a CD chromosome in the mutant suggests that the toxin synthetase genes of M. anisopliae are located on this CD chromosome, as similarly described for plant pathogenic fungi. Semi-quantitative api ZYM analysis showed more biochemical disparities between the mutant and the wild-type strain.  相似文献   

17.
A method of preparing a thin polymer layer able to recognize double-stranded DNA (dsDNA) was developed by using 2-vinyl-4,6-diamino-1,3,5-triazine (VDAT) as a functional monomer for creating a DNA-imprinted polymer. The formation of hydrogen bonds between VDAT and A-T base pairs in dsDNA was confirmed by measuring the effects of VDAT on the melting point and the NMR and CD spectra of dsDNA. An imprinted polymer that can recognize dsDNA of the verotoxin gene was prepared by polymerizing VDAT, acrylamide, a crosslinking agent, and the template verotoxin dsDNA on a silanized glass surface. The specificity of this polymer layer for binding verotoxin dsDNA was investigated by using fluorescent-labelled dsDNAs. The fluorescence intensity of the polymer layer after binding verotoxin dsDNA was twice as high as after binding oligo(dG)-oligo(dC), indicating that verotoxin dsDNA was preferentially bound to the polymer imprinted with verotoxin dsDNA. The kinetics of verotoxin dsDNA binding to the imprinted polymer were analyzed by surface plasmon resonance measurements. The dissociation constant (KD) was low, of the order of 10(-9)M.  相似文献   

18.
Biodegradation of crystal violet (N,N,N',N',N',N'-hexamethylpararosaniline) in ligninolytic (nitrogen-limited) cultures of the white rot fungus Phanerochaete chrysosporium was demonstrated by the disappearance of crystal violet and by the identification of three metabolites (N,N,N',N',N'-pentamethylpararosaniline, N,N,N',N'-tetramethylpararosaniline, and N,N',N'-trimethylpararosaniline) formed by sequential N-demethylation of the parent compound. Metabolite formation also occurred when crystal violet was incubated with the extracellular fluid obtained from ligninolytic cultures of this fungus, provided that an H2O2-generating system was supplied. This, as well as the fact that a purified ligninase catalyzed N-demethylation of crystal violet, demonstrated that biodegradation of crystal violet by this fungus is dependent, at least in part, upon its lignin-degrading system. In addition to crystal violet, six other triphenylmethane dyes (pararosaniline, cresol red, bromphenol blue, ethyl violet, malachite green, and brilliant green) were shown to be degraded by the lignin-degrading system of this fungus. An unexpected result was the finding that substantial degradation of crystal violet also occurred in nonligninolytic (nitrogen-sufficient) cultures of P. chrysosporium, suggesting that in addition to the lignin-degrading system, another mechanism exists in this fungus which is also able to degrade crystal violet.  相似文献   

19.
The ability of the soil fungus Rhizoctonia solani to degrade phenyl-substituted urea herbicides was investigated. The fungus was able to transform chlorbromuron [3-(3-chloro-4-bromophenyl)-1-methyl-1-methoxyurea] to the demethylated product [3-(3-chloro-4-bromophenyl)-1-methoxyurea], which was isolated and identified. Evidence was obtained that further degradation of chlorbromuron occurred. Several other phenylurea compounds (chloroxuron, diuron, fenuron, fluometuron, linuron, metobromuron, neburon, and siduron) were also metabolized by the fungus, indicating that R. solani may possess a generalized ability to attack this group of herbicides.  相似文献   

20.
The inherent resistance to diseases caused by Aspergillus fumigatus suggests the occurrence of regulatory mechanisms that provide the host with adequate defense without necessarily eliminating the fungus or causing unacceptable levels of host damage. In this study, we show that a division of labor occurs between functionally distinct regulatory T cells (Treg) that are coordinately activated by a CD28/B-7-dependent costimulatory pathway after exposure of mice to Aspergillus conidia. Early in infection, inflammation is controlled by the expansion, activation and local recruitment of CD4+CD25+ Treg capable of suppressing neutrophils through the combined actions of IL-10 and CTLA-4 on indoleamine 2,3-dioxygenase. The levels of IFN-gamma produced in this early phase set the subsequent adaptive stage by conditioning the indoleamine 2,3-dioxygenase-dependent tolerogenic program of dendritic cells and the subsequent activation and expansion of tolerogenic Treg, which produce IL-10 and TGF-beta, inhibit Th2 cells, and prevent allergy to the fungus. The coordinate activation of Treg may, however, be subverted by the fungus, as germinating conidia are capable of interfering with anti-inflammatory and tolerogenic Treg programs. Thus, regulation is an essential component of the host response in infection and allergy to the fungus, and its manipulation may allow the pathogen to overcome host resistance and promote disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号