首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A highly efficient Agrobacterium-mediated transformation system for Lilium × formolongi was established by modifying the medium used for inoculation and co-cultivation. Meristematic nodular calli of Lilium were inoculated with an overnight culture of A. tumefaciens strain EHA101 containing the plasmid pIG121-Hm harboring an intron-containing β-glucuronidase (GUS), hygromycin phosphotransferase, and neomycin phosphotransferase II genes. The effects of ten different types of media and carbohydrates (sucrose, d-glucose, and l-arabinose) in both inoculation and co-cultivation media were evaluated. Interestingly, a dramatic increase in the frequency of transformation (25.4%) was observed when Murashige and Skoog (MS) medium containing sucrose and lacking KH2PO4, NH4NO3, KNO3, and CaCl2 was used. Hygromycin-resistant transgenic calli were obtained only in medium supplemented with sucrose. The effects of this modified medium were also investigated for Lilium cultivars ‘Acapulco’, ‘Casa Blanca’, and ‘Red Ruby’. The highest frequency of transformation (23.3%) was obtained for cv. Acapulco. Hygromycin-resistant calli were successfully regenerated into plantlets on plant growth regulator-free MS medium. Transgenic plants were confirmed by GUS histochemical assay, polymerase chain reaction (PCR), and Southern blot analyses.  相似文献   

2.
In traditional in vitro culture, the low CO2 concentration inside the vessels restricts photosynthesis and necessitates the addition of sucrose to the culture medium as the main energy source, thus bringing about changes in the absorption of mineral elements from the culture medium. In this study, we investigated macronutrient absorption and sugar consumption in Actinidia deliciosa Chevalier Liang and Ferguson cv. Hayward (kiwi), cultured on medium supplemented with varying amounts of sucrose (0, 10, and 20 g l−1) under both heterotrophy and autotrophy, flushed with different concentrations of CO2 (non-ventilation, 300, 600, and 2,000 μl l−1). In ventilated systems with 20 g l−1 of sucrose, sucrose absorption was less than under non-ventilation. The lowest rate of sucrose absorption was recorded when the explants were cultured on medium supplemented with 20 g l−1 of sucrose and flushed with 600 μl l−1 CO2. Absorption of NO3 , PO4 3−, and Mg2+ were high (maximum) at the end of the culture period (40 d) in explants flushed with 600 μl l−1 CO2 that have been cultured 20 d in the presence of sucrose and then transferred to a sucrose-free medium. These autotrophic conditions promoted maximum plant growth in terms of both fresh and dry mass as well as the length and number of shoots and leaves. The study shows that to maintain an optimum regime of mineral nutrition for prolonged culture of kiwi in vitro, an increased amount of these three ions should be supplemented in Murashige and Skoog’s medium.  相似文献   

3.
Summary A method was developed for in vitro regeneration of plants via somatic embryogenesis in Chorispora bungeana, an alpine plant with freeze-tolerance, using cell suspensions initiated from leaf-derived callus. Primary calli were induced from leaves of C. bungeana grown on Murashige and Skoog (MS) media supplemented with 4.0 mg l−1 gibberellic acid (GA3), 0.2 mgl−1 α-naphthaleneacetic acid (NAA) and 0.2 mgl−1 2,4-dichlorophenoxyacetic acid (2,4-D). Suspension culture was initiated by incubating the callus particulates in liquid MS medium supplemented with 1.0 mgl−1 kinetin (KT) and 0.2 mgl−1 NAA. Individual early cotyledonary-stage somatic embryos isolated from cell suspension developed into whole plants on medium containing high levels of sucrose (60 and 90 gl−1), whereas lower sucrose concentrations (0 and 30 gl−1) were inhibitory to main root development. On the MS medium with 90 gl−1 sucrose, one regenerated plant exhibited hetero-morphologic leaves, while other plants grown on different media showed a transformation from stem to root.  相似文献   

4.
The hypocotyls, cotyledons, leaf blades, whole leaves and petioles of seedlings ofAilanthus altissima are capable of producing callus and budsin vitro. Buds and callus were also obtained from whole leaves and internodes of 2-years old plantlets grownin vitro. From the calli buds differentiated and later, both from buds developing directly without a callus phase and alsovia a callus phase, well developed shoots were formed. The cultures were mainained on MS medium in 2 combinations: A) IAA - 0.2 mg 1−1, BAP - 1 mg 1−1, GA3 - 0.5 mg 1−1, thiamine - 4 mg 1−1 and sucrose 3 %; B) BAP - 0.5 mg 1−1, IAA - 1 mg 1−1, casein hydrolysate 400 mg 1−1, thiamine 4 mg 1−1 and sucrose 3 %. Excised shoots, which had developedde novo in culture, produced roots when incubated on the basic mineral medium of MS with the addition of IAA. The regenerative potential ofA. altissima is very high and this woody species seems to be an ideal object for various morphogenetic studies.  相似文献   

5.
In this communication, the effects of trehalose and culture system on protocorm-like body (PLB) growth were investigated. PLB derived from Phalaenopsis and Doritaenopsis cultivars, which were grown on solidified trehalose amended NP medium showed higher proliferation rate than on NP medium containing sucrose. For P. ‘Hwa Feng Red Jewel’ and Dtp. ‘Mount Beauty×Su’s Red Lip’, the proliferation rates on solidified trehalose media were almost two times higher than those on sucrose media after 8-week culture. However, Knudson C (KC) medium did not reveal the similar results between trehalose and sucrose. In liquid culture system, both trehalose amended NP and KC media brought about better results than sucrose containing media for PLB proliferation. For culture system test, solidified media showed higher proliferation rate than liquid media under the same medium composition. Roller bottles were more suitable than flask-shaking cultures in liquid systems for PLB proliferation.  相似文献   

6.
Small callus pieces excised from theAgrobacterium transformed root line D2 ofDatura stramonium, were cultured onto solidified MS medium supplemented with a 1.0 μM kinetin and three different concentrations (0.1, 0.5 and 1.0 μM) of 2,4-dichlorophenoxyacetic acid (2,4-D), and were examined for their alkaloid productivity in relation to organization level and growth rate. Growth of transformed roots (in a MS liquid medium without plant growth regulators) was greater than that of transformed calli excised from them and cultured separately. The addition of 1.0 μM 2,4-D to the culture medium had a positive effect on callus biomass production, while it inhibited root formation by this tissue (the lower the 2,4-D concentration in the medium the greater the number of roots which emerged from the calli). Hyoscyamine production was also higher in the transformed roots than in the transformed calli, and in these tissues the production of hyoscyamine was positively correlated with organogenesis index (i.e. its ability for rooting). At the same time, the epoxidation of hyoscyamine to scopolamine only took place in the transformed calli. This occurred to a greater extent at the lower concentrations of 2,4-D in the culture medium. The mode through which the 2,4-D could control the alkaloid production of transformed callus is discussed.  相似文献   

7.
Newly expanded in vitro leaves of Actinidia eriantha were used for protoplast isolation. Protoplasts were cultured in liquid MS medium (lacking NH4NO3) supplemented with 2,4-D (2,4-dichlorophenoxyacetic acid) and 0.4 M glucose. The plating efficiency after 3 weeks of culture was 19.4%, and calli were recovered without addition of fresh medium. These calli regenerated shoots on transfer to MS medium containing 2.28 μM zeatin and 0.57 μM IAA (indole-3-acetic acid). Regenerated shoots were rooted by immersion in 20 ppm IBA (indole-3-butyric acid) solution before culturing on half-strength MS medium lacking growth regulators. Somaclonal variation, in terms of chromosome number and nuclei per cell of protoplast-derived plants, was estimated. Received: 15 March 1997 / Revision received: 27 January 1998 / Accepted: 7 March 1998  相似文献   

8.
Duckweed(Lemna gibba) is a useful model system for elucidating plant development, but the techniques needed for regenerating fronds from calli are not yet well established. This study examined the effects of auxin, sucrose, and gelling agents on callus and frond formation inL. gibba G3. After three weeks of culturing on a solid medium, two types of calli were observed: watery, pale-green, and undifferentiated; or white, compact calli that were organized into nodules and which resembled somatic embryogenie calli. Homogeneous callus lines were produced through selective subculture. To induce nodular calli, auxin (2,4-D) was absolutely required, with an effective concentration of 5 to 20 μM; induction was found to be possible with up to a maximum concentration of 4.4%. The calli were then maintained on a medium with a reduced 2,4-D concentration (1 μM), and were transferred every three weeks. Optimal callus induction and growth were obtained by using 3% sucrose with a combination of 0.15% Gelrite and 0.4% agar. Fronds, however, could be regenerated only on distilled water solidified with a combination of 0.4% agar and 0.15% Gelrite. On this medium, 87% of the callus expiants regenerated into fronds after four weeks of culture. These new fronds were morphologically normal but small, approximately 15 to 20% of the size of stock fronds. Continued culture of these fronds in an SH medium produced normal duckweeds, and histological examination of the cultures revealed several distinct types of callus nodules. Nonetheless, because zygotic embryogenesis inL. gibba does not produce distinct bipolar structures, the developmental pathway of frond regeneration from these nodular cultures remains unknown.  相似文献   

9.
Summary Foliar nutrition has been conceived as a possible means of overcoming the recalcitrance of Prosopis chilensis (Molina) Stuntz explants to standard in vitro culture. The foliar uptake of cations (K from 20 gl−1 KNO3 and Ca from 50 gl−1 CaCl2), anions (NO3 from 50 gl−1 KNO3 and PO4 from 50 gl−1 NaH2PO4), and glucose from a 100 mg l−1 solution studied. All of the nutrients examined were absorbed. The efficacy of foliar nutrition in prolonging the vigor of micropropagated P. chilensis shoot tips was compared with nutrients supplied as a liquid to the base of the stem (liquid) or as an agar-solidified medium (agar). A foliar-feeding apparatus was constructed that employed pressurization of the medium reservoir to drive the medium into the culture vessel with a passive return by a siphoning effect. The medium used was Murashige and Skoog with 30 gl−1 sucrose, 0.1 mgl−1 benzylaminopurine, and 1 mgl−1 indole-3-butyric acid. Over a 9-wk test period it was found that explants cultured by foliar nutrition performed significantly better than those grown on agar for shoot length, nodal production, and leaf retention; and better than liquid MS for node production. There was no significant difference among the three treatments in percentage survival, percentage rooting, or the mean number of roots.  相似文献   

10.
SYNOPSIS Heterotrophic (dark) CO2 fixation by Euglena gracilis strain Z varies with phase of batch culture growth and mode of nutrition. Increases in the fixation during growth cycles correlate closely with the depletion of exogenous NH4* from the medium during growth. It is demonstrated that exogenous NH4+ regulates a component of heterotrophic CO2 fixation and that another component is independent of NH4+. This is true for cells grown heterotrophically (glucose, dark), autotrophically (CO2, light) and for a permanently bleached strain (E. gracilis SB3). Some kinetics of the NH4+ regulation are presented.  相似文献   

11.
Summary Studies were undertaken to optimize tissue culture conditions for micropropagation of Aleppo pine (Pinus halepensis Mill.) from mature embryos and various explants of the embryo. Over 90% of the embryo explants gave rise to adventitious buds within 4 wk. Intact embryos were the most suitable explants for shoot bud induction. Both isolated cotyledons and hypocotyls produced adventitious buds, but these developed slowly and failed to elongate. N6-Benzyladenine (BA) alone at 5.0μM was the most effective cytokinin when added to gelled to gelled von Arnold and Eriksson’s (AE) medium containing 3% sucrose. Adventitious bud development was achieved on hormone-free AE medium, and shoot elongation was optimum on three quarter-strength Bornman’s MCM medium, with 0.1% conifer-derived activated charcoal. Shoots were multiplied on three-quarter strength MCM medium, containing 5μM BA. To induce adventitious roots on the elongated shoots, pulse treatment with 1 mM IBA for 6 h, followed by the transfer of the shoots to sterile peat:vermiculite (1:1) mixture, was beneficial. After acclimatization for 3 to 4 wk under mist, almost all the rooted shoots could be transplanted successfully to the greenhouse, where the plants exhibited normal growth habit. Histologic studies on the ontogeny of adventitious shoot formation from mature embryo explants revealed temporal structural changes in different parts of the explant. Induction of mitotic divisions on the shoot-forming medium resulted in the formation of meristemoids in the epidermal and subepidermal layers of the explant, located initially at both the tips of the cotyledons and the axils of adjacent cotyledons. Shoot buds arising in the axils of adjacent cotyledons were due to new cell division and not to any preexisting meristem.  相似文献   

12.
Pandey  D.M.  Kim  K.-H.  Yeo  U.-D. 《Photosynthetica》2003,41(2):311-314
Dynamic changes of neoxanthin (NEO), violaxanthin (VIO), anteraxanthin (ANT), zeaxanthin (ZEA), chlorophyll (Chl) a, Chl b, α-carotene, β-carotene, and their behaviour under increasing duration of high irradiance (HI) were investigated in the soybean hypocotyl callus culture. The calli were induced on solid (1.1 % agar) MS medium (pH 5.8) supplemented with 4.52 μM 2,4-D, 2.32 μM kinetin, and 3 % sucrose. After 30 d of culture, the green calli were irradiated with “white light” (133W m−2) for 0, 3.5, and 24 h. HPLC profiles were separated on a C18 column. With increasing duration of HI, the content of total carotenoids (Cars) increased, but the ratio of Chl a+b/Cars decreased. With lengthening the duration of HI, there was induction of ZEA. Contents of ANT, α-carotene, and β-carotene remained nearly constant, but ratio of ZEA/Chl a+b increased with lengthening the HI duration. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Protoplast culture and plant regeneration of an important medicinal plant Tylophora indica were achieved through callus regeneration. Protoplasts were isolated from leaf mesophyll cells and cultured at a density of 5 × 105 protoplasts per gram fresh weight, which is required for the highest frequency of protoplast division (33.7%) and plating efficiency (9.3%). The first division was observed 2 d after plating and the second division after 4 d. Culture medium consists of Murashige and Skoog (MS) liquid medium with 4 μM 2,4-D, 0.4 M mannitol and 3% (w/v) sucrose with pH adjusted to 5.8. After 45 d of culture at 25°C in the dark, protoplasts formed colonies consisting of about 100 cells. The protoplast-derived microcalli were visible to the naked eye within 60 d of culture and reached a size of 0.2–0.4 mm in diameter after 90 d. Calli of 0.2–0.4-mm size were transferred to MS medium supplemented with 2,4-D (4 μM), 3% (w/v) sucrose and 0.8% (w/v) agar, formed friable organogenic calli (7-8 mm size) after 8 wk under incubation in normal light period supplemented with 200 μmol m−2 S−1 of day light fluorescent illumination. The calli were transferred to MS medium supplemented with thidiazuron (TDZ) (1–7 μM) and naphthalene acetic acid (NAA) (0.2–0.4 μM) for regeneration. The calli developed shoot buds after 3–4 wk, and the frequencies of calli-forming shoots varied from 5% to 44%. Optimum shoot regeneration occurred on MS medium supplemented with 5 μM TDZ and 0.4 μM NAA. On this medium, 44% cultures responded with an average number of 12 shoots per callus. Whole plants were recovered following rooting of shoots in 1/2 MS medium supplemented with 3 μM indole 3-butyric acid.  相似文献   

14.
Embryogenic calli of Dioscorea bulbifera L. were successfully cryopreserved using an encapsulation-vitrification method. Embryogenic calli were cooled at 6°C for 5 days on solid MS medium (Murashige and Skoog 1962) containing 2 mg L−1 Kinetin (Kn), 0.5 mg L−1 α-naphthalene acetic acid (NAA) and 0.5 mg L−1 2,4-dichlorophenoxy-acetic acid (2,4-D). These were prior precultured on liquid basal MS medium enriched with 0.75 M sucrose at 25 ± 1°C for 7 days. Embryogenic calli were osmoprotected with a mixture of 2 M glycerol and 1 M sucrose for 80 min at 25°C and dropped in a 0.1 M CaCl2 solution containing 0.4 M sucrose at 25 ± 1°C. After 15 min of polymerization, Ca-alginate beads (about 4 mm in diameter) were dehydrated for 150 min at 0°C in a PVS2 solution [30% glycerol, 15% ethylene glycol, and 15% dimethyl sulfoxide (w/v)] containing 0.5 M sucrose. The encapsulated embryogenic calli were then plunged directly into LN (liquid nitrogen) for 1 h. After rapid thawing in a water bath (37°C; 2 min), the beads were washed 3 times at 10-min intervals in liquid basal MS medium containing 1.2 M sucrose. Following thawing, the embryogenic calli were transferred to fresh solid basal MS media supplemented with Kn 2 mg L−1, 0.09 M sucrose and 0.75% (w/v) agar (embryoid induction medium) and cultured under light conditions of 12-h photoperiod with a light intensity of 36 μmol m−2 s−1 provided by white cool fluorescent tubes after a 2-day dark period at 25 ± 1°C. After 30 days, the embryoids developed from embryogenic calli were transferred to fresh solid basal MS media supplemented with Kn 2 mg L−1, NAA 0.5 mg L−1, 3% (w/v) sucrose and 0.75% (w/v) agar (regeneration medium). After 60 days, the embryogenic calli developed normal shoots and roots. No morphological abnormalities were observed after plating on the regeneration medium. The survival rate of encapsulated vitrified embryogenic callus reached over 70%. This encapsulation-vitrification method appears promising as a routine and simple method for the cryopreservation of Dioscorea bulbifera embryogenic callus.  相似文献   

15.
Using 6 culture media (12, 12D, 12G, 11, A and B) made up of MS medium (Murashige-Skoog, 1962) supplemented or not with glycerine, with different cytokinins, and/or 2,4-D, the morphological characteristics and contents in total carbohydrates, reducing sugars, sucrose and starch were studied in calli induced from explants (cotyledon, petiole, hypocotyl and leaf) obtained from Medicago strasseri seedlings. Callus formation was induced under photoperiod (16h light/8h darkness) conditions or in the absence of light. Considerable variability in the calli was observed, depending on the explants and media used. Under photoperiod conditions, medium A with KIN (1 mg/l) and 2,4-D (3 mg/l) induced many calli with the highest contents in total carbohydrates (886.1–889.3 mg/g DW), sucrose (132.1–188.2 mg/g DW) and starch (125.2–247.6 mg/g DW) and the lowest contents in reducing sugars (118.4–173.3 mg/g DW). In media 11, A and B, under conditions of darkness, calli degenerated at the start of culture. Calli developed in darkness generally had dry weights and total carbohydrate and starch contents lower than those cultured under photoperiod conditions. However, sucrose contents were greater in calli formed in darkness. At these cultures times, differentiation, in the form of organogenesis, was only seen using medium B with cotyledons, petioles and leaves as explants. It was also observed when petioles were cultured in medium A but with a less pronounced organogenic response.  相似文献   

16.
An efficient system for Agrobacterium-mediated transformation of Lilium × formolongi was established by preventing the drastic drop of pH in the co-cultivation medium with MES. Meristematic nodular calli were inoculated with an overnight culture of A. tumefaciens strain EHA101 containing the plasmid pIG121-Hm which harbored intron-containing β-glucuronidase (GUS), hygromycin phosphotransferase (HPT), and neomycin phosphotransfease II (NPTII) genes. After three days of co-cultivation on 2 g/l gellan gum-solidified MS medium containing 100 μM acetosyringone, 30 g/l sucrose, 1 mg/l picloram and different concentrations of MES, they were cultured on the same medium containing 12.5 mg/l meropenem to eliminate Agrobacterium for 2 weeks and then transferred onto medium containing the same concentration of meropenem and 25 mg/l hygromycin for selecting putative transgenic calli. Transient GUS expression was only observed by adding MES to co-cultivation medium. Hygromycin-resistant transgenic calli were obtained only when MES was added to the co-cultivation medium especially at 10 mM. The hygromycin-resistant calli were successfully regenerated into plantlets after transferring onto picloram-free medium. Transformation of plants was confirmed by histochemical GUS assay, PCR analysis and Southern blot analysis.  相似文献   

17.
We have tested plantlet formation by somatic embryogenesis using immature seeds of Magnolia obovata. Seed collection date appeared to be critical for embryogenic cell induction. The optimal collection date was 3–4 weeks postanthesis. The embryogenic cells proliferated, formed somatic embryos, and were subsequently converted into normal plantlets under optimized culture conditions. Somatic embryo formation from the embryogenic calli was better on sucrose medium than on glucose medium. The optimum level of sucrose appeared to be 3% with an average of 28 somatic embryos per plate. About 25% of somatic embryos were converted into normal plantlets in 1/2 MS medium containing gibberellic acid (GA3). During somatic embryo germination, secondary embryogenesis was frequently observed in the lower part of the hypocotyl or radicle ends of germinating somatic embryos. Finally, about 85% of converted plantlets survived in an artificial soil mixture, were transferred to a nursery, and have grown normally.  相似文献   

18.
Summary Pollen calli and plantlets of Hordeum vulgare cv. Sabarlis were obtained through direct pollen culture without pretreatment of spikes or preculture of anthers. Isolated immature pollen grains were cultured first in a 0.3 M mannitol solution or a C1 basal medium (Chen et al. 1979) supplemented with 0.3 M mannitol but without sucrose for 5–7 days, then transferred into a C1 medium containing 6% sucrose, 3 mM glutamine and 5 mM m-inositol. After a 3 week culture period small pollen calli derived from the pollen grains were transferred into a growth medium comprising C1 basal medium supplemented with 250 mg/1 lactalbumin hydrolysate and 0.5 mg/1 kinetin. For shoot regeneration, vigorously growing calli were transferred onto agarsolidified MS medium (Murashige and Skoog 1962) containing 3% sucrose, 2 mg/1 benzyladenine and 0.5 mg/1 indole-3-acetic acid. The ratio of green plants to albino was approximately 12.2.  相似文献   

19.
Somatic embryogenesis (SE) was induced in female flower buds from mature Schisandra chinensis cultivar ‘Hongzhenzhu’. Somatic embryo structures were induced at a low frequency from unopened female flower buds and excised unopened on Murashige and Skoog (MS) agar medium containing 4.0 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D). Friable embryogenic calli were induced from somatic embryo structures after three to four subcultures on initiation medium. The frequencies of mature somatic embryo germination and plantlet conversion were low, but increased in the presence of gibberellic acid (GA3). Some germinated somatic embryos could form friable embryogenic calli on medium without plant growth regulators (PGRs). The germination and conversion frequencies of somatic embryos from embryogenic calli induced using PGR-free medium were higher than for somatic embryos from embryogenic calli induced on medium containing 2,4-D. Most somatic embryos from 2,4-D-induced embryogenic calli had trumpet-shaped embryos, and most somatic embryos from PGR-free medium–induced embryogenic calli had two or three cotyledons. Histological observation indicated that two- and three-cotyledon embryos had defined shoot primordia, but most of the trumpet-shaped embryos yielded plantlets that lacked or had poorly developed meristem tissue. Cytological and random amplification of polymorphic DNA (RAPD) analyses indicated no evidence of genetic variation in the plantlets of somatic embryo origin.  相似文献   

20.
A highly reproducible Agrobacterium-mediated transformation system was developed for the wetland monocot Juncus accuminatus. Three Agrobacterium tumefaciens binary plasmid vectors, LBA4404/pTOK233, EHA105/pCAMBIA1201, and EHA105/pCAMBIA1301 were used. All vectors contained the 35SCaMV promoter driven, intron containing, β-glucuronidase (gus), and hygromycin phosphotransferase (hptII) genes within their T-DNA. After 48 h of cocultivation, 21-d-old seedling derived calli were placed on medium containing timentin at 400 mg l−1, to eliminate the bacteria. Calli were selected on MS medium containing 40 or 80 mg l−1 hygromycin, for 3 mo. Resistant calli were regenerated and rooted on MS medium containing hygromycin, 5 mg l−1(22.2 μM) of 6-benzylamino-purine (BA) and 0.1 mg l−1(0.54 μM) of alpha-naphthaleneacetic acid (NAA), respectively. Seventy-one transgenic cell culture lines were obtained and 39 plant lines were established in the greenhouse. All the plants were fertile, phenotypically normal, and set viable seed. Both transient and stable expression of the gus gene were demonstrated by histochemical GUS assays of resistant calli, transgenic leaf, root, inflorescence, seeds, and whole plants. The integration of gus and hptII genes were confirmed by polymerase chain reaction (PCR) and Southern analysis of both F0 and F1 progenies. The integrated genes segregated to the subsequent generation in Mendelian pattern. To our knowledge, this is the first report of the generation of transgenic J. accuminatus plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号