首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Argentina has to meet quarantine restrictions because of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), to export 'Hass' avocados, Persea americana Miller, to certain countries. Hass avocado at the hard, mature green stage is potentially a conditional nonhost for C. capitata and could open export markets without the need for a quarantine treatment. Trapping data from 1998 to 2006 showed that C. capitata was present in avocado orchards, particularly early in the harvest season. The host status of hard, mature green Hass avocado to C. capitata was evaluated using laboratory and field cage tests under no-choice conditions and by assessing natural levels of infestation in commercially harvested fruit from the main avocado production area. In total, 2,250 hard, mature green avocado fruit were exposed to 11,250 gravid females for 24 or 48 h after harvest in laboratory or field cages, and no infestations were found. During 11 seasons, 5,949 fruit in total were sampled from the trees and 992 fruit were collected from the ground, and in none of them were any live or dead fruit fly larvae found. Inspection of >198,000 commercial fruit at the packinghouse from 1998 to 2011 showed no symptoms of fruit fly infestation. These data exceed the published standards for determination of nonhost status, as well as the Probit 9 standard for development of quarantine treatments. Hass avocado harvested at the hard, mature green stage was not infested by C. capitata and seems to pose a negligible quarantine risk. As a consequence, no postharvest treatment or other quarantine actions should be required by importing countries.  相似文献   

2.
Treating Mexican grapefruit with gibberellic acid (GA3) before color break, significantly delayed peel color change and increased peel puncture resistance, but it did not reduce grapefruit susceptibility to Mexican fruit fly, Anastrepha ludens (Loew) attack under natural conditions. Despite GA3 treatments, larval infestation levels increased with higher fruit fly populations, which also increased as the season progressed. Late in the season, infestation levels were even higher in GA3-treated fruit compared with untreated fruit, possibly because treated fruit were in better condition at that stage. Egg clutch size was significantly greater in very unripe, hard, GA3-treated fruit at the beginning of the harvest season and in December, compared with control fruit. Under laboratory conditions, egg injection into different regions of the fruit suggested that A. ludens eggs are intoxicated by peel oil content in the flavedo region. However, A. ludens' long aculeus allows females to oviposit eggs deeper into the peel (i.e., albedo), avoiding toxic essential oils in the flavedo. This makes A. ludens a particularly difficult species to control compared with other citrus-infesting species such as Anastrepha suspensa (Loew), Anastrepha fraterculus (Wiedemann), and Ceratitis capitata (Wiedemann) (fly species with significantly shorter aculei), which can be effectively managed with GA3 sprays. We discuss our findings in light of their practical implications and with respect to the oviposition behavior of various fruit flies attacking citrus.  相似文献   

3.
The cherry fruit fly (CFF), Rhagoletis cingulata Loew (Diptera: Tephritidae: Trypetini), is endemic to eastern North America and Mexico, where its primary native host is black cherry [Prunus serotina Ehrh. (Rosaceae)]. Cherry fruit fly is also a major economic pest of the fruit of cultivated sweet (Prunus avium L.) and tart (Prunus cerasus L.) cherries. Adult CFF that attack wild black cherry and introduced, domesticated cherries in commercial and abandoned orchards are active at different times of the summer, potentially generating allochronic isolation that could genetically differentiate native from sweet and tart CFF populations. Here, we test for host‐related genetic differences among CFF populations in Michigan attacking cherries in managed, unmanaged, and native habitats by scoring flies for 10 microsatellite loci. Little evidence for genetic differentiation was found across the three habitats or between the northern and southern Michigan CFF populations surveyed in the study. Local gene flow between native black cherry, commercial, and abandoned orchards may therefore be sufficient to overcome seasonal differences in adult CFF activity and prevent differentiation for microsatellites not directly associated with (tightly linked to) genes affecting eclosion time. The results do not support the existence of host‐associated races in CFF and imply that flies attacking native, managed, and unmanaged cherries should be considered to represent a single population for pest management purposes.  相似文献   

4.
The contribution of various factors to variation in the quality of 'Cox' apples after storage in 2% oxygen at 3.3°C was investigated. Within one season variation in the firmness of fruits from different orchards could be largely accounted for by correlations with firmness at harvest and the position of the fruit on the climacteric at the time of harvest. However, different relationships were found between these variables in different seasons. The butyl and hexyl acetate contents of fruit were influenced by season and source of fruit, but little affected by maturity at harvest. Ester content was inversely correlated with fruit firmness after storage. Other factors which were expected to influence the ripening of fruit during storage were found to be unrelated to firmness and ester content. These included the respiration rate of fruit during storage, the resistance of the fruit to gaseous diffusion and its specific gravity. Carbon dioxide production was nearly constant at about 2.3 ml kg-1h-1 across seasons, sources and harvest dates. Specific gravity seemed to be particularly affected by season, whereas diffusive resistance decreased with maturity.  相似文献   

5.
Culled bananas (dwarf 'Brazilian', 'Grand Nain', 'Valery', and 'Williams') sampled from packing houses on the islands of Hawaii, Kauai, Maui, Molokai, and Oahu identified specific "faults" that were at risk from oriental fruit fly, Bactrocera dorsalis (Hendel), infestation. Faults at risk included bunches with precociously ripened bananas, or bananas with tip rot, fused fingers, or damage that compromised skin integrity to permit fruit fly oviposition into fruit flesh. No Mediterranean fruit fly, Ceratitis capitata (Wiedemann), or melon fly, B. cucurbitae (Coquillett), infestations were found in culled banana samples. Field infestation tests indicated that mature green bananas were not susceptible to fruit fly infestation for up to 1 wk past the scheduled harvest date when attached to the plant or within 24 h after harvest. Recommendations for exporting mature green bananas from Hawaii without risk of fruit fly infestation are provided. The research reported herein resulted in a USDA-APHIS protocol for exporting mature green bananas from Hawaii.  相似文献   

6.
Six mango, Mangifera indica L., plantations around Parakou, northern Benin, were sampled at 2-wk intervals for fruit fly damage from early April to late May in 2005. Mean damage ranged from 1 to 24% with a weaver ant, Oecophylla longinoda (Latreille), being either abundant or absent. The fruit fly complex is made up of Ceratitis spp. and Bactrocera invadens Drew et al., a new invasive species in West Africa. In 2006, Ceratitis spp. peaked twice in the late dry season in early April and early May, whereas B. invadens populations quickly increased at the onset of the rains, from mid-May onward. Exclusion experiments conducted in 2006 with 'Eldon', 'Kent', and 'Gouverneur' confirmed that at high ant abundance levels, Oecophylla significantly reduced fruit fly infestation. Although fruit fly control methods are still at an experimental stage in this part of the world, farmers who tolerated weaver ants in their orchard were rewarded by significantly better fruit quality. Conservation biological control with predatory ants such as Oecophylla in high-value tree crops has great potential for African and Asian farmers. Implications for international research for development at the Consultative Group on International Agricultural Research level are discussed.  相似文献   

7.
Seasonal susceptibility of 'Bartlett' pear, Pyrus communis L., to codling moth, Cydia pomonella (L.), infestation, successful completion of larval development after infestation, and the induction of C. pomonella diapause was studied from 1992 through 1995. The seasonal variation in C. pomonella infestation and larval survival were effected by changes in fruit maturity. In late May through mid-June, pears were hard and were not as successfully infested by C. pomonella and produced less larvae compared with fruit later in the season. In late June to mid-July, pears became more suitable for infestation and a greater percentage of the larvae completed their development. In late July through mid-August, pears were susceptible to infestation, but the larvae were less likely to successfully complete development than in the late June to mid-July period due to pear tissue breakdown. From mid-August through September, pears are unsuitable for infestation, and few larvae were produced. When fruit were infested with neonate larvae in late May and mature larvae emerged from the fruit in July, a low percentage of the larvae entered diapause. However, when fruit were infested with neonate larvae in early July and mature larvae emerged from the fruit in early August, the majority of the larvae entered diapause. When fruit were infested with neonate larvae in late July through September and mature larvae emerged from the fruit after mid-August, nearly all C. pomonella larvae had entered diapause.  相似文献   

8.
Codling moths, Cydia pomonella (L.), have long been suspected of emerging from stacks of harvest bins in the spring and causing damage to nearby apple and pear orchards. With increased use of mating disruption for codling moth control, outside sources of infestation have become more of a concern for growers using pheromone based mating disruption systems. Studies were designed to provide information on bins as a source of codling moth and the pattern of codling moth emergence from stacks of bins. In these studies, codling moth larvae colonized wood harvest bins at a much higher frequency than harvest bins made of injection molded plastic (189 moths emerged from wood compared with five from plastic). There was no statistical difference in the number of moths infesting bins that had been filled with infested fruit compared with bins left empty at harvest. This suggests that codling moth enter the bins during the time that the bins are in the orchard before harvest. Emergence of laboratory reared adult codling moth from wood bins placed in stacks was found to be prolonged compared with field populations. Temperature differences within the bin stacks accounted for this attenuated emergence pattern. Covering bin stacks with clear plastic accelerated codling moth development in the upper levels of the stack. Codling moth emergence patterns from plastic-covered stacks more closely coincided with male flight in field populations. This information could be important in developing a technique for neutralizing codling moth-infested bins, and in understanding how infested bins may influence pest management in fruit orchards that are located near bin piles. Implications for control of codling moth in conventional orchards and in those using mating disruption as the principal component of an integrated pest management system include increased numbers of treatments directed at areas affected by infested bins.  相似文献   

9.
In the present study, we evaluated the effect of management practices, fruit season, host habitats (young and old fronds, date fruits and grasses), and temperature on the phenology and abundance of the date palm mite (DPM). The study was conducted in two date palm orchards (two plots each): a managed and an unmanaged plot. The phenology of DPM was assessed based on adult cumulative mite days (ACMDs), while mean mite density was used to assess the mite abundance on different host habitats. The ACMDs and mean mite density were significantly different between managed and unmanaged plots on different host habitats in both fruiting and off-seasons. The date fruits had highest ACMDs during fruiting season. While young fronds had significantly higher ACMDs than on old fronds an grasses during both seasons in both plots.. The temperature and season type significantly affected the mean density of DPM eggs and adults. There was a significant effect of host habitats mean density of DPM eggs and immatures. Based on the adult phenology and abundance of DPM, the mite overwinters in young fronds and aerial offshoots of infested date palm trees. These overwintering DPM caused the seasonal date fruit infestation, each year. Additionally, different phytophagous and predatory mites, which co-occur with DPM, and were found on different host habitats affected the phenology and abundance of DPM. Moreover, the change in DPM body color was related to the host habitat that they fed in. Exceptionally, the brown color of females collected during the winter season could be due to physiological changes due to low temperature. In DPM males collected from different host habitats throughout the study, some morphological variations in the width of the knob, height of the hook, and the angle between the knob axis and dorsal margin of the shaft were also recorded. The results of this study suggest that young fronds and grasses are the suitable sites for DPM survival and overwintering. Hence, the management practices, early in the fruit season and/or during off fruit winter months, should be directed towards these habitats. These could provide efficient reduction in seasonal infestation of DPM.  相似文献   

10.
The walnut husk fly Rhagoletis completa Cresson, a pest originating from North-America, was detected for the first time in Europe in 1991. The life cycle and phenology of R. completa were studied, during two successive seasons, in two commercial orchards located in northern Italy. The pest develops one generation per year. Fly emergence lasted from early July to the second half of August. Oviposition was detected from late July to early September, with peaks between August 5 and 18. First instar larvae were recorded from early August and mature larvae left husks from late August onwards to pupate in the soil. The seasonal patterns of nuts infestation showed rapid growths in August following oviposition peaks. Nuts infestation levels in the untreated plots of the two orchards, ranged from 74–91% in the first year to 89–91% in the following season. Relatively dark shell surfaces were linked to a weight reduction in nuts and kernels and to an increase in darkened and mouldy kernels. Observations made in an untreated orchard for additional 3 years confirmed these trends. Baited Pherocon AM were effective in monitoring flies but catches on woody green spheres were better correlated with the first relevant oviposition phases. When pesticides were sprayed with the correct timing, i.e. against eggs or first instar larvae, infestation was kept to acceptable levels with a single application. Considering average yields, nuts prices and costs for insecticide use, 1–2 insecticide treatments are economically viable. Other Implications are discussed.  相似文献   

11.
皱皮木瓜果实发育后期品质变化及其成熟阶段的划分初探   总被引:2,自引:0,他引:2  
以湖北长阳产皱皮木瓜为材料,测定果实发育后期果实鲜质量、果长、果径、果色、果实硬度以及果肉干物质量、可溶性糖含量、总酸含量和总黄酮含量等品质指标的动态变化,划分不同成熟阶段,为判断果实适宜采收期、实现优质生产提供理论参考。结果表明:(1)皱皮木瓜果实发育后期果实鲜质量、果长、果径、果肉干物质量和可溶性糖含量均呈现上升趋势;果色由绿色、黄绿色渐变为淡黄色到黄色;果实硬度、果肉总酸和总黄酮含量呈先上升后下降趋势。(2)各品质指标快速变化的时间区域存在差异,果实鲜质量在花后105~150d增加较快,果色在150d后逐渐变黄,果实硬度在花后135~165d快速下降,果肉总酸、总黄酮含量则在花后105~120d快速增加至峰值。(3)根据主成分分析结果和各品质指标的变化特点,可初步将皱皮木瓜果实发育后期划分为未成熟(花后105d之前)、早期成熟(花后120~150d)和成熟(花后165~180d)3个阶段。研究表明,随着果实成熟度的提高,皱皮木瓜果实鲜质量、果色、果肉干物质量、可溶性糖含量等指标不断升高,果实硬度逐渐下降,其食用加工品质不断提升,而在早期成熟阶段(花后120~150d)果实的药用品质则相对较高。  相似文献   

12.
Many food crops depend on animal pollination to set fruit. In light of pollinator declines there is growing recognition of the need for agro-ecosystems that can sustain wild pollinator populations, ensuring fruit production and pollinator conservation into the future. One method of supporting resident wild pollinator populations within agricultural landscapes is to encourage and maintain floral diversity. However, pollinator visitation to crop plants can be affected either positively (facilitation) or negatively (competition) by the presence of co-flowering plants. The strength and direction of the facilitative/competitive relationship is driven by multiple factors, including floral abundance and the degree of overlap in pollinator visitation networks. We sought to determine how plant-pollinator networks, within and surrounding sweet cherry (Prunus avium) orchards, change across key time points during the cherry flowering season, in three growing regions in Australia. We found significant overlap in the suite of flower visitors, with seven taxa (including native bees, flies, hoverflies and introduced honey bees, Apis mellifera) observed visiting cherry and other co-flowering species within the orchard and/or the wider surrounding matrix. We found evidence of pollinator facilitation with significantly more total cherry flower visits with increasing percent cover of co-flowering plants within the wider landscape matrix and increased visitation to cherry by honey bees with increasing co-flowering plant richness within the orchard. During the cherry flowering period there was a significant positive relationship between pollinator richness on cherry and pollinator richness on co-flowering plants within the orchard and the area of native vegetation surrounding orchards. Outside of the crop flowering season, co-flowering plants within the orchard and wider landscape matrix supported the same pollinator taxa that were recorded visiting cherry when the crop was flowering. This shows wild plants help support the pollinators important to crop pollination, outside of the crop flowering season, highlighting the role of co-flowering plants within pollinator-dependent cropping systems.  相似文献   

13.
The oriental fruit fly, Bactrocera dorsalis (Hendel), is a key pest that causes reduction of the crop yield within the international fruit market. Fruit flies have been suppressed by two Area-Wide Integrated Pest Management programs in Thailand using Sterile Insect Technique (AW-IPM-SIT) since the late 1980s and the early 2000s. The projects’ planning and evaluation usually rely on information from pest status, distribution, and fruit infestation. However, the collected data sometimes does not provide enough detail to answer management queries and public concerns, such as the long term sterilization efficacy of the released fruit fly, skepticism about insect migration or gene flow across the buffer zone, and the re-colonisation possibility of the fruit fly population within the core area. Established microsatellite DNA markers were used to generate population genetic data for the analysis of the fruit fly sampling from several control areas, and non-target areas, as well as the mass-rearing facility. The results suggested limited gene flow (m < 0.100) across the buffer zones between the flies in the control areas and flies captured outside. In addition, no genetic admixture was revealed from the mass-reared colony flies from the flies within the control area, which supports the effectiveness of SIT. The control pests were suppressed to low density and showed weak bottleneck footprints although they still acquired a high degree of genetic variation. Potential pest resurgence from fragmented micro-habitats in mixed fruit orchards rather than pest incursion across the buffer zone has been proposed. Therefore, a suitable pest control effort, such as the SIT program, should concentrate on the hidden refuges within the target area.  相似文献   

14.
15.
The seasonal patterns of oviposition by the North American grape berry moth, Paralobesia viteana (Clemens) (Lepidoptera: Tortricidae) were monitored in juice grape (Vitis labrusca) vineyards in southwest Michigan. Egg deposition was recorded throughout the growing season at two vineyards in 2006, and at four vineyards from 2007 to 2009. In each vineyard, a random sample of 100 grape clusters was visually inspected twice‐weekly and the number of newly laid eggs was counted. We found that oviposition was continuous but variable throughout the season. Egg deposition started in early June coinciding with early grape bloom, continued at low level until mid‐ to late July, intensified in August close to veraison, and ended in September often before harvest. There were no consistent periods without oviposition that would indicate distinct generations. To determine the contribution of moth immigration into the vineyard to the pattern of oviposition, six grape plants located at the edge of a vineyard next to woods were covered with field cages and stocked with infested fruit. Oviposition and berry infestation were followed weekly on covered and exposed plants. Although higher numbers of eggs and infested berries were found on fruit of exposed vines than enclosed vines, egg deposition and berry infestation followed the same pattern in both treatments. This result indicates that the seasonal pattern of egg deposition is not dependent on immigration of grape berry moth of wild grape origin. The pattern of oviposition by grape berry moth described here contributes to the difficulty of controlling this pest using conventional insecticides with short residual activity.  相似文献   

16.
The Chinese citrus fruit fly, Bactrocera (Tetradacus) minax (Enderlein), is one of the major citrus pests in Bhutan and can cause >50% mandarin (Citrus reticulata Blanco) fruit drop. As part of the development of a management strategy for the fly in mandarin orchards, population monitoring and experimental manipulations were carried out to determine: (i) adult emergence period; (ii) adult phenology patterns; (iii) period of crop susceptibility; and (iv) period from fruit drop to pupation. In western Bhutan, adult flies emerge from the overwintering pupal stage in late April/early May. Most flies are mature by the end of May and it is inferred that mating occurs at this time: from the beginning of June males rapidly disappear from the population and by mid- to late June are rare or absent from traps. Mature females are present in the mandarin crop at the beginning of June, but very little oviposition occurs until mid-June, while most damage has occurred by mid-July. Initiation of oviposition into mandarins is almost certainly linked to crop phenology. Adult flies disappear from the orchard system during August. After fruit drop, larvae were recorded leaving the fruit to pupate within 13 days. The use of early to mid-season protein bait sprays and/or targeted use of systemic insecticides during the one month oviposition period, plus the removal of fallen fruit once every 10 days, are recommended as control strategies.  相似文献   

17.
Traps baited with synthetic aggregation pheromone and fermenting bread dough were used to monitor seasonal incidence and abundance of the ripening fruit pests, Carpophilus hemipterus (L.), C. mutilatus Erichson and C. davidsoni Dobson in stone fruit orchards in the Leeton district of southern New South Wales during five seasons (1991–96). Adult beetles were trapped from September-May, but abundance varied considerably between years with the amount of rainfall in December-January having a major influence on population size and damage potential during the canning peach harvest (late February-March). Below average rainfall in December-January was associated with mean trap catches of<10 beetles/trap/week in low dose pheromone traps during the harvest period in 1991/92 and 1993/94 and no reported damage to ripening fruit. Rainfall in December-January 1992/93 was more than double the average and mean trap catches ranged from 8–27 beetles/week during the harvest period with substantial damage to the peach crop. December-January rainfall was also above average in 1994/95 and 1995/96 and means of 50–300 beetles/trap/week were recorded in high dose pheromone traps during harvest periods. Carpophilus spp. caused economic damage to peach crops in both seasons. These data indicate that it may be possible to predict the likelihood of Carpophilus beetle damage to ripening stone fruit in inland areas of southern Australia, by routine pheromone-based monitoring of beetle populations and summer temperatures and rainfall.  相似文献   

18.
Citrus peel physicochemical attributes are considered the main components conferring partial or even total resistance to fruit fly (Diptera: Tephritidae) infestation. Fruit fly females adapt their ovipositional strategies to overcome such resistance. Here, we explored the effects of citrus species (Rutaceae) on the ovipositional behaviour of the South American fruit fly, Anastrepha fraterculus (Wiedemann), and on its immature development. Particularly, we investigated the effects of (1) citrus species on oviposition behaviour and immature development, (2) citrus species on oviposition preference and on the location of the eggs at different depth in the citrus peel, and (3) harvest season and post‐harvest storage time on oviposition behaviour and immature development in lemon. Citrus species influenced ovipositional behaviour and affected survival of immature stages. Females laid eggs in lemon [Citrus limon (L.) Burm.], orange [Citrus sinensis (L.) Osbeck], and grapefruit (Citrus paradisi Macfadyen). In orange and lemon, larvae were found dead close to the oviposition areas, suggesting chemically mediated resistance mechanisms. Under choice conditions, females preferred grapefruit over lemon and bigger clutches were found in the layers where embryonic development is favoured. Unsuitability of lemon as a medium to complete development was neither affected by harvest season nor by storage time of the fruit after harvest. The physical and chemical characteristics of the peel were distinctive to each citrus species and may have affected the specific levels of resistance of these citrus species to infestation by A. fraterculus.  相似文献   

19.
Abstract: Cultural evidence suggests that sooty shearwater (Puffinus griseus) chicks have been harvested by Rakiura Māori on islands in southern New Zealand since prehistoric times. Concerns exist that modern harvests may be impacting sooty shearwater abundance. We modeled human-related and ecological determinants of harvest (total no. of individuals harvested) of sooty shearwater chicks on 11 islands and examined the relationship between shearwater abundance and harvesting rates (chicks/hr) and harvester behavior throughout the harvesting season. Models best explaining variation in harvest between harvesting areas (manu), for both the early and late parts of the harvesting season, included harvester-days (included in all models with change in deviance information criteria [ΔDIC], ΔDIC < 8.36 and ΔDIC < 11.5, for the early and late periods, respectively). Other harvest determinants included shearwater density, size of the manu, and number of people helping harvesters (all included in the top 5 models within ΔDIC = 2.25 for the late period). Areas harvested by several families under a common-property harvesting system had higher harvest intensity for their size (24% points higher, 95% credible interval 11–36%) than those managed as an exclusive resource for one family. The slowest harvesters spent more time harvesting but on average only harvested 36% (95% credible interval 15–65%) and 34% (95% credible interval 12–63%) of the harvest taken by the fastest harvesters during the early and late periods, respectively. Our results highlight the possibility of elevated harvest intensity as the population of harvesters increases. However, our models suggested that a corresponding reduction in harvesting rate at low prey densities during the most productive period could potentially regulate harvest intensity. Future research will integrate these results into prospective shearwater demographic models to assess the utility of a range of harvesting strategies in ensuring harvest sustainability.  相似文献   

20.
The effect of infestations of mango seed weevil, Sternochetus mangiferae (F.), on premature fruit drop of mangoes was investigated. Mango fruits ('Haden') of equal size were collected both off the ground and from the tree at four times during the season (June-August). If weevil-infested fruit were more prone to dropping than uninfested fruit, the prediction was that a higher infestation rate would be found in fruit on the ground compared with fruit on the tree. Average fruit weight was used as an indicator of fruit maturity. The seed infestation rate was significantly higher in fruit collected off the ground compared with fruit collected from the tree in 38 g and 79 g (early-season) fruit but not significantly different in 207 g (midseason) and 281 g (late season) fruit. The age distribution of weevils and the number of insects in infested fruits were similar for ground and tree fruits on all dates. Results suggest that mango seed weevil infestation can increase fruit drop during early fruit development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号