首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inhibition of the deamination of serotonin (the main substrate of monoamine oxidase (MAO) type A) by chlorgiline and deprenyl and of beta-phenylethylamine (the main substrate of the B type MAO) by fragments of rat liver mitochondrial membrane as well as the influence of 4-ethylpyridine on this process were studied. It was shown that the MAO activity of the mitochondrial membrane fragments was highly sensitive to chlorgiline, when serotonin was used as substrate, whereas a high sensitivity toward deprenyl was observed with beta-phenylethylamine as substrate. 4-Ethylpyridine (5.10(-3) M), a competitive and reversible inhibitor of the MAO activity, inhibited deamination of serotonin and beta-phenylethylamine by 34 and 30%, respectively. In experiments with chlorgiline (the specific inhibitor of MAO type A) 4-ethylpyridine (5.10(-3) M) introduced into the samples after preincubation of mitochondria with increasing concentrations of chlorgiline (30 min, 23 degrees C) decreased the inhibition by chlorgiline of the deamination of beta-phenylethylamine, but sharply increased the inhibitory effect of chlorgiline on the oxidation of serotonin. In analogous experiments with deprenyl (the specific inhibitor of MAO type B) 4-ethylpyridine (5.10(-3) M) decreased the inhibitory effect of deprenyl not only on the deamination of serotonin (substrate of MAO A), but also on the oxidation of beta-phenylethylamine (the main substrate of MAO type B). The decrease in the inhibitory effect of deprenyl on the deamination of beta-phenylethylamine after the addition of 4-ethylpyridine may be intensified upon preincubation of deprenyl with mitochondria in the presence of 4-ethylpyridine. The data obtained demonstrate the difference in the type and mechanism of inhibition of the deamination of serotonin by chlorgiline as well as in the type and mechanism of oxidation of beta-phenylethylamine by deprenyl. The possible mechanism of selective blocking of MAO activity by chlorgiline and deprenyl was discussed in terms of our previous data on the existence in the active center of mitochondrial MAO of specific sites for substrate binding, differing in their structure-functional characteristics.  相似文献   

2.
The denaturating effects of urea on clorgyline-produced inhibition of serotonin and tyramine deamination and deprenyl-produced inhibition of beta-phenylethylamine and tyramine oxidation were studied. It was shown that after preincubation of mitochondria with 1 and 2 M urea the intensity of inhibition by clorgyline and deprenyl of oxidation of these amines was not changed. With urea concentration of 3 and 4 M the inhibitory effect of clorgyline on deamination of serotonin and tyramine was increased, while that of deprenyl on oxidation of beta-phenylethylamine and tyramine was decreased. As a result of mitochondria treatment with 3 and 4 M urea the selectivity in inhibition by clorgyline of serotonin and tyramine deamination typical for intact mitochondria was reduced in the case of 3 M urea and eliminated in the case of 4 M urea. In intact mitochondria the intensity of inhibition by clorgyline of tyramine deamination in the presence of benzyl alcohol (competitive reversible MAO inhibitor) was increased, but the additive effect was not achieved. However, after preincubation of mitochondria with 3 M urea the summation of the inhibitory effects of clorgyline and benzyl alcohol was observed. The data obtained provide further evidence for the important role of spatial configuration of the monoamine oxidase molecule; the data are discussed in terms of arrangement on the protein molecule surface of the essential groups involved in the binding and deamination of amines for the inhibitory effects of clorgyline and deprenyl.  相似文献   

3.
The action of nitrogenous basis--electroneutral hydrazides (pK less than 7,50 and positive charged arylhydrazones (pK greater than 8)--on the respiratory chain enzymes and the influence of the electric charge and the size of alkoxylic group on biological activity compounds have been investigated. It has been shown that the size of alkoxylic group defines the selective action of nitrogenous basis on the enzymes of mitochondrial respiratory chain. The nitrogenous basis with a long alkoxylic group is shown to be inhibitors of NADH-dehydrogenase, their action is similar to rotenone. At the same time compounds with a short group are more effective in the inhibition of the enzymes of the initial segment in the respiratory chain mitochondria. The affinity of the organic cations of arylhydrazones to NADH-dehydrogenase is 100-1000 times higher than the affinity of electric neutral compounds.  相似文献   

4.
1. The kinetics of glutamate transport into mitochondria were determined by using Bromocresol Purple to terminate the transport process. 2. Glutamate transport was found to have a V(max.) of 9.1nmol/min per mg of protein at pH6.9 and 20 degrees C; the K(m) for glutamate was 4mm. 3. The rate of glutamate deamination in intact mitochondria was tenfold slower than in disrupted mitochondria. 4. These results suggest that glutamate deamination may be controlled by the rate of glutamate transport. Possible consequences of these findings are discussed.  相似文献   

5.
Growth marker proteins (GMP) were studied for their effect on oxidative phosphorylation in the heart and liver mitochondria of rabbits. It is shown that GMP decrease a respiratory control (RC) coefficient, P/O coefficient, inhibit respiration of the mitochondria in metabolic states 3, 5 and activates it in state 4. The nature of the oxidation substrates (FAD- and NAD-dependent succinic and pyruvic acids, respectively) does not influence the GMP effect manifestation. It is supposed that GMP disturb the structural and functional integrity of the mitochondria. Variations in bioenergetic parameters of the heart and liver mitochondria in organisms with active growth foci as well as of mitochondria incubated with GMP, are unidirectional. Cytochrome c, coenzyme A (Co ASH) and other thyol compounds (cystein, dithiotreitol, glutathione--GSH) remove the GMP action.  相似文献   

6.
A variety of nitrogenous compounds broaden the activity versus pH profile for the peroxidation of dianisidine catalyzed by horseradish peroxidase (HRP), but not by myeloperoxidase, chloroperoxidase, Escherichia coli hydroperoxidase I, methemoglobin, or microperoxidases. The peroxidation of dianisidine catalyzed by cytochrome c peroxidase was affected by the nitrogenous compounds, but to a lesser extent than was the action of HRP. The peroxidations of a variety of phenols by HRP exhibited broad activity versus pH profiles and were unaffected by the nitrogenous compounds. The energy of activation for the peroxidation of dianisidine by HRP was unaffected by changes of pH in the range 6.5-8.5 and was unchanged by the presence of the nitrogenous compounds. The nitrogenous compounds markedly increased Vm for the peroxidation of dianisidine by HRP, but did not change the slope of Lineweaver-Burk plots of kinetic data. These results are accommodated by a mechanism in which nitrogenous compounds hydrogen-bond to the distal histidine of HRP and in so doing raise its pK alpha. Since the acid form of the distal histidine is thought to facilitate peroxidations catalyzed by HRP by hydrogen bonding to the ferryl oxygen of compound II, raising its pK alpha broadens the activity versus pH profile for the peroxidation of anilino substrates, such as dianisidine. We propose that phenolic substrates hydrogen-bond directly to the ferryl oxygen, thus displacing the distal histidine and eliminating the possibility of being influenced by nitrogenous compounds.  相似文献   

7.
The status of some dehydrogenases (succinate dehydrogenase, mitochondrial alpha-glycerophosphate dehydrogenase and beta-hydroxybutyrate dehydrogenase) was studied in the course of long-term oral administration of cholesterol to rabbits. The data obtained indicate that within the first weeks of cholesterol administration there was a decrease in enzymatic activity of the dehydrogenases under study that mirrored the impairment of energy function of mitochondria. After experiments were initiated, alimentary hypercholesterolemia led to imbalance of anabolism and catabolism bearing resemblance to the status of oxidative processes in the Krebs cycle. There is every reason to believe that such a complex of changes in the dehydrogenases during hypercholesterolemia is characteristic for the initial stages of atherosclerosis. Elimination of cholesterol from the body by single hemosorption results in a tendency towards making the circulating lymphocytes egress from hypoxia. It is inferred that study of enzymatic activity of dehydrogenases should be used for the diagnosis of and the assessment of therapeutic measures for atherosclerosis under experimental and clinical conditions.  相似文献   

8.
Glutamate oxidation in vitro via deamination and transamination during gramicidin C-induced transport of K+ and Na+ in rat nervous tissue mitochondria was studied. An increase in ammonium production, i.e. in glutamate oxidation due to deamination, was shown to occur with maximal increase of oxygen consumption in the presence of cations. It was found that 1.5 mM Na+ activate oxygen consumption by 15% and accelerate ammonium production from glutamate (by 17%). No changes in aspartate production were observed. 15 mM K+ increase oxygen consumption by 29% and ammonium production by 11% during a decrease in aspartate production as compared to glutamate oxidation in the presence of a lower (10 mM) concentration of K+ in the samples.  相似文献   

9.
10.
Summary Changes in the pattern of distribution of the nitrogen of the soil and seedling grass plants have been investigated when the grass plants were grown in pots of sandy soil, from a pasture, at pH 5.7. Net mineralization of soil nitrogen was not observed during an experimental period of one month in the absence of added nitrogenous fertilizer (Table 2). Addition of labeled nitrogen (as ammonium sulphate) to the soil at the beginning of the experimental period resulted in a negative net mineralization during this period (Table 4b). When none of the fertilizer nitrogen remained in its original form in the soil it was found that approximately 12 per cent of the labeled nitrogen had been immobilized in soil organic compounds. Clipping of the grass at this date was followed by a decrease in the amount of labeled soil organic nitrogen, indicating that mineralization was not depressed by living plants. The application of unlabeled ammonium sulphate subsequent to the utilization of the labeled nitrogen did not decrease the amount of immobilized labeled nitrogen in the soil organic matter, as would be expected if the organic nitrogen compounds of the soil had been decomposed to ammonia. This was thought to be due to the fact that decomposition of organic nitrogen compounds in permanent grassland results in the production of peptides, amino acids etc. which are utilized by microorganisms without deamination taking place. In pots with ageing grass plants, labeled organic nitrogen compounds were found to be translocated from the grass shoots to the soil (Table 7). Net mineralization of soil organic nitrogen was positive in the contents of pots containing killed root systems (Table 3b). About 8 per cent of the labeled nitrogen added to the contents of such pots, in the form of ammonium sulphate, was found to be present in soil organic nitrogen compounds approximately 4 weeks after application, while a total of about twice this amount of soil organic nitrogen was mineralized during that period. From the results obtained in this investigation, it is concluded that the constant presence of living plants is responsible for the accumulation of nitrogen in organic compounds in permanent grassland. No evidence was obtained that the decomposition of such compounds in the soil is inhibited by living plants.  相似文献   

11.
Using reversed-phase high-performance liquid chromatography purine nucleotides, nucleosides and nucleobases as well as pyridine nucleotides were determined in extracts of reticulocytes and mature red blood cells of rabbits. The concentrations of almost all compounds measured decrease during the last phase of red blood cell maturation. These changes were interpreted with respect to the loss of mitochondria, accompanied by shifting the energy production from the preferentially oxidative mode to the exclusively glycolytic one and variations in the concentrations of purine compounds in blood plasma during reticulocytosis.  相似文献   

12.
Sodium nitrate and nitrite (50–100 m M ) induced germination in three out of four genetically pure dormant lines of Avena fatua L. The sensitivity to these treatments was low immediately ater harvest and increased markedly after six months of dry after-ripening. The observation that a fourth dormant line failed to respond suggests at least two metabolic blocks may be involved in expression of dormancy. An inhibitor of gibberellin biosynthesis, 2-chloroethyl trimethylammonium chloride, completely inhibited the dormancy-breaking effect by nitrate and nitrite, indicating a requirement for gibberellin biosynthesis. Among reduced nitrogenous compounds, ammonium chloride and urea failed to break dormancy in all partly after-ripened lines, suggesting that nitrate and nitrite may induce germination through their ability to act as electron acceptors. The sensitivity to all nitrogenous compounds tested increased with the length of after-ripening indicating that the depth of the second dormancy block amy decrease with the time of after-ripening. Other reduced nitrogenous compounds, thiourea and hydroxylamine hydrochloride, promoted some germination in the least dormant, partially after-ripened lines. The function of these compounds as electron acceptors and their similarity in activity to the cytochrome oxidase inhibitor, sodium azide, is discussed with reference to dormancy and the possible involvement of the alternative pathway of respiration.  相似文献   

13.
Cold stress and cold adaptation were studied for their effect on the activity and substrate specificity of the monoamine oxidase A and B and on the Km of serotonin deamination in the rat brain mitochondria and supernatant. Mitochondrial monoamine oxidase Km with serotonin is established to increase more than twice under cold stress and decrease considerably in cold adapted rats. The lowering of the mitochondrial monoamine oxidase A activity is accompanied by the appearance of serotonin and the glucosamine deaminating activity in supernatant. The data suggest that decrease in the monoamine oxidase activity under cold stress may be caused by both release of the enzyme from mitochondrial membrane and changes in its catalytic property alteration.  相似文献   

14.
Protoporphyria is a hereditary disorder characterized by a marked decrease in the activity of ferrochelatase, the terminal enzyme in the heme biosynthetic pathway. We have prepared specific polyvalent antibodies against bovine ferrochelatase in rabbits. The specificity of the antibody preparation against ferrochelatase was demonstrated by western blot analysis and immunoprecipitation of ferrochelatase activity. The antibody also cross-reacted weakly with ferrochelatase from human mitochondria. To quantify immunoreactive ferrochelatase in tissue samples, a kinetic-based enzyme-linked immunosorbent assay (k-ELISA) was developed. Ferrochelatase activity and the level of immunoreactive protein were measured in hepatic mitochondria isolated from six normal and nine protoporphyric (homozygous) cattle. Ferrochelatase activity was less than 10% of normal in mitochondria from protoporphyric animals; the amount of immunoreactive material was equivalent to that from normal animals. Similar studies were performed with samples from three normal and two protoporphyric (heterozygous) humans. Ferrochelatase activity was decreased in protoporphyric samples (about 17% of normal, but there was no concomitant decrease in immunoreactive material. These data demonstrate that a normal amount of ferrochelatase protein is present and suggest that bovine and human protoporphyria result from point mutations in the gene encoding ferrochelatase.  相似文献   

15.
The causes of the adenosine monophosphate (AMP) deamination increase in rat brain mitochondria under conditions of hyperoxia, hypoxia and cold stress were studied. Data from the inhibitory analysis suggest that the increased intensity of AMP deamination under hypoxia is conditioned by the alterations in the substrate specificity of type A monoamine oxidase which acquires the ability to deaminate AMP. The enhancement of AMP deamination under hyperoxia and cold stress is due to the activation of true AMP deaminase in the mitochondrial fraction. The cytoplasmic AMP deaminase activity remains unchanged thereby. The effects of the AMP deaminase specific effectors, ATP and inorganic phosphate, were investigated.  相似文献   

16.
The effect of acute respiratory hypoxia in rats on mitochondrial respiration, adenine nucleotides and some amino acids of the heart was studied. The decrease in the total (ATP + ADP + AMP) and exchangeable (ATP + ADP) adenine nucleotide pool of the mitochondria was accompanied by a pronounced loss of state 3 respiration with glutamate plus malate and a slight decrease with succinate plus rothenone. The uncoupled respiration of mitochondria with glutamate and malate was decreased in the same degree as in the absence of 2,4-dinitrophenol. State 4 respiration with substrates of both types was unaffected by hypoxia. These data point to a hypoxia-induced impairment of complex I of the respiratory chain. The decrease of tissue and mitochondrial glutamate was accompanied by the elevation of alanine content in the heart and an increase in intramitochondrial aspartate. The ADP-stimulated respiration of mitochondria was correlated with mitochondrial glutamate and ATP as well as with exchangeable adenine nucleotide pools during hypoxia. The experimental results suggest that mitochondrial dysfunction induced by hypoxia may also be attributed to the low level of mitochondrial glutamate.  相似文献   

17.
Mitochondrial damage in PC12 cells, a model for dopaminergic cells, was examined in terms of the contribution of oxidative stress, nitric oxide (*NO), and dopamine to impairment of mitochondrial respiratory control (RC). A kinetic analysis suggested that the oxidative deamination of dopamine catalyzed by monoamine oxidase (MAO) was not a significant source of hydrogen peroxide, because of constrains imposed by the low cytosolic level of dopamine. *NO induced irreversible damage of mitochondrial complex I in PC12 cells: this damage followed a sigmoid response on *NO concentration with a well-defined threshold level. Dopamine did not elicit damage of mitochondria in PC12 cells; however, the amine potentiated the effects of *NO at or near the threshold level, thus leading to irreversible impairment of mitochondrial respiration. This synergism between *NO and dopamine was not observed at *NO concentrations below the threshold level. Depletion of dopamine from the storage vesicles by reserpine protected mitochondria from *NO damage. Dopamine oxidation by *NO increased with pH, and occurred at modest levels at pH 5.5. In spite of this, calculations showed that the oxidation of dopamine in the storage vesicles (pH 5.5) was higher than that in the cytosol (pH 7.4), due to the higher dopamine concentration in the storage vesicles (millimolar range) compared to that in the cytosol (micromolar range). It is suggested that storage vesicles may be the cellular sites where the potential for dopamine oxidation by *NO is higher.These data provide further support to the hypothesis that dopamine renders dopaminergic cells more susceptible to the mitochondrial damaging effects of *NO. In the early stages of Parkinson's disease, *NO production increases until reaching a point near the threshold level that induces neuronal damage. Dopamine stored in dopaminergic cells may cause these cells to be more susceptible to the deleterious effects of *NO, which involve irreversible impairment of mitochondrial respiration.  相似文献   

18.
Glutamate transprot in rat kidney mitochondria   总被引:1,自引:0,他引:1  
The quantitative characteristics of [U-14C]glutamate transport were determined in rotenone-inhibited energized rat kidney mitochondria at pH 7.0 and 28 degrees C. Glutamate efflux was observed to be first order with respect to matrix glutamate with a rate constant of 0.457 min-1. Uptake kinetic studies indicated that the Km of external glutamate was 1.4 mM and the Vmax 3.2 nmol/mg X min. These kinetic values were found to be unchanged at pH 6.6 or in mitochondria obtained from kidneys of chronically acidotic rats. Parallel studies of glutamate deamination were performed in which mitochondria were incubated in state 3, state 4, and with carbonyl cyanide p-trifluoromethoxyphenylhydrazone, in the presence of malonate. The oxidative deamination of glutamate determined with 1 and 10 mM glutamate never exceeded the simultaneously measured rate of glutamate transport. No glutamate was detectable within the mitochondrial matrix under the conditions of these metabolic experiments. The studies indicate that the glutamate hydroxyl transporter is quite slow and rate limiting for the oxidative deamination of external glutamate in rat kidney mitochondria.  相似文献   

19.
植物地上部氮素损失及其机理研究现状与展望   总被引:1,自引:0,他引:1       下载免费PDF全文
植物地上部气态氮化合物挥发是氮素损失的重要途径, 同时也是大气NH3和N2O的重要来源, 因此, 研究植物氮素挥发损失对于大气环境保护和提高氮肥利用率具有重要意义。该文综述了各种气态氮化物(NH3、NO、NO2、N2O和N2)损失及其机理, 结果表明, 活性氮源积累和同化的不平衡, 是植物氮素挥发损失的主要因素; 环境条件(光、温、水、肥、气)和植物生理病害、衰老等因素, 均可引起植物活性氮源积累和同化的不平衡, 导致植物地上部氮素的挥发损失, 但各种气体氮化物能否从叶面挥发, 还要取决于气体氮化物的补偿点; NH3和N2O是主要的植物氮素损失形态, 主要氮素挥发损失发生在生育后期, 但不同氮素损失形态对植物生育期的响应并未完全相同。该文较完整地归纳总结了植物氮素挥发损失的作用机理, 指出了目前研究尚需要解决的重要问题: 1)氮素损失形态间的内在关系并不清楚, 尚不能完整地解释植物氮素挥发损失机制, 尤其是酶催化协同机制; 2)植物叶际气态氮化物交换(包括吸收和释放)作用及其机理也未完全清楚, 因而难以正确评估植物氮素的挥发损失; 3)植物衰老对增强氮素挥发损失有明显促进效果, 但有关其生理机制尚不完全清楚; 4)缺乏可行的抑制植物氮素挥发技术方法, 故还难以有效缓解肥料氮的挥发损失, 提高氮肥利用率。  相似文献   

20.
It is an important therapeutic strategy to protect mitochondria from oxidative stress, especially during ischemia-reperfusion. In the present study, an attempt has been made to evaluate the protective effects of caffeic acid phenethyl ester (CAPE) and its related phenolic compounds on mouse brain and liver mitochondria injury induced by in vitro anoxia-reoxygenation. Added before anoxia or reoxygenation, CAPE markedly protected coupled respiration with the decrease in state 4 and the increases in state 3, respiratory control ratio (RCR) and ADP/O ratio in a concentration-dependent manner. CAPE effectively protected mitochondria by inhibiting the mitochondrial membranes fluidity decrease, the lipoperoxidation and the protein carbonylation increase, which indicated its protective action against the mitochondrial oxidative damage. Meanwhile, CAPE blocked the enhanced release of cardiolipin (CL) and cytochrome c (Cyt c). The related phenolic compounds like caffeic acid (CA), ferulic acid (FA) and ethyl ferulate (EF) also had different-degree protective effects. CAPE and CA were more potent than FA and EF. Their structural differences played the key role in their activity levels. These results suggest that CAPE and its related phenolic compounds protect mitochondria mainly correlated to their antioxidative activities and may be of interest for the prevention and therapy of ischemia-reperfusion injuries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号