首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
Understanding the factors that regulate geographical variation in species richness has been one of the fundamental questions in ecology for decades, but our knowledge of the cause of geographical variation in species richness remains poor. This is particularly true for herpetofaunas (including amphibians and reptiles). Here, using correlation and regression analyses, we examine the relationship of herpetofaunal species richness in 245 localities across China with 30 environmental factors, which include nearly all major environmental factors that are considered to explain broad-scale species richness gradients in such theories as ambient energy, water–energy dynamics, productivity, habitat heterogeneity, and climatic stability. We found that the species richness of amphibians and reptiles is moderately to strongly correlated with most of the environmental variables examined, and that the best fit models, which include explanatory variables of temperature, precipitation, net primary productivity, minimum elevation, and range in elevation, explain ca 70% the variance in species richness for both amphibians and reptiles after accounting for sample area. Although water and temperature are important explanatory variables to both amphibians and reptiles, water variables explain more variance in amphibian species richness than in reptile species richness whereas temperature variables explain more variance in reptile species richness than in amphibian species richness, which is consistent with different physiological requirements of the two groups of organisms.  相似文献   

3.
We investigate the relative importance of stochastic and environmental/topographic effects on the occurrence of avian centres of endemism, evaluating their potential historical importance for broad‐scale patterns in species richness across Sub‐Saharan Africa. Because species‐rich areas are more likely to be centres of endemism by chance alone, we test two null models: Model 1 calculates expected patterns of endemism using a random draw from the occurrence records of the continental assemblage, whereas Model 2 additionally implements the potential role of geometric constraints. Since Model 1 yields better quantitative predictions we use it to identify centres of endemism controlled for richness. Altitudinal range and low seasonality emerge as core environmental predictors for these areas, which contain unusually high species richness compared to other parts of sub‐Saharan Africa, even when controlled for environmental differences. This result supports the idea that centres of endemism may represent areas of special evolutionary history, probably as centres of diversification.  相似文献   

4.
Recent studies addressing broad-scale species richness gradients have proposed two main primary drivers: contemporary climate and evolutionary processes (differential balance between speciation and extinction). Here, we analyze the global richness patterns of two venomous snake clades, Viperidae and Elapidae. We used ordinary least squares multiple regression (OLS) and partial regression analysis to investigate to what extent actual evapotranspiration (AET; summarizing current environmental conditions) and biogeographical regions (representing evolutionary effects) were associated with species richness. For viperids, AET explained 45.6% of the variance in richness whereas the effect of this variable for elapids was almost null (0.5%). On the other hand, biogeographic regions were the best predictors of elapid richness (56.5%), against its relatively small effect (25.9%) in viperid richness. Partial regressions also revealed similar patterns for independent effects of climate and history in both clades. However, the independent historical effect in Elapidae decreased from 45.2 to 17.8% when we excluded Australia from the analyses, indicating that the strong historical effect that had emerged for the global richness pattern was reflecting the historical process of elapid radiation into Australia. Even after excluding Australia, the historical signal in elapid richness in the rest of the globe was still significant and much higher than that observed in viperid richness at a global scale (2.7% after controlling for AET effects). Differences in the evolutionary age of these two clades can be invoked to explain these contrasting results, in that viperids probably had more time for diversification, generating richness responses to environmental gradients, whereas the pattern of distribution of elapid richness can be more directly interpreted in an evolutionary context. Moreover, these results show the importance of starting to adopt deconstructive approaches to species richness, since the driving factors of these patterns may vary from group to group according to their evolutionary history. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Jetz W  Fine PV 《PLoS biology》2012,10(3):e1001292
Broad-scale geographic gradients in species richness have now been extensively documented, but their historical underpinning is still not well understood. While the importance of productivity, temperature, and a scale dependence of the determinants of diversity is broadly acknowledged, we argue here that limitation to a single analysis scale and data pseudo-replication have impeded an integrated evolutionary and ecological understanding of diversity gradients. We develop and apply a hierarchical analysis framework for global diversity gradients that incorporates an explicit accounting of past environmental variation and provides an appropriate measurement of richness. Due to environmental niche conservatism, organisms generally reside in climatically defined bioregions, or "evolutionary arenas," characterized by in situ speciation and extinction. These bioregions differ in age and their total productivity and have varied over time in area and energy available for diversification. We show that, consistently across the four major terrestrial vertebrate groups, current-day species richness of the world's main 32 bioregions is best explained by a model that integrates area and productivity over geological time together with temperature. Adding finer scale variation in energy availability as an ecological predictor of within-bioregional patterns of richness explains much of the remaining global variation in richness at the 110 km grain. These results highlight the separate evolutionary and ecological effects of energy availability and provide a first conceptual and empirical integration of the key drivers of broad-scale richness gradients. Avoiding the pseudo-replication that hampers the evolutionary interpretation of non-hierarchical macroecological analyses, our findings integrate evolutionary and ecological mechanisms at their most relevant scales and offer a new synthesis regarding global diversity gradients.  相似文献   

6.
A major goal of ecology is to determine the causes of the latitudinal gradient in global distribution of species richness. Current evidence points to either energy availability or habitat heterogeneity as the most likely environmental drivers in terrestrial systems, but their relative importance is controversial in the absence of analyses of global (rather than continental or regional) extent. Here we use data on the global distribution of extant continental and continental island bird species to test the explanatory power of energy availability and habitat heterogeneity while simultaneously addressing issues of spatial resolution, spatial autocorrelation, geometric constraints upon species' range dynamics, and the impact of human populations and historical glacial ice-cover. At the finest resolution (1 degree), topographical variability and temperature are identified as the most important global predictors of avian species richness in multi-predictor models. Topographical variability is most important in single-predictor models, followed by productive energy. Adjusting for null expectations based on geometric constraints on species richness improves overall model fit but has negligible impact on tests of environmental predictors. Conclusions concerning the relative importance of environmental predictors of species richness cannot be extrapolated from one biogeographic realm to others or the globe. Rather a global perspective confirms the primary importance of mountain ranges in high-energy areas.  相似文献   

7.
The relationship between invasion success and native biodiversity is central to biological invasion research. New theoretical and analytical approaches have revealed that spatial scale, land‐use factors and community assemblages are important predictors of the relationship between community diversity and invasibility and the negative effects of invasive species on community diversity. In this study we assess if the abundance of Lithobates catesbeianus, the American bullfrog, negatively affects the richness of native amphibian species in Atlantic Forest waterbodies in Brazil. Although this species has been invading Atlantic Forest areas since the 1930s, studies that estimate the invasion effects upon native species diversity are lacking. We developed a model to understand the impact of environmental, spatial and species composition gradients on the relationships between bullfrogs and native species richness. We found a weak positive relationship between bullfrog abundance and species richness in invaded areas. The path model revealed that this is an indirect relationship mediated by community composition gradients. Our results indicate that bullfrogs are more abundant in certain amphibian communities, which can be species‐rich. Local factors describing habitat heterogeneity were the main predictors of amphibian species richness and composition and bullfrog abundance. Our results reinforce the important role of habitats in determining both native species diversity and potential invasibility.  相似文献   

8.
Broad‐scale richness gradients are closely associated with temperature and water availability. However, historical and evolutionary processes have also contributed to shape current diversity patterns. In this paper we focus on the potential influences of Pleistocene glaciation and phylogenetic niche conservatism (the tendency for traits to be maintained during diversification) on the tree diversity gradient in Chile, and we quantify its primary climatic correlates. Tree species richness is greatest at mid latitudes, particularly in the Andes and Coastal ranges, and decreases abruptly to the south and north. Regression tree analysis identified annual precipitation and annual temperature as the primary probable drivers of this gradient. Ice cover during the Last Glacial Maximum was also identified as an ‘important’ variable, but the contemporary and historical predictors are strongly collinear. Geographically weighted regression indicated that the relationships between richness and environmental variables vary regionally: the relationship between tree richness and precipitation is stronger in north‐central Chile, whereas tree richness and temperature are most strongly associated in south‐central Chile. By assigning each species the age of the family to which it belongs and averaging all species in each geographical unit, we also found that species from the oldest families are distributed mainly in mid to high latitudes and species from younger families are distributed mainly at lower latitudes. This pattern is closely associated with annual precipitation. Thus, the ecological component of tree richness follows contemporary climatic gradients of both energy and water, but the aridification of the Atacama Desert was an important driver over evolutionary time. The influence of recent Pleistocene glaciation remains unresolved but it cannot be discounted.  相似文献   

9.
Understanding the thermal ecology of active amphibians, as well as its relationship with habitat and environmental features, is a central theme in ecology. However, this topic has been poorly studied in eastern Himalaya, which is a global biodiversity hotspot. To bridge this gap, we investigated how the body temperatures of active amphibians varied along an elevation gradient in the Arun and Tamor River catchments in eastern Nepal Himalaya in the present study. Amphibian assemblages were sampled from May to July in both 2014 and 2015 using nocturnal time-constrained visual encounter surveys, and the body temperature of each individual was directly measured using a digital infrared thermometer in the field. A combination of linear regression and hierarchical partitioning analyses was used to determine the effects of elevation and environmental variables on the body temperatures of active amphibians. In total, the body temperatures of 599 amphibian individuals belonging to 28 species from six families were recorded. Our results indicated that amphibian body temperature exhibited monotonically declining trends with increasing elevations in eastern Nepal Himalaya. Interestingly, this tread was much more pronounced in subtropical (lowland) areas than in warm and cool temperate regions. Inter- and intraspecies variations in body temperature were large, which can be attributed to distinct habitat utilization among species and the change in vegetation cover in different bioclimatic zones. Among all environmental variables, substrate temperature and water temperature were the best predictors of the amphibian body temperature. Overall, this study revealed amphibian body temperature patterns along an elevation gradient in eastern Nepal Himalaya, which were principally driven by temperature-related environmental factors. We believe our results can provide important information on amphibian physiological traits, which may help ecologists predict their responses to future climate change and formulate protection strategies.  相似文献   

10.
Current patterns of biodiversity distribution result from a combination of historical and contemporary processes. Here, we compiled checklists of amphibian species to assess the roles of long-term climate stability (Quaternary oscillations), contemporary environmental gradients and geographical distance as determinants of change in amphibian taxonomic and phylogenetic composition in the Brazilian Atlantic Forest. We calculated beta diversity as both variation in species composition (CBD) and phylogenetic differentiation (PBD) among the assemblages. In both cases, overall beta diversity was partitioned into two basic components: species replacement and difference in species richness. Our results suggest that the CBD and PBD of amphibians are determined by spatial turnover. Geographical distance, current environmental gradients and long-term climatic conditions were complementary predictors of the variation in CBD and PBD of amphibian species. Furthermore, the turnover components between sites from different regions and between sites within the stable region were greater than between sites within the unstable region. On the other hand, the proportion of beta-diversity due to species richness difference for both CBD and PBD was higher between sites in the unstable region than between sites in the stable region. The high turnover components from CBD and PBD between sites in unstable vs stable regions suggest that these distinct regions have different biogeographic histories. Sites in the stable region shared distinct clades that might have led to greater diversity, whereas sites in the unstable region shared close relatives. Taken together, these results indicate that speciation, environmental filtering and limited dispersal are complementary drivers of beta-diversity of amphibian assemblages in the Brazilian Atlantic Forest.  相似文献   

11.
Correlations between environmental factors and the distribution of amphibian and reptile species richness were investigated in a climate transition area, Peneda-Gerês National Park (PNPG), in North-Western Portugal. Using presence-data at a local-scale (1 × 1 km), Ecological-Niche Factor Analysis (ENFA) identified a mixture of climatic (precipitation and number of days with fog), topographical (altitude and relief) and habitat factors (number of watercourses and water surfaces, the type of the largest water surface and tree diversity cover), as accurate predictors of species occurrence. Three factors were common for both taxonomic groups, and consistently presented a positive relation with species occurrence: precipitation, number of water surfaces, and tree diversity cover; suggesting a strong coincidence in the environmental correlates that influence amphibian and reptile species richness. Distribution patterns of observed and predicted species richness were compared using a Geographical Information System. Overall, three high species richness areas were predicted in common for both taxonomic groups and two additional areas for amphibians only. These areas matched with the observed species richness but suggested larger areas of high species richness. The location of the PNPG in a biogeographic crossroad, between Euro-Siberian and Mediterranean provinces, emphasised species richness of amphibians and reptiles and suggests a high priority conservation status for this protected area. Most of Central-Northern Portugal is located in a climatic transition area; therefore, increased species richness should be expected for other areas. Local scale studies for other protected areas should be planned as a framework for the development of multi-scale conservation planning by Portuguese authorities.  相似文献   

12.
Aim Biodiversity patterns along altitudinal gradients are less studied in aquatic than terrestrial systems, even though aquatic sites provide a more homogeneous environment independent of moisture constraints. We studied the altitudinal species richness pattern for planktonic rotifers in freshwater lakes and identified the environmental predictors for which altitude is a proxy. Location Two hundred and eighteen lakes of Trentino–South Tyrol (Italy) in the eastern Alps; lakes covered 98% (range 65–2960 m above sea level) of the altitudinal gradient in the Alps. Methods We performed: (1) linear regression between species richness and altitude to evaluate the general pattern, (2) multiple linear regression between species richness and environmental predictors excluding altitude to identify the most important predictors, and (3) linear regression between the residuals of the best model of step (2) and altitude to investigate any additional explanatory power of altitude. Selection of environmental predictors was based on limnological importance and non‐parametric Spearman correlations. We applied ordinary least squares regression, generalized linear, and generalized least squares modelling to select the most statistically appropriate model. Results Rotifer species richness showed a monotonic decrease with altitude independent of scale effects. Species richness could be explained (R2= 51%) by lake area as a proxy for habitat diversity, reactive silica and total phosphorus as proxies for productivity, water temperature as a proxy for energy, nitrate as a proxy for human influence and north–south and east–west directions as covariates. These predictors completely accounted for the species richness–altitude pattern, and altitude had no additional effect on species richness. Main conclusions The linear decrease of species richness along the altitudinal gradient was related to the interplay of habitat diversity, productivity, heat content and human influence. These factors are the same in terrestrial and aquatic habitats, but the greater environmental stability of aquatic systems seems to favour a linear pattern.  相似文献   

13.
Ecological, historical, and evolutionary hypotheses are important to explain geographical diversity gradients in many clades, but few studies have combined them into a single analysis allowing a comparison of their relative importance. This study aimed to evaluate the relative importance of ecological, historical, and evolutionary hypotheses in explaining the current global distribution of non‐marine turtles, a group whose distribution patterns are still poorly explored. We used data from distribution range maps of 336 species of non‐marine turtles, environmental layers, and phylogeny to obtain richness estimates of these animals in 2° × 2° cells and predictors related to ecological, evolutionary and historical hypotheses driving richness patterns. Then we used a path analysis to evaluate direct and indirect effects of the predictors on turtle richness. Ancestral area reconstruction was also performed in order to evaluate the influence of time‐for‐speciation in the current diversity of the group. We found that environmental variables had the highest direct effects on non‐marine turtle richness, whereas diversification rates and area available in the last 55 million yr minimally influenced turtle distributions. We found evidence for the time‐for‐speciation effect, since regions colonized early were generally richer than recently colonized regions. In addition, regions with a high number of colonization events had a higher number of turtle species. Our results suggested that ecological processes may influence non‐marine turtle richness independent of diversification rates, but they are probably related to dispersal abilities. However, colonization time was also an important component that must be taken into account. Finally, our study provided additional support for the importance of ecological (climate and productivity) and historical (time‐for‐speciation and dispersal) processes in shaping current biodiversity patterns.  相似文献   

14.
Aim To evaluate how spatial variation of species richness in different bird orders responds to environmental gradients and determine which order level trait best predicts these relationships. Location South America. Methods A canonical correlation analysis was performed between the species richness in each of 17 bird orders and eight environmental variables in 374, 220 × 220 km cells. Loadings associated with the first two canonical variables were regressed against six order‐level predictors, including diversification level (number of species in each order), body size, median geographical range size and characteristics included in the model to control Type I error rates (the phylogenetic relationship among orders and levels of local‐scale spatial autocorrelation). Results Richness patterns of 14 bird orders were highly correlated with the first canonical axis, indicating that most orders respond similarly to energy‐water gradients (primarily actual evapotranspiration, minimum temperature and potential evapotranspiration). In contrast, species richness within Trochiliformes, Apodiformes and Galliformes were also correlated with the second canonical variable, representing measures of mesoscale climatic variation (range in elevation within cells, minimum temperature, and the interaction term between them) and landcover (habitat diversity). We also found that total diversification within orders was the best predictor of the loadings associated with the first canonical axis, whereas body size of each order best predicted loadings on the second axis. Conclusion Our results broadly support climatic‐related hypotheses as explanations for spatial variation in species richness of different orders. However, both historical (order‐specific variation in speciation rates) and ecological (dispersal of species that evolved by independent processes into areas amenable to birds) processes can explain the relationship between order level traits, such as body size and diversification level, and magnitude of response to current environment, furnishing then guidelines for a further and deeper understanding of broad‐scale diversity gradients.  相似文献   

15.
Aim Physiology is emerging as a basis for understanding the distribution and diversity of organisms, and ultimately for predicting their responses to climate change. Here we review how the difference in physiology of terrestrial vertebrate ectotherms (amphibians and reptiles) and endotherms (birds and mammals) is expected to influence broad‐scale ecological patterns. Location Global terrestrial ecosystems. Methods We use data from the literature and modelling to analyse geographic gradients in energy use and thermal limits. We then compare broad‐scale ecological patterns for both groups with expectations stemming from these geographic gradients. Results The differences in thermal physiology between ectotherms and endotherms result in geographically disparate macrophysiological constraints. Field metabolic rate (FMR) is stable or decreases slightly with temperature for endotherms, while it generally increases for ectotherms, leading to opposing latitudinal gradients of expected FMR. Potential activity time is a greater constraint on the distributions of ectotherms than endotherms, particularly at high latitudes. Differences in the primary correlates of abundance and species richness for two representative taxonomic groups are consistent with the consequences of these basic physiological differences. Ectotherm richness is better predicted by temperature, whereas endotherm richness is more strongly associated with primary productivity. Finally, in contrast to endotherms, ectotherm richness is not strongly related to abundance. Main conclusions Differences in thermal physiology affect how organisms interact with and are constrained by their environment, and may ultimately explain differences in the geographic pattern of biodiversity for endotherms and ectotherms. Linking the fields of physiological and broad‐scale ecology should yield a more mechanistic understanding of how biodiversity will respond to environmental change.  相似文献   

16.
Big sagebrush (Artemisia tridentata Nutt.) plant communities are widespread in western North America and, similar to all shrub steppe ecosystems worldwide, are composed of a shrub overstory layer and a forb and graminoid understory layer. Forbs account for the majority of plant species diversity in big sagebrush plant communities and are important for ecosystem function. Few studies have explored geographic patterns of forb species richness and composition and their relationships with environmental variables in these communities. Our objectives were to examine the fine and broad-scale spatial patterns in forb species richness and composition and the influence of environmental variables. We sampled forb species richness and composition along transects at 15 field sites in Colorado, Idaho, Montana, Nevada, Oregon, Utah, and Wyoming, built species-area relationships to quantify differences in forb species richness at sites, and used Principal Components Analysis, non-metric multidimensional scaling, and redundancy analysis to identify relationships among environmental variables and forb species richness and composition. We found that species richness was most strongly correlated with soil texture, while species composition was most related to climate. The combination of climate and soil texture influences water availability, which our results indicate has important consequences for forb species richness and composition, and suggests that climate change-induced modification of soil water availability may have important implications for plant species diversity in the future.  相似文献   

17.
Aim Studies exploring the determinants of geographical gradients in the occurrence of species or their traits obtain data by: (1) overlaying species range maps; (2) mapping survey‐based species counts; or (3) superimposing models of individual species’ distributions. These data types have different spatial characteristics. We investigated whether these differences influence conclusions regarding postulated determinants of species richness patterns. Location Our study examined terrestrial bird diversity patterns in 13 nations of southern and eastern Africa, spanning temperate to tropical climates. Methods Four species richness maps were compiled based on range maps, field‐derived bird atlas data, logistic and autologistic distribution models. Ordinary and spatial regression models served to examine how well each of five hypotheses predicted patterns in each map. These hypotheses propose productivity, temperature, the heat–water balance, habitat heterogeneity and climatic stability as the predominant determinants of species richness. Results The four richness maps portrayed broadly similar geographical patterns but, due to the nature of underlying data types, exhibited marked differences in spatial autocorrelation structure. These differences in spatial structure emerged as important in determining which hypothesis appeared most capable of explaining each map's patterns. This was true even when regressions accounted for spurious effects of spatial autocorrelation. Each richness map, therefore, identified a different hypothesis as the most likely cause of broad‐scale gradients in species diversity. Main conclusions Because the ‘true’ spatial structure of species richness patterns remains elusive, firm conclusions regarding their underlying environmental drivers remain difficult. More broadly, our findings suggest that care should be taken to interpret putative determinants of large‐scale ecological gradients in light of the type and spatial characteristics of the underlying data. Indeed, closer scrutiny of these underlying data — here the distributions of individual species — and their environmental associations may offer important insights into the ultimate causes of observed broad‐scale patterns.  相似文献   

18.
Studying the distributions of plants and animals along environmental gradients can illuminate the factors governing and maintaining species diversity. There are two general predictions of how species richness and elevation are related: either species richness decreases monotonically with increasing elevation or richness peaks at mid-elevations. Several processes might contribute to this pattern. In this paper, I examine patterns in ant species richness along elevational gradients in three states in the western US: Colorado, Nevada, and Utah. I test for the effects of available area and the geometric constraints model on species richness patterns. I also test Rapoport's rescue hypothesis, which relates the extent of species' elevational ranges to patterns in species richness. In each state, species richness peaked at mid-elevations. Area explained more variation in species richness than the geometric constraints model in Colorado and Utah, but not in Nevada. Area and geometric constraints together explained 90%, 99%, and 57% of the variation in species richness in Colorado, Nevada, and Utah, respectively. Even though there were peaks at mid-elevations, I still found a strong Rapoport effect. This work suggests that the influences of area and geometric constraints cannot be overlooked when examining patterns in species richness along environmental gradients.  相似文献   

19.
Understanding the ecological and evolutionary processes driving biodiversity patterns and allowing their persistence is of utmost importance. Many hypotheses have been proposed to explain spatial diversity patterns, including water-energy availability, habitat heterogeneity, and historical climatic refugia. The main goal of this study is to identify if general spatial drivers of species diversity patterns of phylogenetic diversity (PD) and phylogenetic endemism (PE) at the global scale are also predictive of PD and PE at regional scales, using Iberian amphibians as a case study. Our main hypothesis assumes that topography along with contemporary and historical climate are drivers of phylogenetic diversity and endemism, but that the strength of these predictors may be weaker at the regional scale than it tends to be at the global scale. We mapped spatial patterns of Iberian amphibians' phylogenetic diversity and endemism, using previously published phylogenetic and distribution data. Furthermore, we compiled spatial data on topographic and climatic variables related to the water-energy availability, topography, and historical climatic instability hypotheses. To test our hypotheses, we used Spatial Autoregressive Models and selected the best model to explain diversity patterns based on Akaike Information Criterion. Our results show that, out of the variables tested in our study, water-energy availability and historical climate instability are the most important drivers of amphibian diversity in Iberia. However, as predicted, the strength of these predictors in our case study is weaker than it tends to be at global scales. Thus, additional drivers should also be investigated and we suggest caution when interpreting these predictors as surrogates for different components of diversity.  相似文献   

20.
物种丰富度分布格局的成因机制一直是宏观生态学研究的热点问题之一。中国西南地区喀斯特地貌区(以广西、云南和贵州为主)是世界上面积最大的喀斯特地貌区, 也是全球范围内34个生物多样性热点地区之一。为了解该区域两栖动物物种丰富度分布格局及其与环境因子之间的关系, 本研究根据中国科学院成都生物研究所标本馆、中国科学院昆明动物研究所标本馆、广西壮族自治区自然博物馆和中南林业科技大学动物标本室收藏的标本数据, 以及公开发表的文献数据, 共获得18,246条两栖动物记录(219个物种), 然后运用生态位模型估测每个物种的潜在分布区, 并把每个物种的潜在分布区叠加起来, 最终得到该区域在10 km ´10 km生态位模型空间尺度上的两栖物种丰富度地理分布格局图, 最后进行多元回归和模型选择分析。结果表明: 有12种两栖动物仅在喀斯特地貌区分布, 占物种总数的5.48%; 有104种两栖动物仅在非喀斯特地貌区分布, 占物种总数的47.49%; 有103种两栖动物在喀斯特地貌区和非喀斯特地貌区均有分布, 占物种总数的47.03%; 两栖动物物种丰富度随纬度的增高而降低; 地貌类型(喀斯特地貌和非喀斯特地貌)对两栖动物物种丰富度的分布格局有显著影响(χ2 = 36.47, P < 0.0001), 但模型拟合效果差(McFadden’s Rho square = 0.0037)。影响该区域两栖动物物种丰富度分布格局最大的环境因子是年均降雨量(R2 = 0.232, P < 0.001), 其次是最干月平均降雨量(R2 = 0.221, P < 0.001)。该区域两栖动物物种丰富度的格局主要是由地貌和不同的环境因子共同相互作用的结果, 不过仍有相当一部分物种丰富度的分布格局未被解释。因此, 要更全面地认识该区域两栖动物物种丰富度格局的形成机制, 有必要加强干扰、捕食、竞争等其他生物因子的影响研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号