首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electric fish, Eigenmannia, will smoothly shift the frequency of its electric organ discharge away from an interfering electric signal. This shift in frequency is called the jamming avoidance response (JAR). In this article, we analyze the behavioral development of the JAR and the anatomical development of structures critical for the performance of the JAR. The JAR first appears when juvenile Eigenmannia are approximately 1 month old, at a total length of 13–18 mm. We have found that the establishment of much of the sensory periphery and of central connections precedes the onset of the JAR. We describe three aspects of the behavioral development of the JAR: (a) the onset and development of the behavior is closely correlated with size, not age; (b) the magnitude (in Hz) of the JAR increases with size until the juveniles display values within the adult range (10–20 Hz) at a total length of 25–30 mm; and (3) the JAR does not require prior experience or exposure to electrical signals. Raised in total electrical isolation from the egg stage, animals tested at a total length of 25 mm performed a correct JAR when first exposed to the stimulus. We examine the development of anatomical areas important for the performance of the JAR: the peripheral electrosensory system (mechano- and electroreceptors and peripheral nerves); and central electrosensory pathways and nuclei [the electrosensory lateral line lobe (ELL), the lateral lemniscus, the torus semicircularis, and the pacemaker nucleus]. The first recognizable structures in the developing electrosensory system are the peripheral neurites of the anterior lateral line nerve. The afferent nerves are established by day 2, which is prior to the formation of receptors in the epidermis. Thus, the neurites wait for their targets. This sequence of events suggests that receptor formation may be induced by innervation of primordial cells within the epidermis. Mechanoreceptors are first formed between day 3 and 4, while electroreceptors are first formed on day 7. Electroreceptor multiplication is observed for the first time at an age of 25 days and correlates with the onset of the JAR. The somata of the anterior lateral line nerve ganglion project afferents out to peripheral electroreceptors and also send axons centrally into the ELL. The first electroreceptive axons invade the ELL by day 6, and presumably a rough somatotopic organization and segmentation within the ELL may arise as early as day 7. Axonal projections from the ELL to the torus develop after day 18. Within the torus semicircularis, giant cells are necessary for the performance of the JAR. Giant cell numbers increase exponentially during development and the onset of the JAR coincides with a minimum of at least 150 giant cells and the attainment of a total length of at least 15 mm and at least 150 giant cells. Pacemaker and relay cells comprise the adult Eigenmannia pacemaker nucleus. The growth and differentiation of these cell types also correlates with the onset of the JAR in developing animals. We describe a gradual improvement of sensory abilities, as opposed to an explosive onset of the mature JAR. We further suggest that this may be a rule common in most developing behavioral systems. © 1992 John Wiley & Sons, Inc.  相似文献   

2.
The electromotor and electrosensory systems of the weakly electric fish Apteronotus leptorhynchus are model systems for studying mechanisms of high-frequency motor pattern generation and sensory processing. Voltage-dependent ionic currents, including low-threshold potassium currents, influence excitability of neurons in these circuits and thereby regulate motor output and sensory filtering. Although Kv1-like potassium channels are likely to carry low-threshold potassium currents in electromotor and electrosensory neurons, the distribution of Kv1 alpha subunits in A. leptorhynchus is unknown. In this study, we used immunohistochemistry with six different antibodies raised against specific mammalian Kv1 alpha subunits (Kv1.1-Kv1.6) to characterize the distribution of Kv1-like channels in electromotor and electrosensory structures. Each Kv1 antibody labeled a distinct subset of neurons, fibers, and/or dendrites in electromotor and electrosensory nuclei. Kv1-like immunoreactivity in the electrosensory lateral line lobe (ELL) and pacemaker nucleus are particularly relevant in light of previous studies suggesting that potassium currents carried by Kv1 channels regulate neuronal excitability in these regions. Immunoreactivity of pyramidal cells in the ELL with several Kv1 antibodies is consistent with Kv1 channels carrying low-threshold outward currents that regulate spike waveform in these cells (Fernandez et al., J Neurosci 2005;25:363-371). Similarly, Kv1-like immunoreactivity in the pacemaker nucleus is consistent with a role of Kv1 channels in spontaneous high-frequency firing in pacemaker neurons. Robust Kv1-like immunoreactivity in several other structures, including the dorsal torus semicircularis, tuberous electroreceptors, and the electric organ, indicates that Kv1 channels are broadly expressed and are likely to contribute significantly to generating the electric organ discharge and processing electrosensory inputs.  相似文献   

3.
Wave-type weakly electric fish such as Eigenmannia produce continuous sinusoidal electric fields. When conspecifics are in close proximity, interaction of these electric fields can produce deficits in electrosensory function. We examined a neural correlate of such jamming at the level of the midbrain. Previous results indicate that neurons in the dorsal layers of the torus semicircularis can (1) respond to jamming signals, (2) respond to moving electrosensory stimuli, and (3) receive convergent information from the four sensory maps of the electrosensory lateral line lobe (ELL). In this study we recorded the intracellular responses of both tuberous and ampullary neurons to moving objects. Robust Gaussian-shaped or sinusoidal responses with half-height durations between 55 ms and 581 ms were seen in both modalities. The addition of ongoing global signals with temporal-frequencies of 5 Hz attenuated the responses to the moving object by 5 dB or more. In contrast, the responses to the moving object were not attenuated by the addition of signals with temporal frequencies of 20 Hz or greater. This occurred in both the ampullary and tuberous systems, despite the fact that the ampullary afferents to the torus originate in a single ELL map whereas the tuberous afferents emerge from three maps.  相似文献   

4.
Weakly electric fish produce electric signals with a specialised organ in their tail. In addition, they are electrosensitive and can perceive their self-generated signals (for electrolocation) and electric signals of other electric fishes (for electrocommunication). Mormyrids possess three types of peripheral electroreceptor organs, one used for electrocommunication and two types involved in electolocation. They are innervated by afferent fibres, which project to different zones in the electrosensory lateral line lobe (ELL) in the medulla. Brain circuits for electrolocation and electrocommunication are separated almost throughout the whole brain. Electrolocation pathways run from the ELL-cortex to the torus semicircularis of the midbrain and then via the valvula cerebelli towards the telencephalon. Pathways involved in electrocommunication run from the nucleus of the ELL to another part of the torus and from there through the isthmic granule nucleus to the valvula. In addition, a pathway via the preglomerular complex to the telencephalon might exist. In both the electrolocation and the electrocommunication circuits, prominent recurrent pathways are present.  相似文献   

5.
Summary In the context of aggression and courtship, Eigenmannia repeatedly interrupts its electric organ discharges (EODs) These interruptions (Fig. 1) contain low-frequency components as well as high-frequency transients and, therefore, stimulate ampullary and tuberous electroreceptors, respectively (Figs. 2, 3). Information provided by these two classes of receptors is relayed along separate pathways, via the electrosensory lateral line lobe (ELL) of the hindbrain, to the dorsal torus semicircularis (TSd) of the midbrain. Some neurons of the torus receive inputs from both types of receptors (Figs. 14, 15), and some respond predominantly to EOD interruptions while being rather insensitive to other forms of signal modulations (Figs. 12, 13). This high selectivity appears to result from convergence and gating of inputs from individually less selective neurons.Abbreviations CP central posterior thalamic nucleus - Df frequency difference between neighbor's EOD and fish's own - DPn dorsal posterior nucleus (thalamus) - EOD electric organ discharge - ELL electrosensory lateral line lobe - JAR jamming avoidance response - LMR lateral mesencephalic reticular formation - nE nucleus electrosensorius - nEb nucleus electrosensorius, beat-related area - nE nucleus electrosensorius, area causing rise of EOD frequency - nE nucleus electrosensorius, area causing fall of EOD frequency - nEar nucleus electrosensorius-acusticolateralis area - NPd nucleus praeeminentialis, pars dorsalis - PPn prepacemaker nucleus - PT pretectal nucleus - SE nucleus subelectrosensorius - TeO optic tectum - TSd dorsal (electrosensory) torus semicircularis - TSv ventral (mechano-sensory and auditory) torus semicircularis  相似文献   

6.
This paper is an electrophysiological study of the directionality of the tuberous electroreceptors of weakly electric fish. We recorded from two classes of tuberous electroreceptors known for pulse gymnotiforms: Burst Duration Coders (BDCs), and Pulse Markers (PMs). Both code for stimulus amplitude, although the dynamic range for BDCs is greater, and both exhibit strong directional preferences. Polar plots of spike number (for BDCs) or spike threshold (for PMs) versus electric field azimuth, are figure-8 shaped with two asymmetrical, elliptical lobes separated by 180°. The best azimuth of these two types of receptors from a given body region correlate with each other and with measures of best azimuth for transepidermal current flow. The shape and asymmetry of the directionality profiles appear to be caused by filter dynamics of the receptors. Pulse Markers are located on the anterior part of the body surface while Burst Duration Coders are located all over. The best directions of receptors in the anterior third of the body vary systematically with location from 0° to 180°. This region is probably critical for determining the direction of local electric fields. Together these receptors provide the CNS with sufficient information to construct a map of horizontal plane electric field directions.Abbreviations BDC Burst Duration Coder - ELL electrosensory lateral line lobe - EOD electric organ discharge - nALL anterior lateral line nerve - PM Pulse Marker  相似文献   

7.
Ampullary organ electroreceptors excited by weak cathodal electric fields are used for hunting by both cartilaginous and non-teleost bony fishes. Despite similarities of neurophysiology and innervation, their embryonic origins remain controversial: bony fish ampullary organs are derived from lateral line placodes, whereas a neural crest origin has been proposed for cartilaginous fish electroreceptors. This calls into question the homology of electroreceptors and ampullary organs in the two lineages of jawed vertebrates. Here, we test the hypothesis that lateral line placodes form electroreceptors in cartilaginous fishes by undertaking the first long-term in vivo fate-mapping study in any cartilaginous fish. Using DiI tracing for up to 70 days in the little skate, Leucoraja erinacea, we show that lateral line placodes form both ampullary electroreceptors and mechanosensory neuromasts. These data confirm the homology of electroreceptors and ampullary organs in cartilaginous and non-teleost bony fishes, and indicate that jawed vertebrates primitively possessed a lateral line placode-derived system of electrosensory ampullary organs and mechanosensory neuromasts.  相似文献   

8.
Extracellular injections of horseradish peroxidase were used to label commissural cells connecting the electrosensory lateral line lobes of the weakly electric fish Apteronotus leptorhynchus. Multiple commissural pathways exist; a caudal commissure is made up of ovoid cell axons, and polymorphic cells' axons project via a rostral commissure. Intracellular recording and labeling showed that ovoid cells discharge spontaneously at high rates, fire at preferred phases to the electric organ discharge, and respond to increased receptor afferent input with short latency partially adapting excitation. Ovoid cell axons ramify extensively in the rostro-caudal direction but are otherwise restricted to a single ELL subdivision. Polymorphic cells are also spontaneously active, but their firing is unrelated to the electric organ discharge waveform. They respond to increased receptor afferent activity with reduced firing frequency and response latency is long. Electrical stimulation of the commissural axons alters the behavior of pyramidal cells in the contralateral ELL. Basilar pyramidal cells are hyperpolarized and nonbasilar pyramidal cells are depolarized by this type of stimulation. The physiological results indicate that the ovoid cells participate in common mode rejection mechanisms and also suggest that the ELLs may function in a differential mode in which spatially restricted electrosensory stimuli can evoke heightened responses.Abbreviations ccELL caudal commissure of the ELL - CE contralaterally excited - DML dorsal molecular layer - ELL electrosensory lateral line lobe - EOD electric organ discharge - HRP horseradish peroxidase - IE ipsilaterally excited - MTI mouth-tail inverted - MTN mouth-tail normal - rcELL rostral commissure of the ELL - TRI transverse inverted - TRN transverse normal  相似文献   

9.
Mormyrid fish use active electrolocation to detect and analyze objects. The electrosensory lateral line lobe in the brain receives input from electroreceptors and an efference copy of the command to discharge the electric organ. In curarized fish, we recorded extracellularly from neurons of the electrosensory lateral line lobe while stimulating in the periphery with either a local point stimulus or with a more natural whole-body stimulus. Two classes of neurons were found: (1) three types of E-cells, which were excited by a point stimulus; and (2) two types of I-cells, which were inhibited by point stimulus and responded with excitation to the electric organ corollary discharge. While all neurons responded to a point stimulus, only one out of two types of I-units and two of the three types of E-units changed their firing behavior to a whole-body stimulus or when an object was present. In most units, the responses to whole-body stimuli and to point stimuli differed substantially. Many electrosensory lateral line lobe units showed neural plasticity after prolonged sensory stimulation. However, plastic effects during whole body stimulation were often unlike those occurring during point stimuli, suggesting that under natural conditions electrosensory lateral line lobe network effects play an important role in shaping neural plasticity.  相似文献   

10.
The electrosensory lateral line lobe (ELL) of mormyrid electric fish is a cerebellum-like structure that receives primary afferent input from electroreceptors in the skin. Purkinje-like cells in ELL store and retrieve a temporally precise negative image of prior sensory input. The stored image is derived from the association of centrally originating predictive signals with peripherally originating sensory input. The predictive signals are probably conveyed by parallel fibers. Recent in vitro experiments have demonstrated that pairing parallel fiber-evoked excitatory postsynaptic potentials (epsps) with postsynaptic spikes in Purkinje-like cells depresses the strength of these synapses. The depression has a tight dependence on the temporal order of pre- and postsynaptic events. The postsynaptic spike must follow the onset of the epsp within a window of about 60 msec for the depression to occur and pairings at other delays yield a nonassociative enhancement of the epsp. Mathematical analyses and computer simulations are used here to test the hypothesis that synaptic plasticity of the type established in vitro could be responsible for the storage of temporal patterns that is observed in vivo. This hypothesis is confirmed. The temporally asymmetric learning rule established in vitro results in the storage of activity patterns as observed in vivo and does so with significantly greater fidelity than other types of learning rules. The results demonstrate the importance of precise timing in pre- and postsynaptic activity for accurate storage of temporal information.  相似文献   

11.
Summary Weakly electric fish (Gymnotiformes) emit quasi-sinusoidal electric organ discharges within speciesspecific frequency ranges. The electrosensory system is organized into 2 parallel pathways which convey either the amplitude or the timing of each electric organ discharge cycle. Two putative metabolic activity markers, calbindin D 28K and cytochrome c oxidase, and their relationship with the electrosensory nuclei of high- and low-frequency species were studied. Calbindin is found in the somata of the spherical neurons in the first-order electrosensory recipient nucleus, the electrosensory lateral-line lobe, and in layer VI of the midbrain's torus semicircularis, in Eigenmannia virescens, an intermediate-frequency species, and Apteronotus leptorhynchus, a high-frequency species. Calbindin immunoreactivity was completely absent in these nuclei in Sternopygus macrurus, a closely related, low-frequency species. Cytochrome c oxidase levels were inversely related to calbindin immunoreactivity since relatively high levels were observed in the electrosensory lateral-line lobe and torus semicircularis of S. macrurus but were absent in these nuclei in A. leptorhynchus. Our studies indicate that calbindin immunoreactivity is present in tonic, repetitively firing neurons with high frequencies.  相似文献   

12.
To investigate a role of burst firings of neurons in encoding of spatiotemporally-varying stimulus, we focus on electrosensory system of a weakly electric fish. Weakly electric fish generates electric field around its body using electric organ discharge and can accurately detect the location of an object using the modulation of electric field induced by the object. We developed a model of fish body by which we numerically describe the spatiotemporal patterns of electric field around the fish body. We also made neural models of electroreceptor distributed on the fish body and of electrosensory lateral-line lobe (ELL) to investigate what kinds of information of electric field distorted by an object they detect. Here we show that the spatiotemporal features of electric field around the fish body are encoded by the timing of burst firings of ELL neurons. The information of object distance is extracted by the area of synchronous firings of neurons in a higher nucleus, torus semicircularis.  相似文献   

13.
Summary The electric organ of a fish represents an internal current source, and the largely isopotential nature of the body interior warrants that the current associated with the fish's electric organ discharges (EODs) recruits all electroreceptors on the fish's body surface evenly. Currents associated with the EODs of a neighbor, however, will not penetrate all portions of the fish's body surface equally and will barely affect regions where the neighbor's current flows tangentially to the skin surface. The computational mechanisms of the jamming avoidance response (JAR) in Eigenmannia exploit the uneven effects of a neighbor's EOD current to calculate the correct frequency difference between the two interfering EOD signals even if the amplitude of a neighbor's signal surpasses that of the fish's own signal by orders of magnitude. The particular geometry of the fish's own EOD current thus yields some immunity against the potentially confusing effects of unusually strong interfering EOD currents of neighbors.Abbreviations DF frequency difference - ELL electrosensory lateral line lobe - EOD electric organ discharge - JAR jamming avoidance response  相似文献   

14.
Modification of an existing neural structure to support a second function will produce a trade-off between the two functions if they are in some way incompatible. The trade-off between two such sensory functions is modeled here in pyramidal neurons of the gymnotiform electric fish's medullar electrosensory lateral line lobe (ELL). These neurons detect two electric stimulus features produced when a nearby object interferes with the fish's autogenous electric field: (1) amplitude modulation across a cell's entire receptive field and (2) amplitude variation within a cell's receptive field produced by an object's edge. A model of sensory integration shows that detection of amplitude modulation and enhancement of spatial contrast involve an inherent mechanistic trade-off and that the severity of the trade-off depends on the particular algorithm of sensory integration. Electrophysiology data indicate that of the two algorithms for sensory integration modeled here for the gymnotiform fish Brachyhypopomus pinnicaudatus, the algorithm with the better trade-off function is used. Further, the intrinsic trade-off within single cells has been surmounted by the replication of ELL into multiple electrosensory map segments, each specialized to emphasize different sensory features. Accepted: 14 June 1997  相似文献   

15.
Electrosensory systems comprise extensive feedback pathways. It is also well known that these pathways exhibit synaptic plasticity on a wide-range of time scales. Recent in vitro brain slice studies have characterized synaptic plasticity in the two main feedback pathways to the electrosensory lateral line lobe (ELL), a primary electrosensory nucleus in Apteronotus leptorhynchus. Currently-used slice preparations, involving networks in open-loop conditions, allow feedback inputs to be studied in isolation, a critical step in determining their synaptic properties. However, to fully understand electrosensory processing, we must understand how dynamic feedback modulates neuronal responses under closed-loop conditions. To bridge the gap between current in vitro approaches and more complex in vivo work, we present two new in vitro approaches for studying the roles of closed-loop feedback in electrosensory processing. The first involves a hybrid-network approach using dynamic clamp, and the second involves a new slice preparation that preserves one of the feedback pathways to ELL in a closed-loop condition.  相似文献   

16.
Sensory neurons encode natural stimuli by changes in firing rate or by generating specific firing patterns, such as bursts. Many neural computations rely on the fact that neurons can be tuned to specific stimulus frequencies. It is thus important to understand the mechanisms underlying frequency tuning. In the electrosensory system of the weakly electric fish, Apteronotus leptorhynchus, the primary processing of behaviourally relevant sensory signals occurs in pyramidal neurons of the electrosensory lateral line lobe (ELL). These cells encode low frequency prey stimuli with bursts of spikes and high frequency communication signals with single spikes. We describe here how bursting in pyramidal neurons can be regulated by intrinsic conductances in a cell subtype specific fashion across the sensory maps found within the ELL, thereby regulating their frequency tuning. Further, the neuromodulatory regulation of such conductances within individual cells and the consequences to frequency tuning are highlighted. Such alterations in the tuning of the pyramidal neurons may allow weakly electric fish to preferentially select for certain stimuli under various behaviourally relevant circumstances.  相似文献   

17.
Summary The African knife fish,Xenomystus nigri, is found to be sensitive to weak electric fields by the method of averaged evoked potentials from the brain. Slow waves and spikes were recorded in or near the lateral line area of the medulla and the torus semicircularis of the mesencephalon in response to long pulses (best > 50 ms) and low frequency sine waves (best ca. 10 Hz) of voltage gradients down to < 10 V/cm. Evoked waves in the lateral line area are a sequence of negative and positive deflections beginning with a first peak at ca. 24 ms; in the torus semicircularis the first peak is at ca. 37 ms. Spikes are most likely in the torus between 50 and 80 ms after ON. At each recording locus there is a best axis of the homogeneous electric field and a better polarity. Effects of stimulus intensity, duration and repetition are described. The physiological properties are similar to those of ampullary receptor systems in mormyriforms, gymnotiforms and siluriforms.Confirming Braford (1982),Xenomystus has a large medullary nucleus resembling the nucleus otherwise peculiar to mormyriforms, gymnotiforms and siluriforms and now called the electrosensory lateral line lobe (ELLL; formerly the posterior lateral line lobe). We describe the projections of anterior and posterior lateral line nerves by HRP applied to the proximal stump of a cut nerve. A descending central ramus of the anterior lateral line nerve and a lateral component of the ascending ramus of the posterior lateral line nerve end in part in the ELLL.Electroreception, including the system of discrete central structures mediating it, is for the first time found to be less than an ordinal or even a family character, but apparently a characteristic of the subfamily Xenomystinae. Species of the other subfamily, Notopterinae as well as of the other families of osteoglossiforms (Osteoglossidae, Hiodontidae and Pantodontidae), lack the ELLL.Notopterus andPantodon are found to lack the evoked potential.The positive finding of evoked activity to feeble electric field is found to be the most practical method for searching widely among fishes for the presence of the electrosense modality and its central pathways. The anatomical criterion of an ELLL can now be taken to be a good criterion for the presence of this sensory system. The absence of evoked response correlates well with the absence of an ELLL.Abbreviations ELLL electrosensory lateral line lobe - HRP horseradish peroxidase - TS torus semicircularis  相似文献   

18.
A hormone-sensitive communication system in an electric fish   总被引:1,自引:0,他引:1  
The electric communication system includes both special muscle-derived cells or electrocytes that produce species-typical electric signals, or electric organ discharges (EODs), and specialized sensory receptors, or electroreceptors, that encode the electric fields set up by EODs. Steroid hormones can influence the characteristic properties of both EODs and electroreceptors. Steroids appear to directly effect the anatomy and physiology of the electrocytes that generate an EOD. In contrast, the steroid effect on electroreceptors may be predominantly via an indirect mechanism whereby changes in the spectral characteristics of the EOD appear to induce changes in the spectral sensitivity of electroreceptors. Continued studies of electrosensory and electromotor systems will offer insights into the cellular bases for the development and evolution of steroid-sensitive pathways in the vertebrate nervous system.  相似文献   

19.
研究利用人工偶极子电场来模拟生物电场刺激, 对西伯利亚幼鲟的电感受能力进行了行为探究。结果显示西伯利亚幼鲟对本实验中的偶极子电场产生躲避行为, 其平均感受阈值在2月龄为(457.532.5) V/cm,3月龄为(29.52.5) V/cm, 7月龄为(101.0) V/cm。这表明西伯利亚鲟鱼的电感受敏感性随个体的发育而增强, 而这可能与电感受器官数量的增加有关(2月龄为2234470, 7月龄为5273523)。  相似文献   

20.
Vertebrates have evolved electrosensory receptors that detect electrical stimuli on the surface of the skin and transmit them somatotopically to the brain. In chondrichthyans, the electrosensory system is composed of a cephalic network of ampullary organs, known as the ampullae of Lorenzini, that can detect extremely weak electric fields during hunting and navigation. Each ampullary organ consists of a gel-filled epidermal pit containing sensory hair cells, and synaptic connections with primary afferent neurons at the base of the pit that facilitate detection of voltage gradients over large regions of the body. The developmental origin of electroreceptors and the mechanisms that determine their spatial arrangement in the vertebrate head are not well understood. We have analyzed electroreceptor development in the lesser spotted catshark (Scyliorhinus canicula) and show that Sox8 and HNK1, two markers of the neural crest lineage, selectively mark sensory cells in ampullary organs. This represents the first evidence that the neural crest gives rise to electrosensory cells. We also show that pathfinding by cephalic mechanosensory and electrosensory axons follows the expression pattern of EphA4, a well-known guidance cue for axons and neural crest cells in osteichthyans. Expression of EphrinB2, which encodes a ligand for EphA4, marks the positions at which ampullary placodes are initiated in the epidermis, and EphA4 is expressed in surrounding mesenchyme. These results suggest that Eph-Ephrin signaling may establish an early molecular map for neural crest migration, axon guidance and placodal morphogenesis during development of the shark electrosensory system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号