首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Siderophores in soil solution of coniferous forest soils have been chemically identified for the first time. We have identified the siderophores ferrichrome and ferricrocin in soil solution of the upper organic layer by High Performance Liquid Chromatography (HPLC) Mass Spectrometry (MS). The soil solutions were sampled from mor layers of podzolic soils from the south and the north of Sweden and from a mor layer overlying granitic rock and intensively colonised by ectomycorrhizal hyphae. Ferrichrome was found in nanomolar concentrations in all soil solutions investigated and ferricrocin only in the soil solution from the mor layer covering a rock and in the soil solution from the north of Sweden. The findings are discussed in relation to the possible role of fungal hyphae and siderophores in weathering minerals in podzolic soils under coniferous forests. Citric and oxalic acid are able to dissolve minerals via complexation of cations from the mineral. Siderophores should be, kinetically and thermodynamically, even more efficient complexing agents for trivalent cations than oxalic and citric acid. The present study provides direct evidence for the presence of siderophores in soil solution.  相似文献   

2.
Uptake and competition experiments were performed with Neurospora crassa and Penicillium parvum by using 14C-labeled coprogen and 55Fe-labeled ferrichrome-type siderophores. Several siderophores of the ferrichrome family, such as ferrichrome, ferricrocin, ferrichrysin, and tetraglycyl-ferrichrome as well as the semisynthetic ferricrocin derivatives O-(phenyl-carbamoyl)-ferricrocin and O-(sulfanilyl-carbamoyl)-ferricrocin were taken up by N. crassa. The ferrichrome-type siderophores used vary in the structure of the peptide backbone but possess a common lambda-cis configuration about the iron center and three identical ornithyl-delta-N-acetyl groups as surrounding residues. This suggests that these ferrichrome-type siderophores are recognized by a common ferrichrome receptor. We also concluded that the ferrichrome receptor is lambda-cis specific from the inability to take up the synthetic enantiomers, enantio-ferrichrome and enantio-ferricrocin, possessing a delta-cis configuration about the iron center. On the other hand, we found that coprogen, possessing a delta-absolute configuration and two trans-anhydromevalonic acid residues around the metal center, was also taken up by N. crassa and was competitively inhibited by the ferrichrome-type siderophores. We therefore propose the existence of a common siderophore transport system but the presence of different siderophore receptors in N. crassa. In addition, ferrirubin, which is very slowly transported by N. crassa, inhibited both coprogen and ferrichrome-type siderophore transport. Contrary to the findings with N. crassa, transport experiments with P. parvum revealed the presence of a ferrichrome receptor but the absence of a coprogen receptor; coprogen was neither transported nor did it inhibit the ferrichrome transport.  相似文献   

3.
The occurrence of ferrichrome-type hydroxamate siderophores in soil was confirmed. In the presence of the iron-scavenging chelator ethylenediamine[di(o-hydroxyphenylacetic)acid], soil extract stimulated the growth of an Escherichia coli strain possessing the ferrichrome transport protein (TonA) but did not stimulate growth of a strain lacking this protein (TonA). The siderophore concentration in a 1:1 (soil-water) extract was estimated to be approximately 78 nM. Specificity of the assay was supported by the absence of significant differential strain responses to ferric citrate, ferric 2,3-dihydroxybenzoate, enterochelin, ferrioxamine B, coprogen, and triacetylfusigen.  相似文献   

4.
Streptomyces pilosus is one of several microbes which produce ferrioxamine siderophores. In the accompanying paper (G. Müller and K. Raymond, J. Bacteriol. 160:304-312), the mechanism of iron uptake mediated by the endogenous ferrioxamines B, D1, D2, and E was examined. Here we report iron transport behavior in S. pilosus as mediated by the exogenous siderophores ferrichrome, ferrichrysin, rhodotorulic acid (RA), and synthetic enantio-RA. In each case iron acquisition depended on metabolic energy and had uptake rates comparable to that of [55Fe]ferrioxamine B. However, the synthetic ferric enantio-RA (which has the same preferred chirality at the metal center as ferrichrome) was twice as effective in supplying iron as was the natural ferric RA complex, suggesting that stereospecific recognition at the metal center is involved in the transport process. Iron uptake mediated by ferrichrome and ferric enantio-RA was strongly inhibited by kinetically inert chromic complexes of desferrioxamine B. These inhibition experiments indicate that iron from these exogenous siderophores is transported by the same uptake system as ferrioxamine B. Since the ligands have no structural similarity to ferrioxamine B except for the presence of three hydoxamate groups, we conclude that only the hydroxamate iron center and its direct surroundings are important for recognition and uptake. This hypothesis is supported by the fact that ferrichrome A and ferrirubin, which are both substituted at the hydroxamate carbonyl groups, were not (or were poorly) effective in supplying iron to S. pilosus.  相似文献   

5.
Henia Mor  Isaac Barash 《Biometals》1990,2(4):209-213
Summary Geotrichum candidum is capable of utilizing iron from hydroxamate siderophores of different structural classes. The relative rates of iron transport for ferrichrome, ferrichrysin, ferrioxamine B, fusigen, ferrichrome A, rhodotorulic acid, coprogen B, dimerium acid and ferrirhodin were 100%, 98%, 74%, 59%, 49%, 35%, 24%, 12% and 11% respectively. Ferrichrome, ferrichrysine and ferrichrome A inhibited [59Fe]ferrioxamine-B-mediated iron transport by 71%, 68% and 28% respectively when added at equimolar concentrations to the radioactive complex. The inhibitory mechanism of [59Fe]ferrioxamine B uptake by ferrichrome was non-competitive (K i 2.4 M), suggesting that the two siderophores do not share a common transport system. Uptake of [59Fe]ferrichrome, [59Fe]rhodotorulic acid and [59Fe]fusigen was unaffected by competition with the other two siderophores or with ferrioxamine B. Thus,G. candidum may possess independent transport systems for siderophores of different structural classes. The uptake rates of [14C]ferrioxamine B and67Ga-desferrioxamine B were 30% and 60% respectively, as compared to [59Fe]ferrioxamine B. The specific ferrous chelates, dipyridyl and ferrozine at 6 mM, caused 65% and 35% inhibition of [59Fe]ferrioxamine uptake. From these results we conclude that, although about 70% of the iron is apparently removed from the complex by reduction prior to being transported across the cellular membrane, a significant portion of the chelated ligand may enter the cell intact. The former and latter mechanisms seem not to be mutually exclusive.  相似文献   

6.
The ectomycorrhizal fungus Cenococcum geophilum was grown in low-iron medium and the excreted siderophores were extracted, purified and analyzed by HPLC. The principal hydroxamate siderophore produced, was identified as ferricrocin as confirmed by analytical HPLC, FAB-mass spectrometry and 1H- and 13C-NMR spectra. Although the occurrence of ferricrocin has been shown earlier to occur in the ericoid mycorrhizal fungi, this is the first report of ferricrocin in a true ectomycorrhizal fungus which is taxonomically related to the ascomycetes.  相似文献   

7.
Utilization of microbial siderophores in iron acquisition by oat   总被引:9,自引:3,他引:6       下载免费PDF全文
Iron uptake by oat (Avena sativa cv Victory) was examined under hydroponic chemical conditions that required direct utilization of microbial siderophores for iron transport. Measurements of iron uptake rates by excised roots from the hydroxamate siderophores, ferrichrome, ferrichrome A, coprogen, ferrioxamine B (FOB), and rhodotorulic acid (RA) showed all five of the siderophores supplied iron, but that FOB and RA were preferentially utilized. FOB-mediated iron uptake increased four-fold when roots were preconditioned to iron stress and involved an active, iron-stress induced transport system that was inhibited by 5 millimolar sodium azide or 0.5 millimolar dinitrophenol. Kinetic studies indicated partial saturation with an apparent Km of 5 micromolar when FOB was supplied at 0.1 to 50 micromolar concentrations. Whole plant experiments confirmed that 5 micromolar FOB was sufficient for plant growth. Siderophore-mediated iron transport was inhibited by Cr-ferrichrome, an analog of ferrated siderophore. Our results confirm the existence of a microbial siderophore iron transport system in oat which functions within the physiological concentrations produced and used by soil microorganisms.  相似文献   

8.
The dermatophytic fungiTrichophyton spp andMicrosporum spp secrete ferrichrome type siderophores under low iron conditions. Three different species ofMicrosporum, i.e.M. qypseum, M. canis andM. audouinii, as well asT. rubrum produce ferrichrome C and ferricrocin, whereasT. mentagrophytes andT. tonsurans produce only ferrichrome. The identification of the siderophores was established by means of thin layer chromatography, high performance liquid chromatography and mass spectroscopy.  相似文献   

9.
Siderophore binding proteins play a key role in the uptake of iron in many gram-positive and gram-negative bacteria. FhuD is a soluble periplasmic binding protein that transports ferrichrome and other hydroxamate siderophores. The crystal structure of FhuD from Escherichia coli in complex with the ferrichrome homolog gallichrome has been determined at 1.9 ? resolution, the first structure of a periplasmic binding protein involved in the uptake of siderophores. Gallichrome is held in a shallow pocket lined with aromatic groups; Arg and Tyr side chains interact directly with the hydroxamate moieties of the siderophore. FhuD possesses a novel fold, suggesting that its mechanisms of ligand binding and release are different from other structurally characterized periplasmic ligand binding proteins.  相似文献   

10.
Two siderophores, ferrichrome and ferrichrome A, were found in cultures of Ustilago maydis (DC) Corda. Both siderophores were found intracellularly and extracellularly. Their authenticity was confirmed by thin layer chromatography, HPLC, UV-visible spectrometry, paper electrophoresis, amino acid analysis, NMR and fast atom bombardment mass spectroscopy. Regulation of siderophore production by iron was examined. Repression of biosynthesis of extracellular siderophores occurred at 10–5 M iron. Ferrichrome was found intracellularly at all iron concentrations employed; in general, ferrichrome A was not found to be cell-associated.  相似文献   

11.
Leaching of dissolved organic carbon (DOC) from the forest floor and transport in soil solution into the mineral soil are important for carbon cycling in boreal forest ecosystems. We examined DOC concentrations in bulk deposition, throughfall and in soil solutions collected under the O and B horizons in three Norway spruce stands along a climatic gradient in Sweden. Mean annual temperature for the three sites was 5.5, 3.4 and 1.2 °C. At each site we also examined the effect of soil moisture on DOC dynamics along a moisture gradient (dry, mesic and moist plots). To obtain information about the fate of DOC leached from the O horizon into the mineral soil, 14C measurements were made on bulk organic matter and DOC. The concentration and fluxes of DOC in O horizon leachates were highest at the southern site and lowest at the northern. Average DOC concentrations at the southern, central and northern sites were 49, 39 and 30 mg l−1, respectively. We suggest that DOC leaching rates from O horizons were related to the net primary production of the ecosystem. Soil temperature probably governed the within-year variation in DOC concentration in O horizon leachates, but the peak in DOC was delayed relative to that of temperature, probably due to sorption processes. Neither soil moisture regime (dry, mesic or moist plots) nor seasonal variation in soil moisture seemed to be of any significance for the concentration of DOC leached from the O horizon. The 14C measurements showed that DOC in soil solution collected below the B horizon was derived mainly from the B horizon itself, rather than from the O horizon, indicating a substantial exchange (sorption–desorption reactions) between incoming DOC and soil organic carbon in the mineral soil.  相似文献   

12.
Despite indications that S. granulatus and S. luteus release iron-chelating compounds, the exact spectrum of ferric hydroxamates synthesized by these two Suillus species remained unclear. Hence the aim of this study was to identify all of the main siderophores produced by these two ectomycorrhizal fungal species under pure culture conditions. By means of HPLC and LC–MS analyses we show that S. granulatus releases cyclic and linear fusigen, ferrichrome, coprogen and triacetylfusarinine C into the nutrient medium, while S. luteus culture filtrates contain cyclic and linear fusigen, ferricrocin and coprogen. All of the different siderophores were identified on basis of reference compounds and their specific MS spectra which were recorded on a high resolution MS in positive electrospray ionisation mode. Initial HPLC separations were performed on a C-18 stationary phase, using an acidic eluent (0.1% formic acid in water and acetonitrile) in gradient mode. The potential of these two ectomycorrhizal fungal species to produce siderophores representing three different groups of hydroxamates is discussed in relation to its ecological significance.  相似文献   

13.
Abstract

Mycorrhizal fungi, which commonly occur in natural as well as agricultural soils, are known to enhance plant uptake of nutrients, including metal ions present as trace concentrations. As mycorrhizal infection is a widespread feature of plant communities, it seems appropriate to review the data on mycorrhizal fungi and their potential to produce siderophores.

Based on a bioassay with Aureobacteriumflavescens JG-9 it was shown that a number of ectomycorrhizal fungi (EM) produce hydroxamate siderophores. Also an arbuscular mycorrhizal (AM) grass species, which showed greater iron uptake than nonmycorrhizal controls, tested positively when bioassayed for hydroxamate siderophores. Encoid mycorrhizal fungi, too, have been demonstrated to be capable of producing hydroxamate-type siderophores. However, only in the case of the eridoid mycorrhizal fungi the main siderophores have been isolated and subsequently identified as ferricrocin and fusigen, respectively. The biotechnological and ecological significance of studies of the siderophore biosynthesis by mycorrhizal fungi is discussed.  相似文献   

14.
Aspergillus nidulans and Penicillium chrysogenum produce specific cellular siderophores in addition to the well-known siderophores of the culture medium. Since this was found previously in Neurospora crassa, it is probably generally true for filamentous ascomycetes. The cellular siderophore of A. nidulans is ferricrocin; that of P. chrysogenum is ferrichrome. A. nidulans also contains triacetylfusigen, a siderophore without apparent biological activity. Conidia of both species lose siderophores at high salt concentrations and become siderophore dependent. This has also been found in N. crassa, where lowering of the water activity has been shown to be the causal factor. We used an assay procedure based on this dependency to reexamine the extracellular siderophores of these species. During rapid mycelial growth, both A. nidulans and P. chrysogenum produced two highly active, unidentified siderophores which were later replaced by a less active or inactive product--coprogen in the case of P. chrysogenum and triacetylfusigen in the case of A. nidulans. N. crassa secreted coprogen only. Fungal siderophore metabolism is varied and complex.  相似文献   

15.
The differential availabilities of the hydroxamate siderophores ferrioxamine B (FOB) and ferrichrome (FC) and the pseudobactin siderophores St3, 7NSK2, and WCS 358 as sources of Fe for soil and rhizosphere bacteria were studied. About 20% of the total bacterial CFU from the rhizospheres of four plant species were able to use FOB as the sole Fe source in an Fe-deficient medium, while about 12, 10, 2, and > 1% were able to use FC and pseudobactins 7NSK2, St3, and WCS 358, respectively. Of the 165 colonies isolated from plates containing pseudobactins, 64 were able to use the pseudobactin on which they were isolated as the sole Fe source in pure culture. Cross-feeding tests showed that almost all of these 64 strains were also able to use at least one of the other siderophores studied (pseudobactin, FOB, or FC). Pseudomonas putida StS2, Pseudomonas maltophilia 7NM1, and Vibrio fluvialis WS1, which were originally isolated on pseudobactins St3, 7NSK2, and WCS 358, respectively, were selected for their ability to grow with pseudobactin St3 as the sole Fe source. They incorporated 55Fe3+ mediated by pseudobactin St3 at various rates (71.5, 4, and 23 pmol/min/mg [dry weight] of cells, respectively). Similarly, P. putida St3 was shown to incorporate 55Fe3+ mediated by FOB and FC. We suggest that the ability of bacteria to utilize a large variety of siderophores confers an ecological advantage.  相似文献   

16.
Siderophores bind ferric ions and are involved in receptor-specific iron transport into bacteria. Six types of siderophores were tested against strains representing the 12 different serotypes of Actinobacillus pleuropneumoniae. Ferrichrome and bis-catechol-based siderophores showed strong growth-promoting activities for A. pleuropneumoniae in a disk diffusion assay. Most strains of A. pleuropneumoniae tested were able to use ferrichrome (21 of 22 or 95%), ferrichrome A (20 of 22 or 90%), and lysine-based bis-catechol (20 of 22 or 90%), while growth of 36% (8 of 22) was promoted by a synthetic hydroxamate, N5-acetyl-N5-hydroxy-L-ornithine tripeptide. A. pleuropneumoniae serotype 1 (strain FMV 87-682) and serotype 5 (strain 2245) exhibited a distinct yellow halo around colonies on Chrome Azurol S agar plates, suggesting that both strains can produce an iron chelator (siderophore) in response to iron stress. The siderophore was found to be neither a phenolate nor a hydroxamate by the chemical tests of Arnow and Csaky, respectively. This is the first report demonstrating the production of an iron chelator and the use of exogenous siderophores by A. pleuropneumoniae. A spermidine-based bis-catechol siderophore conjugated to a carbacephalosporin was shown to inhibit growth of A. pleuropneumoniae. A siderophore-antibiotic-resistant strain was isolated and shown to have lost the ability to use ferrichrome, synthetic hydroxamate, or catechol-based siderophores when grown under conditions of iron restriction. This observation indicated that a common iron uptake pathway, or a common intermediate, for hydroxamate- and catechol-based siderophores may exist in A. pleuropneumoniae.  相似文献   

17.
The fungus Cunninghamella blakesleeana NCIM 687, industrially recognized for progesterone biotransformation, was found to produce two siderophores at low stress of iron (upto 40 M iron in the growth medium). HPLC analysis and direct comparison with authentic samples characterized one of them as ferrichrysin (hydroxamate type) and other probably as a member of the coprogen family of siderophores.  相似文献   

18.
Siderophore-producing bacteria/actinobacteria and fungi were isolated from O- (organic), E- (eluvial), B- (upper illuvial), and C- (parent material) horizons of podzol soil. Siderophores were isolated and hydroxamate type siderophores were detected and quantitated by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry. The molecular identification of siderophore-producing isolates showed that there was a high diversity of fungal and bacterial/actinobacterial species throughout the soil profile. The isolated bacteria/actinobacteria showed different abilities in the production of ferrioxamines (E, B, G and D). Moreover, the isolated fungal species showed great variety in the production of ferrichromes, coprogens and fusarinines.  相似文献   

19.
Climate warming is likely to accelerate the decomposition of soil organic carbon (SOC) which may lead to an increase of carbon release from soils, and thus provide a positive feedback to climate change. However, SOC dynamics in grassland ecosystems over the past two decades remains controversial. In this study, we estimated the magnitude of SOC stock in northern China's grasslands using 981 soil profiles surveyed from 327 sites across the northern part of the country during 2001–2005. We also examined the changes of SOC stock by comparing current measurements with historical records of 275 soil profiles derived from China's National Soil Inventory during the 1980s. Our results showed that, SOC stock in the upper 30 cm in northern China's grasslands was estimated to be 10.5 Pg C (1 Pg=1015 g), with an average density (carbon stock per area) of 5.3 kg C m?2. SOC density (SOCD) did not show significant association with mean annual temperature, but was positively correlated with mean annual precipitation. SOCD increased with soil moisture and reached a plateau when soil moisture was above 30%. Site‐level comparison indicated that grassland SOC stock did not change significantly over the past two decades, with a change of 0.08 kg C m?2, ranging from ?0.30 to 0.46 kg C m?2 at 95% confidence interval. Transect‐scale comparison confirmed that grassland SOC stock remained relatively constant from 1980s to 2000s, suggesting that soils in northern China's grasslands have been carbon neutral over the last 20 years.  相似文献   

20.
Summary Neurospora crassa produces several structurally distinct siderophores: coprogen, ferricrocin, ferrichrome C and some minor unknown compounds. Under conditions of iron starvation, desferricoprogen is the major extracellular siderophore whereas desferriferricrocin and desferriferrichrome C are predominantly found intracellularly. Mössbauer spectroscopic analyses revealed that coprogen-bound iron is rapidly released after uptake in mycelia of the wild-typeN.crassa 74A. The major intracellular target of iron distribution is desferriferricrocin. No ferritin-like iron pools could be detected. Ferricrocin functions as the main intracellular iron-storage peptide in mycelia ofN. crassa. After uptake of ferricrocin in both the wild-typeN. crassa 74A and the siderophore-free mutantN. crassa arg-5 ota aga, surprisingly little metabolization (11%) could be observed. Since ferricrocin is the main iron-storage compound in spores ofN. crassa, we suggest that ferricrocin is stored in mycelia for inclusion into conidiospores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号