首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of tyrosine kinase and tyrosine-phosphorylated proteins was investigated in coconut tissues cultured in vitro. In order to study this phenomenon, plumular explants were taken from mature zygotic embryos and cultured in a medium that induces somatic embryogenesis. Immunoblot analyses of soluble proteins of coconut cultured tissues with a recombinant monoclonal antibody against phosphotyrosine detected protein bands with molecular masses ranging from 170 to 27 kDa. The highest response was exhibited by plumule-forming callus, which decreased both in number and intensity of bands with a longer time of in vitro culture. The specific immunodetection was corroborated by incubating the membranes with anti-phosphotyrosine antibody in the presence of 1 mM phosphotyrosine. Tyrosine phosphorylated proteins was also suggested by the presence of phosphoproteins resistant to alkaline treatment. In plumule, plumular callus and callus with globular embryos and shoots, a 41-kDa protein remained phosphorylated after alkaline treatment. In plumule, most [32P]-proteins remained phosphorylated after alkaline treatment. Phosphoaminoacid analysis in protein hydrolysates from [32P]-labelled 41-kDa protein showed the presence of [32P]-tyrosine and [32P]-threonine. Evaluation of tyrosine kinase activity in these tissues by the use of RR-SRC, a synthetic peptide substrate (derived from the amino acid sequence surrounding the phosphorylation site), showed that the activity was highest in plumule forming callus and initial explant, whereas in other tissues, tyrosine kinase activity decreased to values close to zero. Genistein, a specific tyrosine kinase inhibitor, diminished the ability of soluble extracts from coconut tissues cultured in vitro to incorporate 32P into RR-SRC. These results suggest the presence of tyrosine phosphorylated proteins and tyrosine kinase activity in coconut tissues that have been cultured in vitro.  相似文献   

2.
In extracts of immature soybean (Glycine max [L.] Merr.) seeds inositol tetrakisphosphate was formed from [3H]inositol 1,3,4-trisphosphate but not from [3H]inositol 1,4,5-trisphosphate. Inositol 1,3,4-trisphosphate kinase was purified to a specific activity of 3.55 min−1 mg−1 by polyethylenimine clarification and anion-exchange chromatography. The partially purified enzyme converted [3H]inositol 1,3,4-trisphosphate to inositol 1,3,4,5-tetrakisphosphate as the major product and inositol 1,3,4,6- and/or 1,2,3,4-tetrakisphosphate as the minor product. Subsequent experiments revealed a separate inositol 1,3,4,5-tetrakisphosphate 6-kinase activity, which could link these enzymes to inositol hexakisphosphate synthesis via the previously reported inositol 1,3,4,5,6-pentakisphosphate 2-kinase. The apparent Km values for inositol 1,3,4-trisphosphate kinase were 200 ± 0 nm for inositol 1,3,4-trisphosphate and 171 ± 4 μm for ATP, and the reaction was not reversible. The kinetics were such that no activity could be detected using unlabeled inositol 1,3,4-trisphosphate and [γ-32P]ATP, which suggested that other kinases may have been observed when less purified fractions were incubated with radiolabeled ATP. Inositol 1,3,4-trisphosphate kinase was nonspecifically inhibited more than 80% by various inositol polyphosphates at a concentration of 100 μm.  相似文献   

3.
Phosphorylation of the catalytic subunit of cyclic AMP-dependent protein kinase, or protein kinase A, on Thr-197 is required for optimal enzyme activity, and enzyme isolated from either animal sources or bacterial expression strains is found phosphorylated at this site. Autophosphorylation of Thr-197 occurs in Escherichia coli and in vitro but is an inefficient intermolecular reaction catalyzed primarily by active, previously phosphorylated molecules. In contrast, the Thr-197 phosphorylation of newly synthesized protein kinase A in intact S49 mouse lymphoma cells is both efficient and insensitive to activators or inhibitors of intracellular protein kinase A. Using [35S]methionine-labeled, nonphosphorylated, recombinant catalytic subunit as the substrate in a gel mobility shift assay, we have identified an activity in extracts of protein kinase A-deficient S49 cells that phosphorylates catalytic subunit on Thr-197. The protein kinase A kinase activity partially purified by anion-exchange and hydroxylapatite chromatography is an efficient catalyst of protein kinase A phosphorylation in terms of both a low Km for ATP and a rapid time course. Phosphorylation of wild-type catalytic subunit by the kinase kinase activates the subunit for binding to a pseudosubstrate peptide inhibitor of protein kinase A. By both the gel shift assay and a [γ-32P]ATP incorporation assay, the enzyme is active on wild-type catalytic subunit and on an inactive mutant with Met substituted for Lys-72 but inactive on a mutant with Ala substituted for Thr-197. Combined with the results from mutant subunits, phosphoamino acid analysis suggests that the enzyme is specific for phosphorylation of Thr-197.  相似文献   

4.
In Vitro Biosynthesis of Phosphorylated Starch in Intact Potato Amyloplasts   总被引:4,自引:2,他引:2  
Intact amyloplasts from potato (Solanum tuberosum L.) were used to study starch biosynthesis and phosphorylation. Assessed by the degree of intactness and by the level of cytosolic and vacuolar contamination, the best preparations were selected by searching for amyloplasts containing small starch grains. The isolated, small amyloplasts were 80% intact and were free from cytosolic and vacuolar contamination. Biosynthetic studies of the amyloplasts showed that [1-14C]glucose-6-phosphate (Glc-6-P) was an efficient precursor for starch synthesis in a manner highly dependent on amyloplast integrity. Starch biosynthesis from [1-14C]Glc-1-P in small, intact amyloplasts was 5-fold lower and largely independent of amyloplast intactness. When [33P]Glc-6-P was administered to the amyloplasts, radiophosphorylated starch was produced. Isoamylase treatment of the starch followed by high-performance anion-exchange chromatography with pulsed amperometric detection revealed the separated phosphorylated α-glucans. Acid hydrolysis of the phosphorylated α-glucans and high-performance anion-exchange chromatography analyses showed that the incorporated phosphate was preferentially positioned at C-6 of the Glc moiety. The incorporation of radiolabel from Glc-1-P into starch in preparations of amyloplasts containing large grains was independent of intactness and most likely catalyzed by starch phosphorylase bound to naked starch grains.  相似文献   

5.
Auxin is transported across the plasma membrane of plant cells by diffusion and by two carriers operating in opposite directions, the influx and efflux carriers. Both carriers most likely play an important role in controlling auxin concentration and distribution in plants but little is known regarding their regulation. We describe the influence of modifications of the transmembrane pH gradient and the effect of agents interfering with protein synthesis, protein traffic, and protein phosphorylation on the activity of the auxin carriers in suspension-cultured tobacco (Nicotiana tabacum L.) cells. Carrier-mediated influx and efflux were monitored independently by measuring the accumulation of [14C]2,4-dichlorophenoxyacetic acid and [3H]naphthylacetic acid, respectively. The activity of the influx carrier decreased on increasing external pH and on decreasing internal pH, whereas that of the efflux carrier was only impaired on internal acidification. The efflux carrier activity was inhibited by cycloheximide, brefeldin A, and the protein kinase inhibitors staurosporine and K252a, as shown by the increased capability of treated cells to accumulate [3H]naphthylacetic acid. Kinetics and reversibility of the effect of brefeldin A were consistent with one or several components of the efflux system being turned over at the plasma membrane with a half-time of less than 10 min. Inhibition of efflux by protein kinase inhibitors suggested that protein phosphorylation was essential to sustain the activity of the efflux carrier. On the contrary, the pharmacological agents used in this study failed to inhibit [14C]2,4-dichlorophenoxyacetic acid accumulation, suggesting that rapidly turned-over proteins or proteins activated by phosphorylation are not essential to carrier-mediated auxin influx. Our data support the idea that the efflux carrier in plants constitutes a complex system regulated at multiple levels, in marked contrast with the influx carrier. Physiological implications of the kinetic features of this regulation are discussed.  相似文献   

6.
The divalent cation Sr2+ induced repetitive transient spikes of the cytosolic Ca2+ activity [Ca2+]cy and parallel repetitive transient hyperpolarizations of the plasma membrane in the unicellular green alga Eremosphaera viridis. [Ca2+]cy measurements, membrane potential measurements, and cation analysis of the cells were used to elucidate the mechanism of Sr2+-induced [Ca2+]cy oscillations. Sr2+ was effectively and rapidly compartmentalized within the cell, probably into the vacuole. The [Ca2+]cy oscillations cause membrane potential oscillations, and not the reverse. The endoplasmic reticulum (ER) Ca2+-ATPase blockers 2,5-di-tert-butylhydroquinone and cyclopiazonic acid inhibited Sr2+-induced repetitive [Ca2+]cy spikes, whereas the compartmentalization of Sr2+ was not influenced. A repetitive Ca2+ release and Ca2+ re-uptake by the ER probably generated repetitive [Ca2+]cy spikes in E. viridis in the presence of Sr2+. The inhibitory effect of ruthenium red and ryanodine indicated that the Sr2+-induced Ca2+ release from the ER was mediated by a ryanodine/cyclic ADP-ribose type of Ca2+ channel. The blockage of Sr2+-induced repetitive [Ca2+]cy spikes by La3+ or Gd3+ indicated the necessity of a certain influx of divalent cations for sustained [Ca2+]cy oscillations. Based on these data we present a mathematical model that describes the baseline spiking [Ca2+]cy oscillations in E. viridis.  相似文献   

7.
Peptide substrates of well-defined protein kinases were microinjected into aleurone protoplasts of barley (Hordeum vulgare L. cv Himalaya) to inhibit, and therefore identify, protein kinase-regulated events in the transduction of the gibberellin (GA) and abscisic acid signals. Syntide-2, a substrate designed for Ca2+- and calmodulin (CaM)-dependent kinases, selectively inhibited the GA response, leaving constitutive and abscisic acid-regulated events unaffected. Microinjection of syntide did not affect the GA-induced increase in cytosolic [Ca2+], suggesting that it inhibited GA action downstream of the Ca2+ signal. When photoaffinity-labeled syntide-2 was electroporated into protoplasts and cross-linked to interacting proteins in situ, it selectively labeled proteins of approximately 30 and 55 kD. A 54-kD, soluble syntide-2 phosphorylating protein kinase was detected in aleurone cells. This kinase was activated by Ca2+ and was CaM independent, but was inhibited by the CaM antagonist N-(6-aminohexyl)-5-chloro-1-naphthalene-sulfonamide (250 μm), suggesting that it was a CaM-domain protein kinase-like activity. These results suggest that syntide-2 inhibits the GA response of the aleurone via an interaction with this kinase, implicating the 54-kD kinase as a Ca2+-dependent regulator of the GA response in these cells.  相似文献   

8.
The osmoprotectant 3-dimethylsulfoniopropionate (DMSP) occurs in Gramineae and Compositae, but its synthesis has been studied only in the latter. The DMSP synthesis pathway was therefore investigated in the salt marsh grass Spartina alterniflora Loisel. Leaf tissue metabolized supplied [35S]methionine (Met) to S-methyl-l-Met (SMM), 3-dimethylsulfoniopropylamine (DMSP-amine), and DMSP. The 35S-labeling kinetics of SMM and DMSP-amine indicated that they were intermediates and, consistent with this, the dimethylsulfonium moiety of SMM was shown by stable isotope labeling to be incorporated as a unit into DMSP. The identity of DMSP-amine, a novel natural product, was confirmed by both chemical and mass-spectral methods. S. alterniflora readily converted supplied [35S]SMM to DMSP-amine and DMSP, and also readily converted supplied [35S]DMSP-amine to DMSP; grasses that lack DMSP did neither. A small amount of label was detected in 3-dimethylsulfoniopropionaldehyde (DMSP-ald) when [35S]SMM or [35S]DMSP-amine was given. These results are consistent with the operation of the pathway Met → SMM → DMSP-amine → DMSP-ald → DMSP, which differs from that found in Compositae by the presence of a free DMSP-amine intermediate. This dissimilarity suggests that DMSP synthesis evolved independently in Gramineae and Compositae.  相似文献   

9.
Eukaryotic elongation factor 1α (eEF-1A) is a multifunctional protein. There are three known posttranslational modifications of eEF-1A that could potentially affect its function. Except for phosphorylation, the other posttranslational modifications have not been demonstrated in plants. Using matrix-assisted laser desorption/ionization-mass spectrometry and peptide mass mapping, we show that carrot (Daucus carota L.) eEF-1A contains a phosphoglycerylethanolamine (PGE) posttranslational modification. eEF-1A was the only protein labeled with [14C]ethanolamine in carrot cells and was the predominant ethanolamine-labeled protein in Arabidopsis seedlings and tobacco (Nicotiana tabacum L.) cell cultures. In vivo-labeling studies using [3H]glycerol, [32P]Pi, [14C]myristic acid, and [14C]linoleic acid indicated that the entire phospholipid phosphatidylethanolamine is covalently attached to the protein. The PGE lipid modification did not affect the partitioning of eEF-1A in Triton X-114 or its actin-binding activity in in vitro assays. Our in vitro data indicate that this newly characterized posttranslational modification alone does not affect the function of eEF-1A. Therefore, the PGE lipid modification may work in combination with other posttranslational modifications to affect the distribution and the function of eEF-1A within the cell.  相似文献   

10.
Uridine 5′-diphosphate-glucose (UDP-Glc) is transported into the lumen of the Golgi cisternae, where is used for polysaccharide biosynthesis. When Golgi vesicles were incubated with UDP-[3H]Glc, [3H]Glc was rapidly transferred to endogenous acceptors and UDP-Glc was undetectable in Golgi vesicles. This result indicated that a uridine-containing nucleotide was rapidly formed in the Golgi vesicles. Since little is known about the fate of the nucleotide derived from UDP-Glc, we analyzed the metabolism of the nucleotide moiety of UDP-Glc by incubating Golgi vesicles with [α-32P]UDP-Glc, [β-32P]UDP-Glc, and [3H]UDP-Glc and identifying the resulting products. After incubation of Golgi vesicles with these radiolabeled substrates we could detect only uridine 5′-monophosphate (UMP) and inorganic phosphate (Pi). UDP could not be detected, suggesting a rapid hydrolysis of UDP by the Golgi UDPase. The by-products of UDP hydrolysis, UMP and Pi, did not accumulate in the lumen, indicating that they were able to exit the Golgi lumen. The exit of UMP was stimulated by UDP-Glc, suggesting the presence of a putative UDP-Glc/UMP antiporter in the Golgi membrane. However, the exit of Pi was not stimulated by UDP-Glc, suggesting that the exit of Pi occurs via an independent membrane transporter.  相似文献   

11.
Addition of membrane-permeable cyclic GMP (cGMP) and cyclic AMP (cAMP) were shown to cause elevation of cytosolic Ca2+ concentration ([Ca2+]cyt) in tobacco (Nicotiana plumbaginofolia) protoplasts. Under the same conditions these cyclic nucleotides were shown to provoke a physiological swelling response in the protoplasts. Nonmembrane-permeable cAMP and cGMP were unable to trigger a detectable [Ca2+]cyt response. Cyclic-nucleotide-mediated elevations in [Ca2+]cyt involved both internal and external Ca2+ stores. Both cAMP- and cGMP-mediated [Ca2+]cyt elevations could be inhibited by the Ca2+-channel blocker verapamil. Addition of inhibitors of phosphodiesterases (isobutylmethylxanthine and zaprinast) and the adenylate cyclase agonist forskolin to the protoplasts (predicted to elevate in vivo cyclic-nucleotide concentrations) caused elevations in [Ca2+]cyt. Addition of the adenylate cyclase inhibitor 2′,5′-dideoxyadenosine before forskolin significantly inhibited the forskolin-induced [Ca2+]cyt elevation. Taken together, these data suggest that a potential communication point for cross-talk between signal transduction pathways using cyclic nucleotides in plants is at the level of Ca2+ signaling.  相似文献   

12.
The prevailing hypothesis on the biosynthesis of erucic acid in developing seeds is that oleic acid, produced in the plastid, is activated to oleoyl-coenzyme A (CoA) for malonyl-CoA-dependent elongation to erucic acid in the cytosol. Several in vivo-labeling experiments designed to probe and extend this hypothesis are reported here. To examine whether newly synthesized oleic acid is directly elongated to erucic acid in developing seeds of Brassica rapa L., embryos were labeled with [14C]acetate, and the ratio of radioactivity of carbon atoms C-5 to C-22 (de novo fatty acid synthesis portion) to carbon atoms C-1 to C-4 (elongated portion) of erucic acid was monitored with time. If newly synthesized 18:1 (oleate) immediately becomes a substrate for elongation to erucic acid, this ratio would be expected to remain constant with incubation time. However, if erucic acid is produced from a pool of preexisting oleic acid, the ratio of 14C in the 4 elongation carbons to 14C in the methyl-terminal 18 carbons would be expected to decrease with time. This labeling ratio decreased with time and, therefore, suggests the existence of an intermediate pool of 18:1, which contributes at least part of the oleoyl precursor for the production of erucic acid. The addition of 2-[{3-chloro-5-(trifluromethyl)-2-pyridinyl}oxyphenoxy] propanoic acid, which inhibits the homodimeric acetyl-CoA carboxylase, severely inhibited the synthesis of [14C]erucic acid, indicating that essentially all malonyl-CoA for elongation of 18:1 to erucate was produced by homodimeric acetyl-CoA carboxylase. Both light and 2-[{3-chloro-5-(trifluromethyl)-2-pyridinyl}oxyphenoxy]-propanoic acid increased the accumulation of [14C]18:1 and the parallel accumulation of [14C]phosphatidylcholine. Taken together, these results show an additional level of complexity in the biosynthesis of erucic acid.  相似文献   

13.
Changes in protein profiles associated with somatic embryogenesis in peanut   总被引:6,自引:0,他引:6  
The somatic embryogenesis potential of zygotic embryo axes of peanut (Arachis hypogaea L. cv. DRG-12) at different stages of development was evaluated by culturing on MS medium with 18.1 μM 2,4-dichlorophenoxyacetic acid (2,4-D). A 100 % frequency with 18.3 somatic embryos per explant was observed from 4 mm long immature zygotic embryo axes collected 31 – 40 d after pollination. Medium supplemented with 16.6 μM picloram resulted in slow development of somatic embryos whereas in the presence of 21.5 μM α-naphthaleneacetic acid (NAA), the explants underwent maturation with induction of roots after 30 d. The changes in protein profiles in zygotic embryo axes at different stages of development correlated with their potential to form somatic embryos. Immature zygotic embryo axes exhibited high frequency somatic embryogenesis in the stage preceding abundant accumulation of 22 and 65 kDa proteins. The content of 22 and 65 kDa proteins decreased immediately after culture on medium fortified with 18.1 μM 2,4-D and increased again after 12 d of culture coinciding with the development of somatic embryos on the explants. The content of 22 and 65 kDa proteins was low at 15 d of culture on medium supplemented with 16.6 μM picloram possibly due to slow development of the somatic embryos on the explant. On maturation medium containing 21.5 μM NAA, a marked increase in the content of 22 and 65 kDa proteins in 15 d-old cultures was observed.  相似文献   

14.
Anoxia induces a rapid elevation of the cytosolic Ca2+ concentration ([Ca2+]cyt) in maize (Zea mays L.) cells, which is caused by the release of the ion from intracellular stores. This anoxic Ca2+ release is important for gene activation and survival in O2-deprived maize seedlings and cells. In this study we examined the contribution of mitochondrial Ca2+ to the anoxic [Ca2+]cyt elevation in maize cells. Imaging of intramitochondrial Ca2+ levels showed that a majority of mitochondria released their Ca2+ in response to anoxia and took up Ca2+ upon reoxygenation. We also investigated whether the mitochondrial Ca2+ release contributed to the increase in [Ca2+]cyt under anoxia. Analysis of the spatial association between anoxic [Ca2+]cyt changes and the distribution of mitochondrial and other intracellular Ca2+ stores revealed that the largest [Ca2+]cyt increases occurred close to mitochondria and away from the tonoplast. In addition, carbonylcyanide p-trifluoromethoxyphenyl hydrazone treatment depolarized mitochondria and caused a mild elevation of [Ca2+]cyt under aerobic conditions but prevented a [Ca2+]cyt increase in response to a subsequent anoxic pulse. These results suggest that mitochondria play an important role in the anoxic elevation of [Ca2+]cyt and participate in the signaling of O2 deprivation.  相似文献   

15.
The interaction of hexamminecobalt(III), Co(NH3)63+, with 160 and 3000–8000 bp length calf thymus DNA has been investigated by circular dichroism, acoustic and densimetric techniques. The acoustic titration curves of 160 bp DNA revealed three stages of interaction: (i) Co(NH3)63+ binding up to the molar ratio [Co(NH3)63+]/[P] = 0.25, prior to DNA condensation; (ii) a condensation process between [Co(NH3)63+]/[P] = 0.25 and 0.30; and (iii) precipitation after [Co(NH3)63+]/[P] = 0.3. In the case of 3000–8000 bp DNA only two processes were observed: (i) binding up to [Co(NH3)63+]/[P] = 0.3; and (ii) precipitation after this point. In agreement with earlier observations, long DNA aggregates without changes in its B-form circular dichroism spectrum, while short DNA demonstrates a positive B→Ψ transition after [Co(NH3)63+]/[P] = 0.25. From ultrasonic and densimetric measurements the effects of Co(NH3)63+ binding on volume and compressibility have been obtained. The binding of Co(NH3)63+ to both short and long DNA is characterized by similar changes in volume and compressibility calculated per mole Co(NH3)63+: ΔV = 9 cm3 mol–1 and Δκ = 33 × 10–4 cm3 mol–1 bar–1. The positive sign of the parameters indicates dehydration, i.e. water release from Co(NH3)63+ and the atomic groups of DNA. This extent of water displacement would be consistent with the formation of two direct, hydrogen bonded contacts between the cation and the phosphates of DNA.  相似文献   

16.
The enzymatic synthesis of indole-3-acetic acid (IAA) from indole by an in vitro preparation from maize (Zea mays L.) that does not use tryptophan (Trp) as an intermediate is described. Light-grown seedlings of normal maize and the maize mutant orange pericarp were shown to contain the necessary enzymes to convert [14C]indole to IAA. The reaction was not inhibited by unlabeled Trp and neither [14C]Trp nor [14C]serine substituted for [14C]indole in this in vitro system. The reaction had a pH optimum greater than 8.0, required a reducing environment, and had an oxidation potential near that of ascorbate. The results obtained with this in vitro enzyme preparation provide strong, additional evidence for the presence of a Trp-independent IAA biosynthesis pathway in plants.  相似文献   

17.
Trans-isomers of cytokinins (CK) are thought to predominate and have greater biological activity than corresponding cis-isomers in higher plants. However, this study demonstrates a system within which the predominant CK are cis-isomers. CK were measured at four developmental stages in developing chickpea (Cicer arietinum L. cultivar Kaniva) seeds by gas chromatography-mass spectrometry. Concentrations were highest at an early endospermic fluid stage and fell considerably when the cotyledons expanded. The cis-isomers of zeatin nucleotide ([9R-MP]Z), zeatin riboside ([9R]Z), and zeatin (Z) were present in greater concentrations than those of corresponding trans-isomers: (trans)[9R-MP]Z, (trans)[9R]Z, (trans)Z, or dihydrozeatin riboside. Dihydrozeatin, dihydrozeatin nucleotide, and the isopentenyl-type CK concentrations were either low or not detectable. Root xylem exudates also contained predominantly cis-isomers of [9R-MP]Z and [9R]Z. Identities of (cis)[9R]Z and (cis)Z were confirmed by comparison of ion ratios and retention indices, and a full spectrum was obtained for (cis)[9R]Z. Tissues were extracted under conditions that minimized the possibility of RNase hydrolysis of tRNA following tissue disruption, being a significant source of the cis-CK. Since no isomerization of (trans)[2H]CK internal standards occurred, it is unlikely that the cis-CK resulted from enzymic or nonenzymic isomerization during extraction. Although quantities of total CK varied, similar CK profiles were found among three different chickpea cultivars and between adequately watered and water-stressed plants. Developing chickpea seeds will be a useful system for investigating the activity of cis-CK or determining the origin and metabolism of free CK.  相似文献   

18.
In both animal and plant acyl elongation systems, it has been proposed that fatty acids are first activated to acyl-coenzyme A (CoA) before their elongation, and that the ATP dependence of fatty acid elongation is evidence of acyl-CoA synthetase involvement. However, because CoA is not supplied in standard fatty acid elongation assays, it is not clear if CoA-dependent acyl-CoA synthetase activity can provide levels of acyl-CoAs necessary to support typical rates of fatty acid elongation. Therefore, we examined the role of acyl-CoA synthetase in providing the primer for acyl elongation in leek (Allium porrum L.) epidermal microsomes and Brassica napus L. cv Reston oil bodies. As presented here, fatty acid elongation was independent of CoA and proceeded at maximum rates with CoA-free preparations of malonyl-CoA. We also showed that stearic acid ([1-14C]18:0)-CoA was synthesized from [1-14C]18:0 in the presence of CoA-free malonyl-CoA or acetyl-CoA, and that [1-14C]18:0-CoA synthesis under these conditions was ATP dependent. Furthermore, the appearance of [1-14C]18:0 in the acyl-CoA fraction was simultaneous with its appearance in phosphatidylcholine. These data, together with the s of a previous study (A. Hlousek-Radojcic, H. Imai, J.G. Jaworski [1995] Plant J 8: 803–809) showing that exogenous [14C]acyl-CoAs are diluted by a relatively large endogenous pool before they are elongated, strongly indicated that acyl-CoA synthetase did not play a direct role in fatty acid elongation, and that phosphatidylcholine or another glycerolipid was a more likely source of elongation primers than acyl-CoAs.  相似文献   

19.
Background and Aims In conifers, mature somatic embryos and zygotic embryos appear to resemble one another physiologically and morphologically. However, phenotypes of cloned conifer embryos can be strongly influenced by a number of in vitro factors and in some instances clonal variation can exceed that found in nature. This study examines whether zygotic embryos that develop within light-opaque cones differ from somatic embryos developing in dark/light conditions in vitro. Embryogenesis in larch is well understood both in situ and in vitro and thus provides a suitable system for addressing this question.Methods Features of somatic and zygotic embryos of hybrid larch, Larix × marschlinsii, were quantified, including cotyledon numbers, protein concentration and phenol chemistry. Somatic embryos were placed either in light or darkness for the entire maturation period. Embryos at different developmental stages were embedded and sectioned for histological analysis.Key Results Light, and to a lesser degree abscisic acid (ABA), influenced accumulation of protein and phenolic compounds in somatic and zygotic embryos. Dark-grown mature somatic embryos had more protein (91·77 ± 11·26 µg protein mg–1 f.wt) than either dark-grown zygotic embryos (62·40 ± 5·58) or light-grown somatic embryos (58·15 ± 10·02). Zygotic embryos never accumulated phenolic compounds at any stage, whereas somatic embryos stored phenolic compounds in the embryonal root caps and suspensors. Light induced the production of quercetrin (261·13 ± 9·2 µg g–1 d.wt) in somatic embryos. Mature zygotic embryos that were removed from seeds and placed on medium in light rapidly accumulated phenolics in the embryonal root cap and hypocotyl. Delaying germination with ABA delayed phenolic compound accumulation, restricting it to the embryonal root cap.Conclusions In larch embryos, light has a negative effect on protein accumulation, but a positive effect on phenol accumulation. Light did not affect morphogenesis, e.g. cotyledon number. Somatic embryos produced different amounts of phenolics, such as quercetrin, depending on light conditions. The greatest difference was seen in the embryonal root cap in all embryo types and conditions.  相似文献   

20.
Michael Zook 《Plant physiology》1998,118(4):1389-1393
Camalexin (3-thiazol-2′-yl-indole) is the principal phytoalexin that accumulates in Arabidopsis after infection by fungi or bacteria. Camalexin accumulation was detectable in Arabidopsis cell-suspension cultures 3 to 5 h after inoculation with Cochliobolus carbonum (Race 1), and then increased rapidly from 7 to 24 h after inoculation. Levels of radioactivity incorporated into camalexin during a 1.5-h pulse labeling with [14C]anthranilate also increased with time after fungal inoculation. The levels of radioactive incorporation into camalexin increased rapidly between 7 and 18 h after inoculation, and then decreased along with camalexin accumulation. Relatively low levels of radioactivity from [14C]anthranilate incorporated into camalexin in the noninoculated controls. Autoradiographic analysis of the accumulation of chloroform-extractable metabolites labeled with [14C]anthranilate revealed a transient increase in the incorporation of radioactivity into indole in fungus-inoculated Arabidopsis cell cultures. The time-course measurement of radioactive incorporation into camalexin during a 1.5-h pulse labeling with [14C]indole was similar to that with [14C]anthranilate. These data suggest that indole destined for camalexin synthesis is produced by a separate enzymatic reaction that does not involve tryptophan synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号