首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
【目的】L-缬氨酸生物合成的前体物质是丙酮酸。为了增加磷酸烯醇式丙酮酸向丙酮酸的代谢流向,优化L-缬氨酸前体物质的供应,以一株积累L-缬氨酸的谷氨酸棒杆菌V1(Corynebacterium glutamicum V1)为对象,构建磷酸烯醇式丙酮酸羧化酶(PEPC)基因敲除的重组菌株C.glutamicum V1-Δpepc,并研究pepc敲除后菌株生理特性的改变。【方法】运用交叉PCR方法得到pepc基因内部缺失的同源片段Δpepc,并构建敲除质粒pK18mobsacB-Δpepc。利用同源重组技术获得pepc基因缺陷突变株C.glutamicum V1-Δpepc。采用摇瓶发酵对C.glutamicum V1-Δpepc进行发酵特性的研究。对谷氨酸棒杆菌模式菌株C.glutamicum ATCC 13032、出发菌株C.glutamicum V1和敲除菌株C.glu-tamicum V1-Δpepc的丙酮酸激酶(Pyruvate kinase,PK)、丙酮酸脱氢酶(Pyruvate dehydro-genase,PDH)、丙酮酸羧化酶(Pyruvate carboxylase,PC)分别进行测定和分析。【结果】PCR验证以及PEPC酶活测定都表明筛选到pepc缺陷的突变菌株C.glutamicum V1-Δpepc,摇瓶发酵结果表明,突变菌株C.glutamicum V1-Δpepc不再积累L-缬氨酸而是积累L-精氨酸达到7.48 g/L。酶活测定结果表明出发菌株的PDH和PC酶活均低于模式菌株C.glu-tamicum ATCC13032和重组菌株C.glutamicum V1-Δpepc,出发菌株的PK与PEPC酶活与模式菌株没有较大的差异。【结论】研究表明,通过切断PEPC参与的三羧酸循环的回补途径,增加磷酸烯醇式丙酮酸向丙酮酸的流向使丙酮酸向TCA循环的流量增加,精氨酸的累积量提高。同时,以丙酮酸为前体的L-缬氨酸和丙氨酸的积累量降低。  相似文献   

2.
The autotroph Methanococcus maripaludis contained high levels of acetate-coenzyme A ligase, pyruvate synthase, pyruvate, water dikinase, pyruvate carboxylase, and the enzymes of the incomplete reductive tricarboxylic acid cycle. Phosphoenolpyruvate carboxykinase, citrate synthase, and isocitrate dehydrogenase were not detected. In contrast, the heterotroph Methanococcus sp. strain A3 contained acetate kinase, and acetate coenzyme A ligase was virtually absent.  相似文献   

3.
Pyruvate carboxylase was recently sequenced in Corynebacterium glutamicum and shown to play an important role of anaplerosis in the central carbon metabolism and amino acid synthesis of these bacteria. In this study we investigate the effect of the overexpression of the gene for pyruvate carboxylase (pyc) on the physiology of C. glutamicum ATCC 21253 and ATCC 21799 grown on defined media with two different carbon sources, glucose and lactate. In general, the physiological effects of pyc overexpression in Corynebacteria depend on the genetic background of the particular strain studied and are determined to a large extent by the interplay between pyruvate carboxylase and aspartate kinase activities. If the pyruvate carboxylase activity is not properly matched by the aspartate kinase activity, pyc overexpression results in growth enhancement instead of greater lysine production, despite its central role in anaplerosis and aspartic acid biosynthesis. Aspartate kinase regulation by lysine and threonine, pyruvate carboxylase inhibition by aspartate (shown in this study using permeabilized cells), as well as well-established activation of pyruvate carboxylase by lactate and acetyl coenzyme A are the key factors in determining the effect of pyc overexpression on Corynebacteria physiology.  相似文献   

4.
We recently engineered the wild type of Corynebacterium glutamicum for the growth-decoupled production of L: -valine from glucose by inactivation of the pyruvate dehydrogenase complex and additional overexpression of the ilvBNCE genes, encoding the L-valine biosynthetic enzymes acetohydroxyacid synthase, isomeroreductase, and transaminase B. Based on the first generation of pyruvate-dehydrogenase-complex-deficient C. glutamicum strains, a second generation of high-yield L-valine producers was constructed by successive deletion of the genes encoding pyruvate:quinone oxidoreductase, phosphoglucose isomerase, and pyruvate carboxylase and overexpression of ilvBNCE. In fed-batch fermentations at high cell densities, the newly constructed strains produced up to 410 mM (48 g/l) L-valine, showed a maximum yield of 0.75 to 0.86 mol/mol (0.49 to 0.56 g/g) of glucose in the production phase and, in contrast to the first generation strains, excreted neither pyruvate nor any other by-product tested.  相似文献   

5.
A discontinuous lactate dehydrogenase coupled assay is described for the evaluation of the pyruvate carboxylase activity (Pc, EC 6.4.1.1) in a glutamate overproducing strain of Corynebacterium glutamicum. After an initial permeabilisation period of the cells, the method consisted of the fluorometric determination of the remaining pyruvate level after transformation into oxaloacetate by the endogenous Pc. The assay was demonstrated to be powerful and enabled the determination of the C. glutamicum Pc activity grown on different carbon sources. Besides, this method was used to assay Pc activity in C. glutamicum 2262 during a temperature triggered glutamate producing process with biotin excess or limitation.  相似文献   

6.
7.
8.
The mitochondrial matrix subfractions from rat liver, kidney cortex, brain, heart, and skeletal muscle were isolated and their protein components were resolved by two-dimensional polyacrylamide gel electrophoresis, revealing between 120 and 150 components for each matrix subfraction. Excellent resolution was obtained utilizing a pH 5 to 8 gradient in the first dimension and in 8 to 13% exponential acrylamide gradient in the second dimension, increasing the number of mitochondrial matrix proteins observed 3-fold over one-dimensional systems. Protein components tentatively identified by co-migration with pure enzymes and by known tissue distributions are carbamoyl-phosphate synthetase (EC 2.7.2.5), ornithine transcarbamylase (EC 2.1.3.3), glutamate dehydrogenase (EC 1.4.1.3), pyruvate carboxylase (EC 6.4.1.1), citrate synthase (EC 4.1.3.7), fumarase (EC 4.2.1.2), aconitase (EC 4.2.1.3), alpha-ketoglutarate dehydrogenase (EC 1.2.4.2), dihydrolipoyl transsuccinylase (EC 2.3.1.12), lipoamide dehydrogenase (EC 1.6.4.3), glutamate-aspartate aminotransferase (EC 2.6.1.1), and the two subunits of pyruvate dehydrogenase (EC 1.2.4.1). Protein components unambiguously identified by peptide mapping are citrate synthase, aconitase, and pyruvate carboxylase. The inner membrane subfraction from rat liver mitochondria was also resolved two dimensionally; the alpha and beta subunits of ATPase (F1) (EC 3.6.1.3) were identified by peptide mapping.  相似文献   

9.
The mechanism of inhibition of pyruvate carboxylase, pyruvate dehydrogenase, and carbamyl phosphate synthetase induced by alpha-ketoisovalerate metabolism has been investigated in isolated rat hepatocytes incubated with lactate, pyruvate, ammonia, and ornithine as substrates. Half-maximum inhibitions of flux through each of these enzyme steps were obtained with 0.3 mM alpha-ketoisovalerate. The inhibition of pyruvate carboxylase flux by alpha-ketoisovalerate was largely reversed by oleate addition, but pyruvate dehydrogenase flux was inhibited further. Inhibition of flux through pyruvate carboxylase could be attributed mainly to the fall of its allosteric activator, acetyl-CoA, with some additional effect due to inhibition by methylmalonyl-CoA. Tissue acetyl-CoA levels decrease as a result of an inhibition of the active form of pyruvate dehydrogenase. Kinetic studies with the purified pig heart pyruvate dehydrogenase complex showed that methyl-malonyl-CoA, propionyl-CoA, and isobutyryl-CoA were inhibitory, the latter noncompetitive with CoASH with an apparent Ki of 90 microM. The observed inhibition of pyruvate dehydrogenase flux correlated with increases of the acetyl-CoA/CoASH and propionyl-CoA/CoASH ratios and isobutyryl-CoA levels, while increases of the mitochondrial NADH/NAD+ ratio explained differences between the effects of alpha-ketoisovalerate and propionate. Carbamyl phosphate synthetase I purified from rat liver was shown to be inhibited directly by methylmalonyl-CoA (apparent Ki of 5 mM). Inhibition of flux through carbamyl phosphate synthetase during alpha-ketoisovalerate metabolism could be attributed both to a direct inhibitory effect of methyl-malonyl-CoA and to a diminished activation by N-acetylglutamate. Direct effects of various acyl-CoA metabolites on these key enzymes may explain symptoms of hypoglycemia and hyperammonemia observed in patients with inherited disorders of organic acid metabolism.  相似文献   

10.
The central metabolic pathway of Corynebacterium glutamicum was engineered to produce ethanol. A recombinant strain which expressed the Zymomonas mobilis genes coding for pyruvate decarboxylase (pdc) and alcohol dehydrogenase (adhB) was constructed. Both genes placed under the control of the C. glutamicum ldhA promoter were expressed at high levels in C. glutamicum, resulting, under oxygen-deprivation conditions, in a significant yield ofethanol from glucose in a process characterized by the absence of cellular growth. Addition of pyruvate in trace amounts to the reaction mixture induced a 2-fold increase in the ethanol production rate. A similar effect was observed when acetaldehyde was added. Disruption of the lactate dehydrogenase (ldhA) gene led to a 3-fold higher ethanol yield than wild type, with no lactate production. Moreover, inactivation of the phosphoenolpyruvate carboxylase (ppc) and ldhA genes revealed a significant amount of ethanol production and a dramatic decrease in succinate without any lactate production, when pyruvate was added. Since the reaction occurred in the absence of cell growth, the ethanol volumetric productivity increased in proportion to cell density of ethanologenic C. glutamicum in a process under oxygen-deprivation conditions. These observations corroborate the view that intracellular NADH concentrations in C. glutamicum are correlated to oxygen-deprived metabolic flows.  相似文献   

11.
Growth of Corynebacterium glutamicum on mixtures of the carbon sources glucose and acetate is shown to be distinct from growth on either substrate alone. The organism showed nondiauxic growth on media containing acetate-glucose mixtures and simultaneously metabolized these substrates. Compared to those for growth on acetate or glucose alone, the consumption rates of the individual substrates were reduced during acetate-glucose cometabolism, resulting in similar total carbon consumption rates for the three conditions. By (13)C-labeling experiments with subsequent nuclear magnetic resonance analyses in combination with metabolite balancing, the in vivo activities for pathways or single enzymes in the central metabolism of C. glutamicum were quantified for growth on acetate, on glucose, and on both carbon sources. The activity of the citric acid cycle was high on acetate, intermediate on acetate plus glucose, and low on glucose, corresponding to in vivo activities of citrate synthase of 413, 219, and 111 nmol. (mg of protein)(-1). min(-1), respectively. The citric acid cycle was replenished by carboxylation of phosphoenolpyruvate (PEP) and/or pyruvate (30 nmol. [mg of protein](-1). min(-1)) during growth on glucose. Although levels of PEP carboxylase and pyruvate carboxylase during growth on acetate were similar to those for growth on glucose, anaplerosis occurred solely by the glyoxylate cycle (99 nmol. [mg of protein](-1). min(-1)). Surprisingly, the anaplerotic function was fulfilled completely by the glyoxylate cycle (50 nmol. [mg of protein](-1). min(-1)) on glucose plus acetate also. Consistent with the predictions deduced from the metabolic flux analyses, a glyoxylate cycle-deficient mutant of C. glutamicum, constructed by targeted deletion of the isocitrate lyase and malate synthase genes, exhibited impaired growth on acetate-glucose mixtures.  相似文献   

12.
The pyruvate kinase gene pyk from Corynebacterium glutamicum was cloned by applying a combination of PCR, site-specific mutagenesis, and complementation. A 126-bp DNA fragment central to the C. glutamicum pyk gene was amplified from genomic DNA by PCR with degenerate oligonucleotides as primers. The cloned DNA fragment was used to inactivate the pyk gene in C. glutamicum by marker rescue mutagenesis via homologous recombination. The C. glutamicum pyk mutant obtained was unable to grow on minimal medium containing ribose as the sole carbon source. Complementation of this phenotype by a gene library resulted in the isolation of a 2.8-kb PstI-BamHI genomic DNA fragment harboring the C. glutamicum pyk gene. Multiple copies of plasmid-borne pyk caused a 20-fold increase of pyruvate kinase activity in C. glutamicum cell extracts. By using large internal fragments of the cloned C. glutamicum gene, pyk mutant derivatives of the lysine production strain Corynebacterium lactofermentum 21799 were generated by marker rescue mutagenesis. As determined in shake flask fermentations, lysine production in pyk mutants was 40% lower than that in the pyk+ parent strain, indicating that pyruvate kinase is essential for high-level lysine production. This finding questions an earlier hypothesis postulating that redirection of carbon flow at the phosphoenol pyruvate branch point of glycolysis through elimination of pyruvate kinase activity results in an increase of lysine production in C. glutamicum and its close relatives.  相似文献   

13.
1. State-3 (i.e. ADP-stimulated) rates of O(2) uptake with palmitoylcarnitine, palmitoyl-CoA plus carnitine, pyruvate plus malonate plus carnitine and octanoate as respiratory substrate were all diminished in heart mitochondria isolated from senescent (24-month-old) rats compared with mitochondria from young adults (6 months old). By contrast, State-3 rates of O(2) uptake with pyruvate plus malate or glutamate plus malate were the same for mitochondria from each age group. 2. Measurements of enzyme activities in disrupted mitochondria showed a decline with senescence in the activity of acyl-CoA synthetase (EC 6.2.1.2 and 6.2.1.3), carnitine acetyltransferase (EC 2.3.1.7) and 3-hydroxy-acyl-CoA dehydrogenase (EC 1.1.1.35), but no change in the activity of carnitine palmitoyltransferase (EC 2.3.1.21) or acyl-CoA dehydrogenase (EC 1.3.99.3). 3. Measurement of dl-[(3)H]carnitine (in)/acetyl-l-carnitine (out) exchange in intact mitochondria showed decreased rates when the animals used were senescent. However, this followed from a decreased intramitochondrial pool of exchangeable carnitine, such that calculated first-order rate constants for exchange were identical in mitochondria from the two age groups. 4. The decline in acyl-CoA synthetase activity is thought to be the reason for the diminished rate of O(2) uptake with octanoate in senescence. The decline in carnitine acetyltransferase activity is considered to be the cause of the diminished rate of O(2) uptake with acetylcarnitine or with pyruvate plus malonate plus carnitine as substrate. The mechanism of the diminished rate of O(2) uptake with palmitoylcarnitine in senescence is discussed.  相似文献   

14.
1. Deca-2,4,6,8-tetraenoic acid is a substrate for both ATP-specific (EC 6.2.1.2 or 3) and GTP-specific (EC 6.2.1.-) acyl-CoA synthetases of rat liver mitochondria. The enzymic synthesis of decatetraenoyl-CoA results in new spectral characteristics. The difference spectrum for the acyl-CoA minus free acid has a maximum at 376nm with epsilon(mM) 34. Isosbestic points are at 345nm and 440nm. 2. The acylation of CoA by decatetraenoate in mitochondrial suspensions can be continuously measured with a dual-wavelength spectrophotometer. 3. By using this technique, three distinct types of acyl-CoA synthetase activity were demonstrated in rat liver mitochondria. One of these utilized added CoA and ATP, required added Mg(2+) and corresponded to a previously described ;external' acyl-CoA synthetase. The other two acyl-CoA synthetase activities utilized intramitochondrial CoA and did not require added Mg(2+). Of these two ;internal' acyl-CoA synthetases, one was insensitive to uncoupling agents, was inhibited by phosphate or arsenate, and corresponded to the GTP-specific enzyme. The other corresponded to the ATP-specific enzyme. 4. Atractylate inhibited the activity of the two internal acyl-CoA synthetases only when the energy source was added ATP. 5. The amount of intramitochondrial CoA acylated by decatetraenoate was independent of whether the internal ATP-specific or GTP-specific acyl-CoA synthetase was active. It is concluded that these two internal acyl-CoA synthetases have access to the same intramitochondrial pool of CoA. 6. The amount of intramitochondrial CoA that could be acylated with decatetraenoate was decreased by the addition of palmitoyl-dl-carnitine, 2-oxoglutarate, or pyruvate. These observations indicated that pyruvate dehydrogenase (EC 1.2.4.1), oxoglutarate dehydrogenase (EC 1.2.4.2), carnitine palmitoyltransferase (EC 2.3.1.-), citrate synthase (EC 4.1.3.7), and succinyl-CoA synthetase (EC 6.2.1.4) all have access to the same intramitochondrial pool of CoA as do the two internal acyl-CoA synthetases.  相似文献   

15.
Succinyl-CoA synthetase and the alpha-subunit of pyruvate dehydrogenase are phosphorylated after incubation of mitochondria from brain, heart, and liver with [gamma-32P]ATP. Dichloroacetate, a known specific inhibitor for pyruvate dehydrogenase kinase, inhibits not only the phosphate incorporation into the alpha-subunit of pyruvate dehydrogenase but also the autophosphorylation of succinyl-CoA synthetase. AMP also inhibits the phosphorylation of both proteins. Phosphorylation of the alpha-subunit of pyruvate dehydrogenase in liver mitochondria is significantly lower than in mitochondria from other tissues.  相似文献   

16.
Corynebacterium glutamicum was engineered for the production of L-valine from glucose by deletion of the aceE gene encoding the E1p enzyme of the pyruvate dehydrogenase complex and additional overexpression of the ilvBNCE genes encoding the L-valine biosynthetic enzymes acetohydroxyacid synthase, isomeroreductase, and transaminase B. In the absence of cellular growth, C. glutamicum DeltaaceE showed a relatively high intracellular concentration of pyruvate (25.9 mM) and produced significant amounts of pyruvate, L-alanine, and L-valine from glucose as the sole carbon source. Lactate or acetate was not formed. Plasmid-bound overexpression of ilvBNCE in C. glutamicum DeltaaceE resulted in an approximately 10-fold-lower intracellular pyruvate concentration (2.3 mM) and a shift of the extracellular product pattern from pyruvate and L-alanine towards L-valine. In fed-batch fermentations at high cell densities and an excess of glucose, C. glutamicum DeltaaceE(pJC4ilvBNCE) produced up to 210 mM L-valine with a volumetric productivity of 10.0 mM h(-1) (1.17 g l(-1) h(-1)) and a maximum yield of about 0.6 mol per mol (0.4 g per g) of glucose.  相似文献   

17.
18.
1. The metabolism of L-alanine was studied in isolated guinea-pig kidney-cortex tubules. 2. In contrast with previous conclusions of Krebs [(1935) Biochem. J. 29, 1951-1969], glutamine was found to be the main carbon and nitrogenous product of the metabolism of alanine (at 1 and 5 mM). Glutamate and ammonia were only minor products. 3. At neither concentration of alanine was there accumulation of glucose, glycogen, pyruvate, lactate, aspartate or tricarboxylic acid-cycle intermediates. 4. Carbon-balance calculations and the release of 14CO2 from [U-14C]alanine indicate that oxidation of the alanine carbon skeleton occurred at both substrate concentrations. 5. A pathway involving alanine aminotransferase, glutamate dehydrogenase, glutamine synthetase, pyruvate dehydrogenase, pyruvate carboxylase and enzymes of the tricarboxylic acid cycle is proposed for the conversion of alanine into glutamine. 6. Strong evidence for this pathway was obtained by: (i) suppressing alanine removal by amino-oxyacetate, and inhibitor of transaminases, (ii) measuring the release of 14CO2 from [1-14C]alanine, (iii) the use of L-methionine DL-sulphoximine, an inhibitor of glutamine synthetase, which induced a large increase in ammonia release from alanine, and (iv) the use of fluoroacetate, an inhibitor of aconitase, which inhibited glutamine synthesis with concomitant accumulation of citrate from alanine. 7. In this pathway, the central role of pyruvate carboxylase, which explains the discrepancy between our results and those of Krebs (1935), was also demonstrated.  相似文献   

19.
20.
Corynebacterium glutamicum is known to excrete large amounts of L-glutamic acid upon treatment by penicillin. However, the mechanism of L-glutamate overproduction by penicillin treatment is still unknown. A 5.3-kb HindIII fragment was isolated by directly introducing the C. glutamicum (Brevibacterium lactofermentum) ATCC 13869 gene library into the temperature-sensitive Escherichia coli murE mutant and selecting temperature resistant clones. Two open reading frames (ORFs) were found in this fragment: (1) murE, encoding UDP-N-acetylmuramoyl-L-alanyl-D-glutamate:meso-diaminopimelate ligase, and (2)ftsI, encoding septum-peptidoglycan synthetase, one of the targets of penicillin (penicillin-binding protein 3). Both ORFs were involved in peptidoglycan synthesis. Proteins were synthesized from the C. glutamicum murE and ftsI genes, 55 kDa and 73 kDa respectively, in an in vitro protein synthesis system, using E. coli S30 extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号