首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The number of genes controlling slow rusting resistance to leaf rust (Puccinia triticina) was estimated in five spring wheat (Triticum aestivum) cultivars using quantitative formulae. Parents and F6 families were evaluated in replicated field trials under epidemics initiated by artificial inoculation. The F6 families resulted from a diallel cross involving the fast-rusting cultivar Yecora 70 and five slow-rusting wheat cultivars: Sonoita 81, Tanager ‘S’, Galvez 87, Ures 81, and Moncho ‘S’. The area under the disease progress curve (AUDPC) was used to measure leaf rust severity over time. Results indicate that cultivar Sonoita 81 has three or four genes, Tanager ‘S’ has two or three genes, Galvez 87 has three genes, and both Ures 81 and Moncho ‘S’ have two genes for slow rusting resistance to leaf rust. Based on this result and previously reported moderate to high narrow-sense heritability estimates for slow rusting resistance in these materials, early-generation selection for slow leaf rusting would be effective.  相似文献   

2.
Twelve Polish spring wheat cultivars and 18 spring wheat accessions from CIMMYT, Mexico, were examined for resistance to a highly pathogenic Fusarium culmorum strain KF846 and powdery mildew in 5-year field experiments. Resistant wheat cultivars (Sumai 3 and Frontana) served as controls. The mean percentage of Fusarium-damaged kernels (% FDK) for 5 years was lower in CIMMYT accessions (16.7%) than in Polish spring cultivars (28.3%). In all Polish spring cultivars, % FDK was higher than in the control cultivars Sumai 3 and Frontana (12-20%). The mean disease score (on a scale of 1-9) for powdery mildew (natural infection) for all examined cultivars and lines ranged from 0 to 7 and in the Polish spring cultivars was significantly lower (0-5). Cultivars Eta, Henika, Ismena, Jasna and Olimpia were found to be the least susceptible to powdery mildew in field experiments. The laboratory host-pathogen tests with Blumeria graminis f. sp. tritici isolates showed that only two cultivars were characterized by identical resistance patterns as the standard differential lines with documented resistance genes. Cultivar Alkora had the gene Pm3d, and Henika had Pm5. The gene Pm3d was identified in cultivars Jasna and Eta in combination with another unknown gene/genes. Cultivars Santa and Torka had the gene Pm5 in combination with another unknown gene/genes. Four cultivars: Banti, Ismena, Olimpia and Sigma, showed resistance to all mildew isolates employed in a laboratory test. The accession IPG-SW-14 was the least susceptible to both pathogens (F. culmorum and powdery mildew) in all 5 years of experiments. This line is the best candidate for deriving new cultivars with improved resistance to fungal diseases.  相似文献   

3.
山东省12个主栽小麦品种(系)抗叶锈性分析   总被引:1,自引:0,他引:1  
本研究旨在明确山东省12个小麦主栽品种(系)抗叶锈性及抗叶锈基因,为小麦品种推广与合理布局、叶锈病防治及抗病育种提供依据。利用2015年采自山东省的5个小麦叶锈菌流行小种的混合小种对这些材料进行苗期抗性鉴定,然后选用15个小麦叶锈菌生理小种对这些品种(系)进行苗期基因推导,并利用与24个小麦抗叶锈基因紧密连锁(或共分离)的30个分子标记对其进行抗叶锈基因分子检测。结果显示,山东省12个主栽小麦品种(系)苗期对该省2015年的5个小麦叶锈菌混合流行小种均表现高度感病。通过基因推导与分子检测发现,济南17含有Lr16,矮抗58和山农20含有Lr26,其余济麦系列、烟农系列、良星系列等9个品种(系)均未检测到所供试标记片段。此外,本研究还对山东省3个非主栽品种进行了检测,结果发现,中麦175含有抗叶锈基因Lr1和Lr37,含有成株抗性基因;皖麦38只检测到Lr26,济麦20未检测到所供试标记片段。综合以上结果,山东省主栽小麦品种(系)所含抗叶锈基因丰富度较低,尤其不含有对我国小麦叶锈菌流行小种有效的抗锈基因,应该引起高度重视,今后育种工作应注重引入其他抗叶锈基因,提高抗叶锈性。  相似文献   

4.
Growing resistant wheat varieties is a key method of controlling two important wheat diseases, leaf rust and stripe rust. We analyzed quantitative trait loci (QTL) to investigate adult plant resistance (APR) to these rusts, using 141 F5 RILs derived from the cross ‘Avocet-YrA/Francolin#1’. Phenotyping of leaf rust resistance was conducted during two seasons at Ciudad Obregon, Mexico, whereas stripe rust was evaluated for two seasons in Toluca, Mexico, and one season in Chengdu, China. The genetic map was constructed with 581 markers, including diversity arrays technology and simple sequence repeat. Significant loci for reducing leaf rust severity were designated QLr.cim-1BL, QLr.cim-3BS.1, QLr.cim-3DC, and QLr.cim-7DS. The six QTL that reduced stripe rust severity were designated QYr.cim-1BL, QYr.cim-2BS, QYr.cim-2DS, QYr.cim-3BS.2, QYr.cim-5AL, and QYr.cim-6AL. All loci were conferred by Francolin#1, with the exception of QYr.cim-2DS, QYr.cim-5AL, and QYr.cim-6AL, which were derived from Avocet-YrA. Closely linked markers indicated that the 1BL locus was the pleiotropic APR gene Lr46/Yr29. QYr.cim-2BS was a seedling resistance gene designated as YrF that conferred intermediate seedling reactions and moderate resistance at the adult plant stage in both Mexican and Chinese environments. Significant additive interactions were detected between the six QTL for stripe rust, but not between the four QTL for leaf rust. Furthermore, we detected two new APR loci for leaf rust in common wheat: QLr.cim-3BS.1 and QLr.cim-7DS.  相似文献   

5.
Immune lines resistant both to leaf rust and to powdery mildew were constructed on the basis of common wheat cultivar Saratovskaya 29. Synthetic wheat Triticum timopheevii/Aegilops squarrosa (AAGGDD, 2n = 42) of Savov (Bulgaria) was used as a source of resistance genes. Using cytological analysis of BC2, we selected resistant plants (21") free from meiosis 1 (M1) defects. With these plants and continuous selection, BC8-BC9 immune lines were obtained. The lines were shown to carry new resistance genes differing from the known ones, and were proposed as donors of immunity to the diseases.  相似文献   

6.
Leaf (brown) and stripe (yellow) rusts, caused by Puccinia triticina and Puccinia striiformis, respectively, are fungal diseases of wheat (Triticum aestivum) that cause significant yield losses annually in many wheat-growing regions of the world. The objectives of our study were to characterize genetic loci associated with resistance to leaf and stripe rusts using molecular markers in a population derived from a cross between the rust-susceptible cultivar 'Avocet S' and the resistant cultivar 'Pavon76'. Using bulked segregant analysis and partial linkage mapping with AFLPs, SSRs and RFLPs, we identified 6 independent loci that contributed to slow rusting or adult plant resistance (APR) to the 2 rust diseases. Using marker information available from existing linkage maps, we have identified additional markers associated with resistance to these 2 diseases and established several linkage groups in the 'Avocet S' x 'Pavon76' population. The putative loci identified on chromosomes 1BL, 4BL, and 6AL influenced resistance to both stripe and leaf rust. The loci on chromosomes 3BS and 6BL had significant effects only on stripe rust, whereas another locus, characterized by AFLP markers, had minor effects on leaf rust only. Data derived from Interval mapping indicated that the loci identified explained 53% of the total phenotypic variation (R2) for stripe rust and 57% for leaf rust averaged across 3 sets of field data. A single chromosome recombinant line population segregating for chromosome 1B was used to map Lr46/Yr29 as a single Mendelian locus. Characterization of slow-rusting genes for leaf and stripe rust in improved wheat germplasm would enable wheat breeders to combine these additional loci with known slow-rusting loci to generate wheat cultivars with higher levels of slow-rusting resistance.  相似文献   

7.
The wheat (Triticum aestivum L.) stem rust (Puccinia graminis Pers.:Pers. f.sp. tritici Eriks. and Henn.) resistance gene SrWld1 conditions resistance to all North American stem rust races and is an important gene in hard red spring (HRS) wheat cultivars. A sexually recombined race having virulence to SrWld1 was isolated in the 1980s. Our objective was to determine the genetics of resistance to the race. The recombinant race was tested with the set of stem rust differentials and with a set of 36 HRS and 6 durum cultivars. Chromosomal location studies in cultivars Len, Coteau, and Stoa were completed using aneuploid analysis, molecular markers, and allelism tests. Stem rust differential tests coded the race as TPPKC, indicating it differed from TPMKC by having added virulence on Sr30 as well as SrWld1. Genes effective against TPPKC were Sr6, Sr9a, Sr9b, Sr13, Sr24, Sr31, and Sr38. Genetic studies of resistance to TPPKC indicated that Len, Coteau, and Stoa likely carried Sr9b, that Coteau and Stoa carried Sr6, and Stoa carried Sr24. Tests of HRS and durum cultivars indicated that five HRS and one durum cultivar were susceptible to TPPKC. Susceptible HRS cultivars were postulated to have SrWld1 as their major stem rust resistance gene. Divide, the susceptible durum cultivar, was postulated to lack Sr13. We concluded that although TPPKC does not constitute a threat similar to TTKSK and its variants, some cultivars would be lost from production if TPPKC became established in the field.  相似文献   

8.
Sequence tagged site (STS) markers for eight resistance genes against Puccinia recondita f. sp. tritici were used to screen a set of near-isogenic lines of wheat cv. Thatcher containing in total 40 different Lr genes and their alleles. Polymerase chain reaction (PCR) analysis was carried out by using STS, SCAR and CAPS primers specific for the leaf rust resistance genes Lr1, Lr9, Lr10, Lr19, Lr24, Lr28, Lr37 and Lr47. The STS, CAPS and SCAR markers linked to resistance genes Lr9, Lr10, Lr19, Lr24, Lr37 and Lr47 were found to be reliable in diverse genetic backgrounds. The amplification product of the Lr1 gene marker was detected in the susceptible cv. Thatcher and in all of the near-isogenic lines examined except Lr2a, Lr2b, Lr2c and Lr19. The sequence analysis of PCR products amplified in lines Lr1, Lr10, Lr28 and in cv. Thatcher indicated that the near-isogenic lines and cv. Thatcher contained in the targeted chromosome region an allele that differed from the original alleles corresponding to Lr1/6*Thatcher (TLR621) and susceptible Thatcher (TH621). The amplification product specific to the STS marker of the Lr1 gene was amplified in almost all Thatcher near-isogenic lines and in cv. Thatcher because their alleles possessed primer sequences identical to the original allele TLR621. The marker for the Lr28 resistance gene was identified in line Lr28, carrying gene Lr28, and in 21 other near-isogenic lines. The sequencing of PCR products specific to Lr28 and generated in lines Lr1, Lr10 and Lr28 indicated that the lines Lr1, Lr10 and Lr28 are heterozygous in this region.  相似文献   

9.
为了明确河南省小麦品种的抗叶锈性及抗叶锈基因的分布,为小麦品种推广与合理布局、叶锈病防治及抗病育种提供依据,本研究利用2015年采自河南省的5个小麦叶锈菌流行小种混合菌株,对近几年河南省16个主栽小麦品种进行了苗期抗性鉴定,然后选用12个小麦叶锈菌生理小种对这些品种进行苗期基因推导,同时利用与24个小麦抗叶锈基因紧密连锁(或共分离)的30个分子标记对该16个品种进行了抗叶锈基因分子检测。结果显示,供试品种苗期对小麦叶锈菌混合流行小种均表现高度感病;基因推导与分子检测结果表明,供试品种可能含有Lr1、Lr16、Lr26和Lr30这4个抗叶锈基因,其中先麦8号含有Lr1和Lr26;郑麦366和郑麦9023含有Lr1;西农979和怀川916含有Lr16;中麦895、偃展4110、郑麦7698、平安8号、众麦1号、周麦16、衡观35和矮抗58含有Lr26;周麦22中含有Lr26,还可能含有Lr1和Lr30;豫麦49-198和洛麦23可能含有本研究中检测以外的其他抗叶锈基因。因此,河南省主栽小麦品种的抗叶锈基因丰富度较低,今后育种工作应注重引入其他抗叶锈性基因,提高抗叶锈性,有效控制小麦叶锈病。  相似文献   

10.

Key message

We identified 15 potentially novel loci in addition to previously characterized leaf rust resistance genes from 1032 spring wheat accessions. Targeted AM subset panels were instrumental in revealing interesting loci.

Abstract

Leaf rust is a common disease of wheat, consistently reducing yields in many wheat-growing regions of the world. Although fungicides are commonly applied to wheat in the United States (US), genetic resistance can provide less expensive, yet effective control of the disease. Our objectives were to map leaf rust resistance genes in a large core collection of spring wheat accessions selected from the United States Department of Agriculture-Agricultural Research Service National Small Grains Collection (NSGC), determine whether previously characterized race-nonspecific resistance genes could be identified with our panel, and evaluate the use of targeted panels to identify seedling and adult plant resistance (APR) genes. Association mapping (AM) detected five potentially novel leaf rust resistance loci on chromosomes 2BL, 4AS, and 5DL at the seedling stage, and 2DL and 7AS that conditioned both seedling and adult plant resistance. In addition, ten potentially novel race-nonspecific resistance loci conditioned field resistance and lacked seedling resistance. Analyses of targeted subsets of the accessions identified additional loci not associated with resistance in the complete core panel. Using molecular markers, we also confirmed the presence and effectiveness of the race-nonspecific genes Lr34, Lr46, and Lr67 in our panel. Although most of the accessions in this study were susceptible to leaf rust in field and seedling tests, many resistance loci were identified with AM. Through the use of targeted subset panels, more loci were identified than in the larger core panels alone.
  相似文献   

11.
The challenge posed by rapidly changing wheat rust pathogens, both in virulence and in environmental adaptation, calls for the development and application of new techniques to accelerate the process of breeding for durable resistance. To expand the resistance gene pool available for germplasm improvement, a panel of 159 landraces plus old cultivars was evaluated for seedling and adult plant resistance (APR) to over 35 Australian pathotypes of Puccinia triticina, Puccinia graminis f. sp. tritici, and Puccinia striiformis f. sp. tritici. Known seedling resistance (SR) genes for leaf rust (Lr2a, Lr3a, Lr13, Lr23, Lr16, and Lr20), stem rust (Sr12, Sr13, Sr23, Sr30, and Sr36), and stripe rust (Yr3, Yr4, Yr5, Yr9, Yr10, Yr17, and Yr27) were postulated. The APR genes identified via field assessments and marker analyses included the pleiotropic genes (Lr34/Yr18/Sr57, Lr46/Yr29/Sr58, Lr67/Yr46/Sr55, and Sr2/Lr27/Yr30), Lr68, Lr74, and uncharacterized APR. A genome-wide association analysis using linear mixed models detected 79 single nucleotide polymorphism (SNP) markers significantly associated with rust resistance, which were mapped on chromosomes 1A, 1B, 1D, 2A, 2B, 3A, 3B, 3D, 4A, 5A, 5B, 6A, 6B, 6D, 7A, 7B and 7D. SNPs associated with multiple rust resistances probably indicate the presence of new pleiotropic or closely linked genes. SNPs were mapped on chromosome positions (1AL, 1DS, 2AL, 4AS, 5BS, 6DL, and 7AL) that have not been known to carry APR genes. This study revealed the presence of a range of possibly unidentified effective seedling and APRs among the landraces, which might represent new sources of rust resistance for the ongoing effort to develop improved wheat cultivars.  相似文献   

12.
R L Innes  E R Kerber 《Génome》1994,37(5):813-822
Twelve accessions of Triticum tauschii (Coss.) Schmal. were genetically analyzed for resistance to leaf rust (Puccinia recondita Rob. ex Desm.) and stem rust (Puccinia graminis Pers. f.sp. tritici Eriks. and E. Henn.) of common wheat (Triticum aestivum L.). Four genes conferring seedling resistance to leaf rust, one gene conferring seedling resistance to stem rust, and one gene conferring adult-plant resistance to stem rust were identified. These genes were genetically distinct from genes previously transferred to common wheat from T. tauschii and conferred resistance to a broad spectrum of pathogen races. Two of the four seedling leaf rust resistance genes were not expressed in synthetic hexaploids, produced by combining tetraploid wheat with the resistant T. tauschii accessions, probably owing to the action of one or more intergenomic suppressor loci on the A or B genome. The other two seedling leaf rust resistance genes were expressed at the hexaploid level as effectively as in the source diploids. One gene was mapped to the short arm of chromosome 2D more than 50 cM from the centromere and the other was mapped to chromosome 5D. Suppression of seedling resistance to leaf rust in synthetic hexaploids derived from three accessions of T. tauschii allowed the detection of three different genes conferring adult-plant resistance to a broad spectrum of leaf rust races. The gene for seedling resistance to stem rust was mapped to chromosome ID. The degree of expression of this gene at the hexaploid level was dependent on the genetic background in which it occurred and on environmental conditions. The expression of the adult-plant gene for resistance to stem rust was slightly diminished in hexaploids. The production of synthetic hexaploids was determined to be the most efficient and flexible method for transferring genes from T. tauschii to T. aestivum, but crossing success was determined by the genotypes of both parents. Although more laborious, the direct introgression method of crossing hexaploid wheat with T. tauschii has the advantages of enabling selection for maximum expression of resistance in the background hexaploid genotype and gene transfer into an agronomically superior cultivar.  相似文献   

13.

Key message

Identified SSR markers ( Xcfd49 and Xbarc183 ) linked with stem rust resistance for efficient use in marker-assisted selection and stacking of resistance genes in wheat breeding programs.

Abstract

More than 80 % of the worldwide wheat (Triticum aestivum L.) area is currently sown with varieties susceptible to the Ug99 race group of stem rust fungus. However, wheat lines Niini, Tinkio, Coni, Pfunye, Blouk, and Ripper have demonstrated Ug99 resistance at the seedling and adult plant stages. We mapped stem rust resistance in populations derived from crosses of a susceptible parent with each of the resistant lines. The segregation of resistance in each population indicated the presence of a single gene. The resistance gene in Niini mapped to short arm of chromosome 6D and was flanked by SSR markers Xcfd49 at distances of 3.9 cM proximal and Xbarc183 8.4 cM distal, respectively. The chromosome location of this resistance was validated in three other populations: PBW343/Coni, PBW343/Tinkio, and Cacuke/Pfunye. Resistance initially postulated to be conferred by the SrTmp gene in Blouk and Ripper was also linked to Xcfd49 and Xbarc183 on 6DS, but it was mapped proximal to Xbarc183 at a similar position to previously mapped genes Sr42 and SrCad. Based on the variation in diagnostic marker alleles, it is possible that Niini and Pfunye may carry different resistance genes/alleles. Further studies are needed to determine the allelic relationships between various genes located on chromosome arm 6DS. Our results provide valuable molecular marker and genetic information for developing Ug99 resistant wheat varieties in diverse germplasm and using these markers to tag the resistance genes in wheat breeding.  相似文献   

14.
Random amplified polymorphic DNA (RAPD) markers have been used to characterize the genetic diversity among 35 spring wheat cultivars and lines with different levels of Fusarium resistance. The objectives of this study were to determine RAPD-based genetic similarity between accessions and to derive associations between Fusarium head blight (FHB) and RAPD markers. Two bulked DNA from either highly resistant lines or susceptible lines were used to screen polymorphic primers. Out of 160 screened primers, 17 primers generated reproducible and polymorphic fragments. Genetic similarity calculated from the RAPD data ranged from 0.64 to 0.98. A dendrogram was prepared on the basis of a similarity matrix using the UPGMA algorithm, which corresponded well with the results of principal component analysis and separated the 35 genotypes into two groups. Association analysis between RAPD markers and the FHB index detected three RAPD markers, H19(1000), F2(500) and B1(2400), significantly associated with FHB-resistant genotypes. These results suggest that a collection of unrelated genotypes can be used to identify markers linked to an agronomically important quantitative trait like FHB. These markers will be useful for marker-assistant breeding and can be used as candidate markers for further gene mapping and cloning.  相似文献   

15.
Autoinfection (within-host inoculum transmission) allows plant pathogens locally to increase their density on an infected host. Estimating autoinfection is of particular importance in understanding epidemic development in host mixtures. More generally, autoinfection influences the rate of host colonization by the pathogen, as well as pathogen evolution. Despite its importance in epidemiological models, autoinfection has not yet been directly quantified. It was measured here on wheat (Triticum aestivum) leaves infected by a pathogenic fungus (Puccinia triticina). Autoinfection was measured either on inoculated leaves or by assessing the local progeny of spontaneous infections, and was described by a model of the form y = microx(alpha), where alpha accounts for host saturation and micro represents the pathogen multiplication rate resulting from autoinfection. It was shown that autoinfection resulted in typical patterns of disease aggregation at the leaf level and influenced lesion distribution in the crop during the first epidemic stages. The parameter micro was calculated by taking overdispersion of the data and density dependence into account. It was found that a single lesion produced between 50 and 200 offspring by autoinfection, within a pathogen generation. By taking into account environmental variability, it was possible to estimate autoinfection under optimal conditions for epidemic development.  相似文献   

16.
D R Knott  B Yadav 《Génome》1993,36(5):877-883
Twelve lines of wheat (Triticum aestivum L.) were developed that had susceptible infection types to leaf rust (Puccinia recondita Rob. ex Desm. f.sp. tritici) race UN 15 in the seedling stage but were resistant in the adult plant stage in the field. The lines were developed from four crosses, each involving four parents (eight in total) that had originally been selected for adult plant or field resistance to stem rust (Puccinia graminis Pers. f.sp. tritici Eriks, and Henn.). The objectives of the present study were to determine the mechanism of resistance to leaf rust and its inheritance in the 12 lines. The 12 lines were grown in an artificially inoculated field nursery in Saskatoon, coefficients of infection (CI) were determined at four dates, and the areas under the disease progress curve (AUDPC) were calculated. Four representative lines were grown in a growth chamber to measure the latent period and pustule size at the two-leaf and flag-leaf stages. Eight lines were crossed and backcrossed to a susceptible check and the parents, F1, F2, F3, and BC1F2 generations were grown in a field nursery. The 12 lines showed wide ranges in CI and AUDPC but all were significantly more resistant than the susceptible check. The four lines studied in the growth chamber had longer latent periods and smaller pustules than the susceptible check at both stages. The differences tended to be greater at the flag-leaf stage. The inheritance studied showed that resistance was recessive or partially recessive and was controlled by two or more genes in each line of the eight lines. In three of the eight lines, Lr34 may be one of the genes and in the other five both Lr13 and Lr34 could be present. However, additional genes are clearly involved. A single gene by itself had only a small effect, but in two and three gene combinations the effects appeared to be greater. This type of resistance appears to occur frequently and may be durable because its complex inheritance may make it more difficult for the rust fungus to overcome. It should be used in breeding wheat for areas where leaf rust is a major problem.  相似文献   

17.
Spring wheat (Triticum aestivum L.) breeding goals in western Canada include good agronomic characteristics and good end-use quality, and also moderate to elevated resistance to diseases of economic importance. In this study, we aimed to identify quantitative trait loci (QTL) associated with resistance to common bunt (Tilletia tritici and Tilletia laevis), tan spot (Pyrenophora tritici-repentis), leaf rust (Puccinia triticina), and stripe rust (Puccinia striiformis f. sp. tritici). A total of 167 recombinant inbred lines (RILs) derived from a cross between two spring wheat cultivars, ‘Attila’ and ‘CDC Go’, were evaluated for reactions to the four diseases in nurseries from three to eight environments, and genotyped with the Wheat 90K SNP array and three gene-specific markers (Ppd-D1, Vrn-A1, and Rht-B1). The RILs exhibited transgressive segregation for all four diseases, and we observed several lines either superior or inferior to the parents. Broad-sense heritability varied from 0.25 for leaf rust to 0.48 for common bunt. Using a subset of 1203 informative markers (1200 SNPs and 3 gene-specific markers) and average disease scores across all environments, we identified two QTLs (QCbt.dms-1B.2 and QCbt.dms-3A) for common bunt, and three QTLs each for tan spot (QTs.dms-2B, QTs.dms-2D, and QTs.dms-6B), leaf rust (QLr.dms-2D.1, QLr.dms-2D.2, and QLr.dms-3A), and stripe rust (QYr.dms-3A, QYr.dms-4A, and QYr.dms-5B). Each QTL individually explained between 5.9 and 18.7% of the phenotypic variation, and altogether explained from 21.5 to 26.5% of phenotypic and from 52.2 to 86.0% of the genetic variation. The resistance alleles for all QTLs except one for stripe rust (QYr.dms-5B) were from CDC Go. Some of the QTLs are novel, while others mapped close to QTLs and/or genes reported in other studies.  相似文献   

18.
Inheritance of leaf rust and stem rust resistance in 'Roblin' wheat.   总被引:2,自引:0,他引:2  
P L Dyck 《Génome》1993,36(2):289-293
The Canadian common wheat (Triticum aestivum L.) cultivar 'Roblin' is resistant to both leaf rust (Puccinia recondita Rob. ex. Desm.) and stem rust (Puccinia graminis Pers. f. sp. tritici Eriks. and E. Henn.). To study the genetics of this resistance, 'Roblin' was crossed with 'Thatcher', a leaf rust susceptible cultivar, and RL6071, a stem rust susceptible line. A set of F6 random lines was developed from each cross. The random lines and the parents were grown in a field rust nursery artificially inoculated with a mixture of P. recondita and P. graminis isolates and scored for rust reaction. The same material was tested with specific races of leaf rust and stem rust. These data indicated that 'Roblin' has Lr1, Lr10, Lr13, and Lr34 for resistance to P. recondita and Sr5, Sr9b, Sr11, and possibly Sr7a and Sr12 for resistance to P. graminis. In a 'Thatcher' background, the presence of Lr34 contributes to improve stem rust resistance, which appears also to occur in 'Roblin'.  相似文献   

19.
20.
The ability of wheat cultivars (Triticum aestivum) to retard the development of stem rust, Puccinia graminis f.sp. tritici, was evaluated in hill plots for 3 yr at several locations in Minnesota, against single races and mixtures of races. The area under the disease progress curve was a convenient and reliable method for data summation, but the rate of disease development was not. When inoculated with single races (15B2, 32, 113 or 31) or with mixtures of races (11, 15, 15B2, 17, 32, 151), the cvs Exchange, Thatcher, McMurachy, Redman, Kenya 58, Frontana and Idaed retarded stem rust development more than Baart, Prelude and Marquis; Lee was intermediate. The methods and techniques reported should permit selection of cultivars capable of retarding the development of stem rust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号