首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The RecA family proteins mediate homologous recombination, a ubiquitous mechanism for repairing DNA double-strand breaks (DSBs) and stalled replication forks. Members of this family include bacterial RecA, archaeal RadA and Rad51, and eukaryotic Rad51 and Dmc1. These proteins bind to single-stranded DNA at a DSB site to form a presynaptic nucleoprotein filament, align this presynaptic filament with homologous sequences in another double-stranded DNA segment, promote DNA strand exchange and then dissociate. It was generally accepted that RecA family proteins function throughout their catalytic cycles as right-handed helical filaments with six protomers per helical turn. However, we recently reported that archaeal RadA proteins can also form an extended right-handed filament with three monomers per helical turn and a left-handed protein filament with four monomers per helical turn. Subsequent structural and functional analyses suggest that RecA family protein filaments, similar to the F1-ATPase rotary motor, perform ATP-dependent clockwise axial rotation during their catalytic cycles. This new hypothesis has opened a new avenue for understanding the molecular mechanism of RecA family proteins in homologous recombination.  相似文献   

2.
3.
In eukaryotic and bacterial cells, spatial organization is dependent upon cytoskeletal filaments. Actin is a main eukaryotic cytoskeletal element, involved in key processes such as cell shape determination, mechanical force generation and cytokinesis. We describe an archaeal cytoskeleton which forms helical structures within Pyrobaculum calidifontis cells, as shown by in situ immunostaining. The core components include an archaeal actin homologue, Crenactin, closely related to the eukaryotic counterpart. The crenactin gene belongs to a conserved gene cluster denoted Arcade (actin-related cytoskeleton in Archaea involved in shape determination). The phylogenetic distribution of arcade genes is restricted to the crenarchaeal Thermoproteales lineage, and to Korarchaeota, and correlates with rod-shaped and filamentous cell morphologies. Whereas Arcadin-1, -3 and -4 form helical structures, suggesting cytoskeleton-associated functions, Arcadin-2 was found to be localized between segregated nucleoids in a cell subpopulation, in agreement with possible involvement in cytokinesis. The results support a crenarchaeal origin of the eukaryotic actin cytoskeleton and, as such, have implications for theories concerning the origin of the eukaryotic cell.  相似文献   

4.
The bacterial RecA protein has been the dominant model system for understanding homologous genetic recombination. Although a crystal structure of RecA was solved ten years ago, we still do not have a detailed understanding of how the helical filament formed by RecA on DNA catalyzes the recognition of homology and the exchange of strands between two DNA molecules. Recent structural and spectroscopic studies have suggested that subunits in the helical filament formed in the RecA crystal are rotated when compared to the active RecA-ATP-DNA filament. We examine RecA-DNA-ATP filaments complexed with LexA and RecX to shed more light on the active RecA filament. The LexA repressor and RecX, an inhibitor of RecA, both bind within the deep helical groove of the RecA filament. Residues on RecA that interact with LexA cannot be explained by the crystal filament, but can be properly positioned in an existing model for the active filament. We show that the strand exchange activity of RecA, which can be inhibited when RecX is present at very low stoichiometry, is due to RecX forming a block across the deep helical groove of the RecA filament, where strand exchange occurs. It has previously been shown that changes in the nucleotide bound to RecA are associated with large motions of RecA's C-terminal domain. Since RecX binds from the C-terminal domain of one subunit to the nucleotide-binding core of another subunit, a stabilization of RecA's C-terminal domain by RecX can likely explain the inhibition of RecA's ATPase activity by RecX.  相似文献   

5.
6.
The eukaryotic RecA homologs Rad51 and Dmc1 are essential for strand exchange between homologous chromosomes during meiosis. All members of the RecA family of recombinases polymerize on DNA to form helical nucleoprotein filaments, which is the active form of the protein. Here we compare the filament structures of the Rad51 and Dmc1 proteins from both human and budding yeast. Previous studies of Dmc1 filaments suggested that they might be structurally distinct from filaments of other members of the RecA family, including Rad51. The data presented here indicate that Rad51 and Dmc1 filaments are essentially identical with respect to several structural parameters, including persistence length, helical pitch, filament diameter, DNA base pairs per helical turn and helical handedness. These data, together with previous studies demonstrating similar in vitro recombinase activity for Dmc1 and Rad51, support the view that differences in the meiotic function of Rad51 and Dmc1 are more likely to result from the influence of distinct sets of accessory proteins than from intrinsic differences in filament structure.  相似文献   

7.
The prototypical bacterial RecA protein promotes recombination/repair by catalyzing strand exchange between homologous DNAs. While the mechanism of strand exchange remains enigmatic, ATP-induced cooperativity between RecA protomers is critical for its function. A human RecA homolog, human RAD51 protein (hRAD51), facilitates eukaryotic recombination/repair, although its ability to hydrolyze ATP and/or promote strand exchange appears distinct from the bacterial RecA. We have quantitatively examined the hRAD51 ATPase. The catalytic efficiency (k(cat)/K(m)) of the hRAD51 ATPase was approximately 50-fold lower than the RecA ATPase. Altering the ratio of DNA/hRAD51 and including salts that stimulate DNA strand exchange (ammonium sulfate and spermidine) were found to affect the catalytic efficiency of hRAD51. The average site size of hRAD51 was determined to be approximately 3 nt (bp) for both single-stranded and double-stranded DNA. Importantly, hRAD51 lacks the magnitude of ATP-induced cooperativity that is a hallmark of RecA. Together, these results suggest that hRAD51 may be unable to coordinate ATP hydrolysis between neighboring protomers.  相似文献   

8.
Bacteria contain cytoskeletal elements involved in major cellular processes including DNA segregation and cell morphogenesis and division. Distant bacterial homologues of tubulin (FtsZ) and actin (MreB and ParM) not only resemble their eukaryotic counterparts structurally but also show similar functional characteristics, assembling into filamentous structures in a nucleotide-dependent fashion. Recent advances in fluorescence microscopic imaging have revealed that FtsZ and MreB form highly dynamic helical structures that encircle the cells along the inside of the cell membrane. With the discovery of crescentin, a cell-shape-determining protein that resembles eukaryotic intermediate filament proteins, the third major cytoskeletal element has now been identified in bacteria as well.  相似文献   

9.
Polymerising proteins of the actin family are nearly ubiquitous. Crenactins, restricted to Crenarchaea, are more closely related to actin than bacterial MreB. Crenactins occur in gene clusters hinting at an unknown, but conserved function. We solved the crystal structure of crenactin at 3.2 Å resolution. The protein crystallises as a continuous right-handed helix with 8 subunits per complete turn, spanning 419 Å. The structure of crenactin shows several loops that are longer than in actin, but overall, crenactin is closely related to eukaryotic actin, with an RMSD of 1.6 Å. Crenactin filaments imaged by electron microscopy showed polymers with very similar helical parameters.  相似文献   

10.
Actin system of eukaryotic cells creates the driving force for alteration of the phagocytic cytoplasmatic membrane shape, which is needed for cell movement in the space and for microorganism capturing. Manipulation by actin cytoskeleton mediated through specialized bacterial products can promote proliferation of bacteria in the host. Published reports indicate that bacterial regulation of the actin system activity can be carried out by two modes: 1) by bacterial interactions with surface receptors regulating the cytoskeleton status and 2) by introduction of bacterial products targeted to the cytoskeleton components into the cells. Intracellular pathogens (Legionella) possess ligands which interact with eukaryotic receptors and type IV secretion system fit for translocation of heretofore unknown effector molecules into the cytoplasm. This can result in stimulation of actin polymerization activity and accelerated phagocytosis of the bacteria with rapid multiplication in tissues. By contrast, representatives of extracellular pathogens (Clostridium) produce substances penetrating inside the eukaryotic cells and destroying the actin network, thus making capturing and intracellular digestion of these microorganisms impossible.  相似文献   

11.
Many important biological macromolecules exist as helical polymers. Examples are actin, tubulin, myosin, RecA, Rad51, flagellin, pili, and filamentous bacteriophage. The first application of three-dimensional reconstruction from electron microscopic images was to a helical polymer, and a number of laboratories today are using helical tubes of integral membrane proteins for solving the structure of these proteins in the electron microscope at near atomic resolution. We have developed a method to analyze and reconstruct electron microscopic images of macromolecular helical polymers, the iterative helical real space reconstruction (IHRSR) algorithm. We can show that when there is disorder or heterogeneity, when the specimens diffract weakly, or when Bessel functions overlap, we can do far better with our method than can be done using traditional Fourier-Bessel approaches. In many cases, structures that were not even amenable to analysis can be solved at fairly high resolution using our method. The problems inherent in the traditional approach are discussed, and examples are presented illustrating how the IHRSR approach surmounts these problems.  相似文献   

12.
An intracellular actin motor in bacteria?   总被引:3,自引:0,他引:3  
Actin performs structural as well as motor-like functions in eukaryotic cells. Orthologues of actin have also been identified in bacteria, where they perform an essential function during cell growth. Bacterial actins are implicated in the maintenance of rod-shaped cell morphology, and appear to form a cytoskeletal structure, localising as helical filaments underneath the cell membrane. Recently, a plasmid-borne actin orthologue has been shown to perform a mitotic-like function during segregation of a plasmid, and chromosomally encoded actin proteins were found to play an important role in chromosome segregation. Based on the findings that actin filaments are dynamic structures in two bacterial species, we propose that actins perform motor functions rather than a purely structural role in bacteria. We suggest that an intracellular motor exists in bacteria that could be derived from an ancestral actin motor that was present in cells early in evolution.  相似文献   

13.
14.
The UvsX protein from bacteriophage T4 is a member of the RecA/Rad51/RadA family of recombinases active in homologous genetic recombination. Like RecA, Rad51 and RadA, UvsX forms helical filaments on DNA. We have used electron microscopy and a novel method for image analysis of helical filaments to show that UvsX-DNA filaments exist in two different conformations: an ADP state and an ATP state. As with RecA protein, these two states have a large difference in pitch. Remarkably, even though UvsX is only weakly homologous to RecA, both UvsX filament states are more similar to the RecA crystal structure than are RecA-DNA filaments. We use this similarity to fit the RecA crystal structure into the UvsX filament, and show that two of the three previously described blocks of similarity between UvsX and RecA are involved in the subunit-subunit interface in both the UvsX filament and the RecA crystal filament. Conversely, we show that human Rad51-DNA filaments have a different subunit-subunit interface than is present in the RecA crystal, and this interface involves two blocks of sequence similarity between Rad51 and RecA that do not overlap with those found between UvsX and RecA. This suggests that helical filaments in the RecA/Rad51/RadA family may have arisen from convergent evolution, with a conserved core structure that has assembled into multimeric filaments in a number of different ways.  相似文献   

15.
16.
Recombinant expression of actin in bacteria results in non-native species that aggregate into inclusion bodies. Actin is a folding substrate of TRiC, the chaperonin of the eukaryotic cytosol. By employing bacterial in vitro translation lysates supplemented with purified chaperones, we have found that TRiC is the only eukaryotic chaperone necessary for correct folding of newly translated actin. The actin thus produced binds deoxyribonuclease I and polymerizes into filaments, hallmarks of its native state. In contrast to its rapid folding in the eukaryotic cytosol, actin translated in TRiC-supplemented bacterial lysate folds with slower kinetics, resembling the kinetics upon refolding from denaturant. Lysate supplementation with the bacterial chaperonin GroEL/ES or the DnaK/DnaJ/GrpE chaperones leads to prevention of actin aggregation, yet fails to support its correct folding. This combination of in vitro bacterial translation and TRiC-assisted folding allows a detailed analysis of the mechanisms necessary for efficient actin folding in vivo. In addition, it provides a robust alternative for the production of substantial amounts of eukaryotic proteins that otherwise misfold or lead to cellular toxicity upon expression in heterologous hosts.  相似文献   

17.
Archaeal RadA, like eukaryotic Rad51 and bacterial RecA, promotes strand exchange between DNA strands with homologous sequences in vitro and is believed to participate in the homologous recombination in cells. The amino acid sequences of the archaeal RadA proteins are more similar to the eukaryotic Rad51s rather than the bacterial RecAs, and the N-terminal region containing domain I is conserved among the RadA and Rad51 proteins but is absent from RecA. To understand the structure-function relationship of RadA, we divided the RadA protein from Pyrococcus furiosus into two parts, the N-terminal one-third (RadA-n) and the residual C-terminal two-thirds (RadA-c), the latter of which contains the central core domain (domain II) of the RecA/Rad51 family proteins. RadA-c had the DNA-dependent ATPase activity and the strand exchange activity by itself, although much weaker (10%) than that of the intact RadA. These activities of RadA-c were restored to 60% of those of RadA by addition of RadA-n, indicating that the proper active structure of RadA was reconstituted in vitro. These results suggest that the basic activities of the RecA/Rad51 family proteins for homologous recombination are derived from domain II, and the N-terminal region may help to enhance the catalytic efficiencies.  相似文献   

18.
19.
Margolin W 《Current biology : CB》2003,13(18):R705-R707
Members of the actin-like MreB family of proteins localize as a helical filament in bacteria and are important for determining cylindrical cell shape. Recent results show that new cell wall biosynthesis occurs along a helical track dependent on one of these actin homologs, providing new insights into bacterial cell growth, division and shape.  相似文献   

20.
The bacterial actin homolog ParM has always been modeled as a polar filament, comprising two parallel helical strands, like actin itself. I present arguments here that ParM may be an apolar filament, in which the two helical strands are antiparallel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号