首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Renal cell carcinoma (RCC) represents the most common malignant tumor in the kidney and is resistant to conventional therapies. The diagnosis of RCC is often delayed leading to progression and metastatic spread of the disease. Thus, validated markers for the early detection of the disease as well as selection of patients undergoing specific therapy is urgently needed. Using treatment with the monoclonal antibody (mAb) G250 as a model, proteome-based strategies were implemented for the identification of markers which may allow the discrimination between responders and nonresponders prior to application of G250-mediated immunotherapy. Flow cytometry revealed G250 surface expression in approximately 40% of RCC cell lines, but not in the normal kidney epithelium cell lines. G250 expression levels significantly varied thereby distinguishing between low, medium and high G250 expressing cell lines. Comparisons of two-dimensional gel electrophoresis expression profiles of untreated RCC cell lines versus RCC cell lines treated with a mAb directed against G250 and the characterization of differentially expressed proteins by mass spectrometry and/or Edman sequencing led to the identification of proteins such as chaperones, antigen processing components, transporters, metabolic enzymes, cytoskeletal proteins and unknown proteins. Moreover, some of these differentially expressed proteins matched with immunoreactive proteins previously identified by proteome analysis combined with immunoblotting using sera from healthy donors and RCC patients, a technique called PROTEOMEX. Immunohistochemical analysis of a panel of surgically removed RCC lesions and corresponding normal kidney epithelium confirmed the heterogeneous expression pattern found by proteome-based technologies. In conclusion, conventional proteome analysis as well as PROTEOMEX could be successfully employed for the identification of markers which may allow the selection of patients prior to specific immunotherapy.  相似文献   

2.
Since the emergence of proteomics methods, many proteins specific for renal cell carcinoma (RCC) have been identified. Despite their usefulness for the specific diagnosis of RCC, such proteins do not provide spatial information on the diseased tissue. Therefore, the identification of cancer-specific proteins that include information on their specific location is needed. Recently, matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) based imaging mass spectrometry (IMS) has emerged as a new tool for the analysis of spatial distribution as well as identification of either proteins or small molecules in tissues. In this report, surgical tissue sections of papillary RCC were analyzed using MALDI-IMS. Statistical analysis revealed several discriminative cancer-specific m/z-species between normal and diseased tissues. Among these m/z-species, two particular proteins, S100A11 and ferritin light chain, which are specific for papillary RCC cancer regions, were successfully identified using LC-MS/MS following protein extraction from independent RCC samples. The expressions of S100A11 and ferritin light chain were further validated by immunohistochemistry of human tissues and tissue microarrays (TMAs) of RCC. In conclusion, MALDI-IMS followed by LC-MS/MS analysis in human tissue identified that S100A11 and ferritin light chain are differentially expressed proteins in papillary RCC cancer regions.  相似文献   

3.
The von Hippel Lindau (VHL) tumour suppressor gene, VHL, plays a central role in development of sporadic conventional renal cell carcinomas (RCCs). Studying VHL function may, therefore, increase understanding of the pathogenesis of RCC and identify markers/therapeutic targets. Comparison of 2-DE protein profiles of VHL-defective RCC cells (UMRC2) transfected with control vector or wild-type VHL showed differences in 30 proteins, including several novel changes. One of the findings confirmed by Western blotting was up-regulation of the mitochondrial protein ubiquinol cytochrome c reductase complex core protein 2 following VHL transfection, a change that was also observed in two other cell line backgrounds. A marked decrease in expression of this and several other mitochondrial proteins was demonstrated in RCC tissues and using VHL-transfectants, several were shown to exhibit VHL-dependent regulation. Thus, VHL may contribute to the decreased mitochondrial function seen in RCC. A form of septin 2 down-regulated following VHL transfection was also identified. Septin 2 was up-regulated in 12/16 RCCs, while alteration of the form present was also observed in 1/3 tumours analysed. Thus, increased expression of septin 2 is a common event in RCC and protein modification may also alter septin 2 function in a subset of tumours.  相似文献   

4.
Renal cell carcinoma (RCC) is relatively resistant to chemotherapy and radiotherapy. Recent advances in drug development are providing novel agents for the treatment of RCC, but the effects are still minimal. In addition, there is an urgent need to identify diagnostic markers for RCC. In this report, to discover potential diagnostic markers and therapeutic targets, we subjected RCC samples to a quantitative proteomic analysis utilizing 2-nitrobenzenesulfenyl (NBS) reagent. Proteins were extracted from RCC and adjacent normal tissue, obtained surgically from patients, and labeled with NBS reagent containing six (12)C or (13)C. This was followed by trypsin digestion and the enrichment of labeled peptides. Samples were then subjected to analysis by MALDI-TOF MS. NBS-labeled peptides with a 6 Da difference were identified by MS/MS. Thirty-four proteins were upregulated in more than 60% of the patients of which some were previously known, and some were novel. The identity of a few proteins was confirmed by Western blotting and quantitative real time RT-PCR. The results suggest that NBS-based quantitative proteomic analysis is useful for discovering diagnostic markers and therapeutic targets for RCC.  相似文献   

5.
Spectrometric-based surface-enhanced laser desorption/ionization ProteinChip (SELDI-TOF) facilitates rapid and easy analysis of protein mixtures and is often exploited to define potential diagnostic markers from sera. However, SELDI- TOF is a relatively insensitive technique and unable to detect circulating proteins at low levels even if they are differentially expressed in cancer patients. Therefore, we applied this technology to study tissues from renal cell carcinomas (RCC) in comparison to healthy controls. We found that different biomarkers are identified from tissues than those previously identified in serum, and that serum markers are often not produced by the tumors themselves at detectable levels, reflecting the nonspecific nature of many circulating biomarkers. We detected and characterized áB-crystallin as an overexpressed protein in RCC tissues and showed differential expression by immunohistochemistry. We conclude that SELDI-TOF is more useful for the identification of biomarkers that are synthesized by diseased tissues than for the identification of serum biomarkers and identifies a separate set of markers. We suggest that SELDI-TOF should be used to screen human cancer tissues to identify potential tissue-specific proteins and simpler and more sensitive techniques can then be applied to determine their validity as biomarkers in biological fluids.  相似文献   

6.
New markers/targets for renal cell carcinoma (RCC) are needed to enable earlier detection and monitoring of disease and therapeutic targeting. To identify such molecules, normal and RCC-derived primary cell lines have been used as a simplified model system for studying changes that accompany tumorigenesis. Short-term cultures allow enrichment of relevant cell types from tissue samples, which is balanced against the potential for in vitro changes. Examination of 3 proteins with altered expression in RCC tissue showed the maintenance of normal-tumour differences in culture, although some changes were apparent, including alteration in the isoform of aldolase. Comparative analysis of primary cell lines by 2-DE found 43 proteins up-regulated and 29 down-regulated in at least three out of five tumour cell lines. Many of the observed changes have been previously reported in RCC, including up-regulation of several glycolytic enzymes, vimentin and heat shock protein 27, validating the approach. Additionally, several novel changes in protein expression were found, including up-regulation of several proteins involved in actin cytoskeleton organisation such as radixin and moesin, two members of the septin family, and the actin bundling protein, fascin. Validation studies using Western blotting and immunohistochemistry indicate that several of these molecules may be useful as markers for RCC.  相似文献   

7.
Renal cell carcinoma (RCC) is relatively resistant to conventional chemotherapy and radiotherapy. However, reports of spontaneous regression along with promising results in clinical trials suggest that immunotherapuetic strategies may be of clinical benefit. Few RCC related antigens have been identified to date, and the technical difficulty and time constraints of current antigen identification techniques preclude the screening of large numbers of patients. A comparatively rapid strategy has been used to identify components of tumors that elicit an antibody response in the patient - the serological and proteomic evaluation of antibody responses (SPEAR) approach. This combines two-dimensional polyarylamide gel electrophoresis of tumor and normal kidney samples with immunoblotting using autologous patient sera and protein identification by mass spectrometry. Using the SPEAR approach to screen RCC patients for naturally occurring antitumor antibody responses, a number of candidate immunogens have been identified in patients with high-grade disease and their relative expression levels in tumor tissue compared to normal tissue have been studied. These proteins include annexins I and IV, thymidine phosphorylase (TP), carbonic anhydrase I, Mn-superoxide dismutase and major vault protein (MVP). Downstream analysis of the tissue expression of some of these proteins shows that MVP is up-regulated in 2/4 of RCC tumors but is also expressed in normal kidney whereas TP is up-regulated in 100% (11/11) of RCC cases examined with no or minimal expression in normal kidney, indicating a potential use as a therapeutic target.  相似文献   

8.
Renal cell carcinoma (RCC) is not a single disease, but comprises a group of tumors of renal epithelial origin, each with a different histology, displaying a different clinical course and caused by different genetic alterations. Since cure rates are inversely associated with stage and response to the available treatment regimes is limited to a subgroup of patients, diagnostic methods facilitating early detection and new therapeutic modalities are necessary. Increased knowledge of the underlying pathophysiology of RCC has resulted in the identification of genetic alterations involved in renal cell cancer carcinogenesis. Promising agents to target these pathways, especially the angiogenesis pathway, are being developed, some of which are already standard of care. In addition to genetics, knowledge on epigenetics in the process of renal tumorigenesis has been significantly increased in the last decades. Epigenetics will play an increasing role in the development of new therapeutic modalities and may deliver new prognostic and early diagnostic markers. In this review we discuss the background of RCC and the clinical applications of RCC genetics and epigenetics.  相似文献   

9.
Bone morphogenetic proteins (BMPs) are cytokines which are important for kidney homeostasis but also have role in the some renal diseases and renal cell carcinoma (RCC). In the last three decades incidence of RCC was constantly increased and the role of different molecular biomarkers in RCC is explored'. We analyzed expression of BMP-7, their receptors (BMPR-IA, BMPR-IB, BMPR-II) and proteins of their signaling pathway (pSmad1/5/8) in sixteen renal cancer samples and paired normal tissue. Tissue samples were analyzed by immunohistochemistry and Western blot. BMP-7, BMP receptors and pSmad1/5/8 were expressed in all structures of normal kidney but dominantly in the proximal tubular cells. In the cancer samples their expression was also noticed. Comparison of BMPs between different tissue showed increased expression of BMPR-IB and pSmad 1/5/8 and decreased expression of BMP-7 and BMPR-II in RCC compared to normal kidney. BMPR-IA was detected with immunohistochemistry but with Western blot attenuated signal was presented. BMP-7, BMP receptors and pSmad1/5/8 were showed in normal kidney and RCC. Detected alterations of BMP-7, BMP receptors and pSmad expression in RCC suggested their possible role in tumorigenesis of kidney cancer.  相似文献   

10.
Renal cell carcinoma (RCC) is the most common tumor arising from the cells in the lining of tubules in the kidney. Some members of the Ca2+-permeable transient receptor potential canonical (TRPC) family of channel proteins have demonstrated a role in the proliferation of some types of cancer cells. In this study, we investigated the role of TRPC6 in the development of human RCC. RT-PCR and Western blotting were used to investigate TRPC6 expression in 1932 and ACHN cells. Immunohistochemical techniques were applied to study TRPC6 expression in 60 cases of RCC primary tissue samples and 10 cases of corresponding normal renal tissues. To inhibit TRPC6 activity or expression, RNA interference was used. The effects of TRPC6 channels on RCC cell viability and cell cycle progression were investigated by MTT and flow cytometry. TRPC6 was expressed in 1932 and ACHN cells. TRPC6 protein was detected in 73.3 % of RCC samples, and there was a significant difference compared with the normal renal samples (30 %) (p < 0.05). Moreover the level of TRPC6 expression was associated with RCC Fuhrman grade (p < 0.01). Blockade of TRPC6 channels in ACHN cells suppressed basal cell proliferation and partially inhibited HGF-induced cell proliferation. Furthermore, inhibition of TRPC6 channels expression prolonged the transition through G2/M phase in ACHN cells. In summary, expression of TRPC6 is markedly increased in RCC specimens and associated with RCC histological grade. TRPC6 plays an important role in ACHN cells proliferation.  相似文献   

11.
Renal cell carcinoma (RCC) is representing about 3% of all adult cancers. A promising strategy for cancer biomarker discovery is subcellular comparative proteomics, allowing enriching specific cell compartments and assessing differences in protein expression patterns. We investigated the proteomic profile of a peculiar RCC subcellular compartment, plasma membrane microdomains (MD), involved in cell signalling, transport, proliferation and in many human diseases, such as cancer. Subcellular fractions were prepared by differential centrifugation from surgical samples of RCC and adjacent normal kidney (ANK). MD were isolated from plasma-membrane-enriched fractions after Triton X-100 treatment and sucrose density gradient ultracentrifugation. MD derived from RCC and ANK tissues were analyzed after SDS-PAGE separation by LC-ESI-MS/MS. We identified 93 proteins from MD isolated from RCC tissue, and 98 proteins from ANK MD. About 70% of the identified proteins are membrane-associated and about half of these are known as microdomain-associated. GRAVY scores assignment shows that most identified proteins (about 70%) are in the hydrophobic range. We chose a panel of proteins to validate their differential expression by WB. In conclusion, our work shows that RCC microdomain proteome is reproducibly different from ANK, and suggests that mining into such differences may support new biomarker discovery.  相似文献   

12.
Kidney cancer is frequently metastatic on presentation at which point the disease is associated with a 95% mortality. Assessment of tumor grade on pathological examination is the most powerful means for prognostication as well as for stratification of patients into those who might respond to conventional or targeted therapy. Although there exist several grading systems in common use, all suffer from significant disparity among observers. In an attempt to objectify this process as well as to acquire grade-specific mechanistic information, we performed LC-MS/MS-based proteomics analysis on 50 clear cell kidney cancers equally distributed among normal tissues and Fuhrman grades 1–4. Initial experiments confirmed the utility of using archived formalin-fixed paraffin-embedded samples for LC-MS/MS-based proteomics analysis, and the LC-MS/MS findings were validated by extensive immunoblotting. We now show that changes among many biochemical processes and pathways are strongly grade-dependent with the glycolytic and amino acid synthetic pathways highly represented. In addition, proteins relating to acute phase and xenobiotic metabolism signaling are highly represented. Self-organized mapping of proteins with similar patterns of expression led to the creation of a heat map that will be useful in grade characterization as well as in future research relating to oncogenic mechanisms and targeted therapies for kidney cancer.Kidney cancer (or renal cell carcinoma (RCC)1) is the seventh most common malignancy, the 10th most common cause of cancer death in men, and the ninth most common cancer in women. In 2009, an estimated 13,000 deaths (8,100 men and 4,900 women) will occur in the United States. The disease is frequently asymptomatic; a third of cases are diagnosed when the disease is already metastatic at which time it has 95% mortality (1).Assessment of tumor grade is the most powerful available means to date of determining tumor prognosis; thus objective criteria for assessing grade are essential such that prognostication is unambiguous. In addition, grade criteria are useful in stratifying patients into those most likely to respond to conventional as well as new targeted therapies. There exist several systems for assigning tumor grade in RCC, although most pathologists utilize the Fuhrman grading system. As is evidenced by the abundance of extant grading systems (2), there appears to be a general lack of consensus and thus considerable variability in assigning tumor grades. Objective criteria for grade assignment utilizing specific protein markers will be useful in objectifying this process and thereby allowing for more accurate prognostication. Furthermore assessment of the biological basis of the differences among grades, as evidenced by diverse biochemical pathways altered in a grade-specific fashion, will lead to the development of novel diagnostic assays as well as therapeutic interventions.Once objective grading criteria are put forth, molecular mechanisms by which tumors transition among grades can be identified and further investigated. Using this information, it might be possible to recapitulate the grade transition in vitro to discover novel mechanisms of oncogenesis or at least of transition from a relatively benign to a highly malignant phenotype. Moreover utilizing a systems biology approach to glean grade-specific network and pathway data has the capability to further the understanding of RCC oncogenesis. This approach can be used to identify novel mechanisms of tumor progression within grades and thereby can yield druggable targets.We now show that validated grade-specific, highly sensitive proteomics analysis of RCC resulted in the identification of proteins that vary in expression in a grade-specific fashion. From these data, we identified pathways and networks that are relevant, and likely critical, to grade transitions, and we discovered markers that, either separately or in combination, are able to assist in differentiation among grades. Furthermore our analysis yielded pathways altered in RCC that can ultimately be used both to stratify patients to grade-specific treatments and to identify new therapeutic targets.  相似文献   

13.
In light of the increasing incidence of renal cell carcinoma (RCC), its molecular mechanisms have been comprehensively explored in numerous recent studies. However, few studies focus on the influence of multi‐factor interactions during the occurrence and development of RCC. This study aims to investigate the quantitative global proteome and the changes in lysine succinylation in related proteins, seeking to facilitate a better understanding of the molecular mechanisms underlying RCC. LC‐MS/MS combined with bioinformatics analysis are used to quantitatively detect the perspectives at the global protein level. IP and WB analysis were conducted to further verify the alternations of related proteins and lysine succinylation. A total of 3,217 proteins and 1,238 lysine succinylation sites are quantified in RCC tissues, and 668 differentially expressed proteins and 161 differentially expressed lysine succinylation sites are identified. Besides, expressions of PGK1 and PKM2 at protein and lysine, succinylation levels are significantly altered in RCC tissues. Bioinformatics analysis indicates that the glycolysis pathway is a potential mechanism of RCC progression and lysine succinylation may plays a potential role in energy metabolism. These results can provide a new direction for exploring the molecular mechanism of RCC tumorigenesis.  相似文献   

14.
15.
Expression of heat shock protein 27 in human renal cell carcinoma   总被引:5,自引:0,他引:5  
Heat shock protein 27 (HSP27, Swiss-Prot accession number P04792) is a component of the large and heterogeneous group of chaperone proteins, and its main functions are inhibition of apoptosis and prevention of aggregation of actin intermediate filament. Modified expression of HSP27 has been described in several cancers including testis, breast, and ovaric cancer. In the present work, 18 renal cell carcinoma (RCC) tissues and homologous normal kidney tissues have been investigated for HSP27 expression by combination of two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) separation and Western blotting immunodetection. The results showed significant differences either in expression and in HSP27 isoform numbers in RCC compared to normal kidney. The average number of isoforms was 21 in RCC and 15 in normal tissues with 4.5-5.9 pI range and 18-29 kDa M(r) range. The overexpression was also observed by immunohistochemistry on tissue sections. Only two of RCC samples showed less isoforms than homologous normal samples. Two isoforms were not detected using anti-Ser82 phosphorylated HSP27 antibody, neither in normal nor in RCC samples. Five of all the immunodetected isoforms were confirmed by mass spectrometry as HSP27, but no evidence of post-translational modifications was pointed out. The numerous isoforms observed in RCC are not consistent with data reported in the literature so far, and they might be due to different post-translational modifications such as phosphorylation and S-thiolation. Since activation of HSP27 seems to be involved in tumor proliferation and drug resistance, it would be crucial to correlate the severity of disease with the different isoforms from RCC samples to generate diagnostic and prognostic markers.  相似文献   

16.
The von Hippel‐Lindau (VHL) tumour suppressor gene plays a central role in development of clear cell renal cell carcinoma (RCC). Using a cell line pair generated from the VHL‐defective RCC cell line UMRC2 by transfection with vector control or VHL (?/+VHL) and stable isotope labelling with amino acids in cell culture (SILAC) followed by enrichment of plasma membrane proteins by cell surface biotinylation/avidin‐affinity chromatography and analysis by GeLC‐MS/MS, VHL‐associated changes in plasma membrane proteins were analysed. Comparative analysis of ‐/+VHL cells identified 19 differentially expressed proteins which were confirmed by reciprocal SILAC labelling. These included several proteins previously reported to be VHL targets, such as transferrin receptor 1 and the α3 and β1 integrin subunits and novel findings including upregulation of CD166 and CD147 in VHL‐defective cells. Western blotting confirmed these changes and also revealed VHL‐dependent alterations in protein form for CD147 and CD166, which in the case of CD166 was shown to be due to differential glycosylation. Analysis of patient‐matched normal and malignant renal tissues confirmed these differences were also present in vivo in a subset of clear cell RCCs. These results illustrate the potential of this approach for identifying VHL‐dependent proteins that may be important in tumorigenesis.  相似文献   

17.
Renal cell carcinoma (RCC) accounts for around 3% of cancers in the UK, and both incidence and mortality are increasing with the aging population. RCC can be divided into several subtypes: conventional RCC (the most common, comprising 75% of all cases), papillary RCC (15%) and chromophobe RCC (5%). Renal oncocytoma is a benign tumor and accounts for 5% of RCC. Cancer and epigenetics are closely associated, with DNA hypermethylation being widely accepted as a feature of many cancers. In this study the DNA methylation profiles of chromophobe RCC and renal oncocytomas were investigated by utilizing the Infinium HumanMethylation450 BeadChips. Cancer-specific hypermethylation was identified in 9.4% and 5.2% of loci in chromophobe RCC and renal oncocytoma samples, respectively, while the majority of the genome was hypomethylated. Thirty (hypermethylated) and 41 (hypomethylated) genes were identified as differentially methylated between chromophobe RCC and renal oncocytomas (p < 0.05). Pathway analysis identified some of the differentially hypermethylated genes to be involved in Wnt (EN2), MAPK (CACNG7) and TGFβ (AMH) signaling, Hippo pathway (NPHP4), and cell death and apoptosis (SPG20, NKX6-2, PAX3 and BAG2). In addition, we analyzed ccRCC and papillary RCC data available from The Cancer Genome Atlas portal to identify differentially methylated loci in chromophobe RCC and renal oncocytoma in relation to the other histological subtypes, providing insight into the pathology of RCC subtypes and classification of renal tumors.  相似文献   

18.
There is a growing interest in protein expression profiling aiming to identify novel diagnostic markers in breast cancer. Proteomic approaches such as two-dimensional differential gel electrophoresis coupled with tandem mass spectrometry analysis (2-D DIGE/MS/MS) have been used successfully for the identification of candidate biomarkers for screening, diagnosis, prognosis and monitoring of treatment response in various types of cancer. Identifying previously unknown proteins of potential clinical relevance will ultimately help in reaching effective ways to manage the disease. We analyzed breast cancer tissues from five tumor and five normal tissue samples from ten breast cancer subjects with infiltrating ductal carcinoma (IDC) by 2-D DIGE using two types of immobilized pH gradient (IPG) strips: pH 3-10 and pH 4-7. From all the spots detected, differentially expressed (p < 0.05 and ratio > 2) were 50 spots. Of these, 39 proteins were successfully identified by MS, representing 29 different proteins. Ten proteins were overexpressed in the tumor samples. The 2-D DIGE/MS/MS analysis revealed an increase in the expression levels in tumor samples of several proteins not previously associated with breast cancer, such as: macrophage-capping protein (CAPG), phosphomannomutase 2 (PMM2), ATPase ASN1, methylthioribose-1-phosphate isomerase (MRI1), peptidyl-prolyl cis-trans isomerase FKBP4, cellular retinoic acid-binding protein 2 (CRABP2), lamin B1 and keratin, type II cytoskeletal 8 (KRT8). Ingenuity Pathway Analysis (IPA) revealed highly significant (p = 10(-26)) interactions between the identified proteins and their association with cancer. These proteins are involved in many diverse pathways and have established roles in cellular metabolism. It remains the goal of future work to test the suitability of the identified proteins in samples of larger and independent patient groups.  相似文献   

19.
The most cancer-specific biomarkers in blood are likely to be proteins shed directly by the tumor rather than less specific inflammatory or other host responses. The use of xenograft mouse models together with in-depth proteome analysis for identification of human proteins in the mouse blood is an under-utilized strategy that can clearly identify proteins shed by the tumor. In the current study, 268 human proteins shed into mouse blood from human OVCAR-3 serous tumors were identified based upon human vs. mouse species differences using a four-dimensional plasma proteome fractionation strategy. A multi-step prioritization and verification strategy was subsequently developed to efficiently select some of the most promising biomarkers from this large number of candidates. A key step was parallel analysis of human proteins detected in the tumor supernatant, because substantially greater sequence coverage for many of the human proteins initially detected in the xenograft mouse plasma confirmed assignments as tumor-derived human proteins. Verification of candidate biomarkers in patient sera was facilitated by in-depth, label-free quantitative comparisons of serum pools from patients with ovarian cancer and benign ovarian tumors. The only proteins that advanced to multiple reaction monitoring (MRM) assay development were those that exhibited increases in ovarian cancer patients compared with benign tumor controls. MRM assays were facilely developed for all 11 novel biomarker candidates selected by this process and analysis of larger pools of patient sera suggested that all 11 proteins are promising candidate biomarkers that should be further evaluated on individual patient blood samples.  相似文献   

20.
Monocytes play an important role in inflammation and atherosclerosis; however, the molecular details underlying these diverse functions are not completely understood. Proteomic analysis of monocytes can provide new insights into their biological role in coronary artery disease (CAD). Twenty angiographically confirmed male, CAD patients (≥50% stenosis) attending cardiology clinic of Nehru Hospital, PGIMER, Chandigarh, and who were not receiving any lipid lowering therapy and 20 TMT negative subjects who served as controls were enrolled in the study. Circulating monocytes isolated from overnight fasting blood samples were analyzed by 2D gel electrophoresis (pH 4-7), and differentially expressed protein spots were subjected to mass spectrometry and identification of proteins. We observed 333 ± 40 protein spots in monocytes from patients and 312 ± 20 in controls; out of which 63 protein spots showed altered intensity in CAD patients. Thirteen spots showed fivefold increased and two protein spots showed fivefold decreased expression in CAD group as compared to control group, respectively. Two proteins showing decreased expression in monocytes from CAD patients were identified as: (i) glutathione transferase and (ii) heat shock protein 70 KDa. Proteins showing increased expression in CAD patients were identified as: (i) vimentin, (ii) mannose binding lectin receptor protein, and (iii) S100A8 calcium-binding protein. The results of our study offer identification of several proteins in monocytes which can provide new perspectives in role of monocytes in pathogenesis of atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号