共查询到20条相似文献,搜索用时 0 毫秒
1.
Catherine Mooney Alessandro Vullo Gianluca Pollastri 《Journal of computational biology》2006,13(8):1489-1502
A significant step towards establishing the structure and function of a protein is the prediction of the local conformation of the polypeptide chain. In this article, we present systems for the prediction of three new alphabets of local structural motifs. The motifs are built by applying multidimensional scaling (MDS) and clustering to pair-wise angular distances for multiple phi-psi angle values collected from high-resolution protein structures. The predictive systems, based on ensembles of bidirectional recurrent neural network architectures, and trained on a large non-redundant set of protein structures, achieve 72%, 66%, and 60% correct motif prediction on an independent test set for di-peptides (six classes), tri-peptides (eight classes) and tetra-peptides (14 classes), respectively, 28-30% above baseline statistical predictors. We then build a further system, based on ensembles of two-layered bidirectional recurrent neural networks, to map structural motif predictions into a traditional 3-class (helix, strand, coil) secondary structure. This system achieves 79.5% correct prediction using the "hard" CASP 3-class assignment, and 81.4% with a more lenient assignment, outperforming a sophisticated state-of-the-art predictor (Porter) trained in the same experimental conditions. The structural motif predictor is publicly available at: http://distill.ucd.ie/porter+/. 相似文献
2.
Scott Montgomerie Shan Sundararaj Warren J Gallin David S Wishart 《BMC bioinformatics》2006,7(1):301-13
Background
The accuracy of protein secondary structure prediction has steadily improved over the past 30 years. Now many secondary structure prediction methods routinely achieve an accuracy (Q3) of about 75%. We believe this accuracy could be further improved by including structure (as opposed to sequence) database comparisons as part of the prediction process. Indeed, given the large size of the Protein Data Bank (>35,000 sequences), the probability of a newly identified sequence having a structural homologue is actually quite high. 相似文献3.
Information on the structural classes of proteins has been proven to be important in many fields of bioinformatics. Prediction of protein structural class for low-similarity sequences is a challenge problem. In this study, 11 features (including 8 re-used features and 3 newly-designed features) are rationally utilized to reflect the general contents and spatial arrangements of the secondary structural elements of a given protein sequence. To evaluate the performance of the proposed method, jackknife cross-validation tests are performed on two widely used benchmark datasets, 1189 and 25PDB with sequence similarity lower than 40% and 25%, respectively. Comparison of our results with other methods shows that our proposed method is very promising and may provide a cost-effective alternative to predict protein structural class in particular for low-similarity datasets. 相似文献
4.
Accurate prediction of protein secondary structural content 总被引:2,自引:0,他引:2
An improved multiple linear regression (MLR) method is proposed to predict a protein's secondary structural content based on its primary sequence. The amino acid composition, the autocorrelation function, and the interaction function of side-chain mass derived from the primary sequence are taken into account. The average absolute errors of prediction over 704 unrelated proteins with the jackknife test are 0.088, 0.081, and 0.059 with standard deviations 0.073, 0.066, and 0.055 for -helix, -sheet, and coil, respectively. That the sum of predicted secondary structure content should be close to 1.0 was introduced as a criterion to evaluate whether the prediction is acceptable. While only the predictions with the sum of predicted secondary structure content between 0.99 and 1.01 are accepted (about 11% of all proteins), the absolute errors are 0.058 for -helix, 0.054 for -sheet, and 0.045 for coil. 相似文献
5.
Amirova SR Milchevsky JV Filatov IV Esipova NG Tumanyan VG 《Journal of biomolecular structure & dynamics》2007,24(4):421-428
In this paper we present a novel approach to membrane protein secondary structure prediction based on the statistical stepwise discriminant analysis method. A new aspect of our approach is the possibility to derive physical-chemical properties that may affect the formation of membrane protein secondary structure. The certain physical-chemical properties of protein chains can be used to clarify the formation of the secondary structure types under consideration. Another aspect of our approach is that the results of multiple sequence alignment, or the other kinds of sequence alignment, are not used in the frame of the method. Using our approach, we predicted the formation of three main secondary structure types (alpha-helix, beta-structure and coil) with high accuracy, that is Q(3) = 76%. Predicting the formation of alpha-helix and non-alpha-helix states we reached the accuracy which was measured as Q(2) = 86%. Also we have identified certain protein chain properties that affect the formation of membrane protein secondary structure. These protein properties include hydrophobic properties of amino acid residues, presence of Gly, Ala and Val amino acids, and the location of protein chain end. 相似文献
6.
GOR V server for protein secondary structure prediction 总被引:3,自引:0,他引:3
SUMMARY: We have created the GOR V web server for protein secondary structure prediction. The GOR V algorithm combines information theory, Bayesian statistics and evolutionary information. In its fifth version, the GOR method reached (with the full jack-knife procedure) an accuracy of prediction Q3 of 73.5%. Although GOR V has been among the most successful methods, its online unavailability has been a deterrent to its popularity. Here, we remedy this situation by creating the GOR V server. 相似文献
7.
We present a new method for protein secondary structure prediction, based on the recognition of well-defined pentapeptides, in a large databank. Using a databank of 635 protein chains, we obtained a success rate of 68.6%. We show that progress is achieved when the databank is enlarged, when the 20 amino acids are adequately grouped in 10 sets and when more pentapeptides are attributed one of the defined conformations, alpha-helices or beta-strands. The analysis of the model indicates that the essential variable is the number of pentapeptides of well-defined structure in the database. Our model is simple, does not rely on arbitrary parameters and allows the analysis in detail of the results of each chosen hypothesis. 相似文献
8.
Hybrid system for protein secondary structure prediction. 总被引:13,自引:0,他引:13
We have developed a hybrid system to predict the secondary structures (alpha-helix, beta-sheet and coil) of proteins and achieved 66.4% accuracy, with correlation coefficients of C(coil) = 0.429, C alpha = 0.470 and C beta = 0.387. This system contains three subsystems ("experts"): a neural network module, a statistical module and a memory-based reasoning module. First, the three experts independently learn the mapping between amino acid sequences and secondary structures from the known protein structures, then a Combiner learns to combine automatically the outputs of the experts to make final predictions. The hybrid system was tested with 107 protein structures through k-way cross-validation. Its performance was better than each expert and all previously reported methods with greater than 0.99 statistical significance. It was observed that for 20% of the residues, all three experts produced the same but wrong predictions. This may suggest an upper bound on the accuracy of secondary structure predictions based on local information from the currently available protein structures, and indicate places where non-local interactions may play a dominant role in conformation. For 64% of the residues, at least two experts were the same and correct, which shows that the Combiner performed better than majority vote. For 77% of the residues, at least one expert was correct, thus there may still be room for improvement in this hybrid approach. Rigorous evaluation procedures were used in testing the hybrid system, and statistical significance measures were developed in analyzing the differences among different methods. When measured in terms of the number of secondary structures (rather than the number of residues) that were predicted correctly, the prediction produced by the hybrid system was also better than those of individual experts. 相似文献
9.
This paper proposes an efficient ensemble system to tackle the protein secondary structure prediction problem with neural networks as base classifiers. The experimental results show that the multi-layer system can lead to better results. When deploying more accurate classifiers, the higher accuracy of the ensemble system can be obtained. 相似文献
10.
An algorithm has been developed to improve the success rate in the prediction of the secondary structure of proteins by taking into account the predicted class of the proteins. This method has been called the 'double prediction method' and consists of a first prediction of the secondary structure from a new algorithm which uses parameters of the type described by Chou and Fasman, and the prediction of the class of the proteins from their amino acid composition. These two independent predictions allow one to optimize the parameters calculated over the secondary structure database to provide the final prediction of secondary structure. This method has been tested on 59 proteins in the database (i.e. 10,322 residues) and yields 72% success in class prediction, 61.3% of residues correctly predicted for three states (helix, sheet and coil) and a good agreement between observed and predicted contents in secondary structure. 相似文献
11.
Zheng WM 《Journal of bioinformatics and computational biology》2004,2(2):333-342
Simple hidden Markov models are proposed for predicting secondary structure of a protein from its amino acid sequence. Since the length of protein conformation segments varies in a narrow range, we ignore the duration effect of length distribution, and focus on inclusion of short range correlations of residues and of conformation states in the models. Conformation-independent and -dependent amino acid coarse-graining schemes are designed for the models by means of proper mutual information. We compare models of different level of complexity, and establish a practical model with a high prediction accuracy. 相似文献
12.
Combining classifiers for improved classification of proteins from sequence or structure 总被引:1,自引:0,他引:1
Background
Predicting a protein's structural or functional class from its amino acid sequence or structure is a fundamental problem in computational biology. Recently, there has been considerable interest in using discriminative learning algorithms, in particular support vector machines (SVMs), for classification of proteins. However, because sufficiently many positive examples are required to train such classifiers, all SVM-based methods are hampered by limited coverage. 相似文献13.
PHD-an automatic mail server for protein secondary structure prediction 总被引:30,自引:0,他引:30
By the middle of 1993, >30 000 protein sequences had beenlisted. For 1000 of these, the three-dimensional (tertiary)structure has been experimentally solved. Another 7000 can bemodelled by homology. For the remaining 21 000 sequences, secondarystructure prediction provides a rough estimate of structuralfeatures. Predictions in three states range between 35% (random)and 88% (homology modelling) overall accuracy. Using informationabout evolutionary conservation as contained in multiple sequencealignments, the secondary structure of 4700 protein sequenceswas predicted by the automatic e-mail server PHD. For proteinswith at least one known homologue, the method has an expectedoverall three-state accuracy of 71.4% for proteins with at leastone known homologue (e on 126 unique protein chains). 相似文献
14.
Ahmadi Adl A Nowzari-Dalini A Xue B Uversky VN Qian X 《Journal of biomolecular structure & dynamics》2012,29(6):623-633
Protein structural class prediction is one of the challenging problems in bioinformatics. Previous methods directly based on the similarity of amino acid (AA) sequences have been shown to be insufficient for low-similarity protein data-sets. To improve the prediction accuracy for such low-similarity proteins, different methods have been recently proposed that explore the novel feature sets based on predicted secondary structure propensities. In this paper, we focus on protein structural class prediction using combinations of the novel features including secondary structure propensities as well as functional domain (FD) features extracted from the InterPro signature database. Our comprehensive experimental results based on several benchmark data-sets have shown that the integration of new FD features substantially improves the accuracy of structural class prediction for low-similarity proteins as they capture meaningful relationships among AA residues that are far away in protein sequence. The proposed prediction method has also been tested to predict structural classes for partially disordered proteins with the reasonable prediction accuracy, which is a more difficult problem comparing to structural class prediction for commonly used benchmark data-sets and has never been done before to the best of our knowledge. In addition, to avoid overfitting with a large number of features, feature selection is applied to select discriminating features that contribute to achieve high prediction accuracy. The selected features have been shown to achieve stable prediction performance across different benchmark data-sets. 相似文献
15.
Amin Ahmadi Adl Abbas Nowzari-Dalini Bin Xue Vladimir N. Uversky 《Journal of biomolecular structure & dynamics》2013,31(6):1127-1137
Protein structural class prediction is one of the challenging problems in bioinformatics. Previous methods directly based on the similarity of amino acid (AA) sequences have been shown to be insufficient for low-similarity protein data-sets. To improve the prediction accuracy for such low-similarity proteins, different methods have been recently proposed that explore the novel feature sets based on predicted secondary structure propensities. In this paper, we focus on protein structural class prediction using combinations of the novel features including secondary structure propensities as well as functional domain (FD) features extracted from the InterPro signature database. Our comprehensive experimental results based on several benchmark data-sets have shown that the integration of new FD features substantially improves the accuracy of structural class prediction for low-similarity proteins as they capture meaningful relationships among AA residues that are far away in protein sequence. The proposed prediction method has also been tested to predict structural classes for partially disordered proteins with the reasonable prediction accuracy, which is a more difficult problem comparing to structural class prediction for commonly used benchmark data-sets and has never been done before to the best of our knowledge. In addition, to avoid overfitting with a large number of features, feature selection is applied to select discriminating features that contribute to achieve high prediction accuracy. The selected features have been shown to achieve stable prediction performance across different benchmark data-sets. 相似文献
16.
17.
PROMIS (protein machine induction system), a program for machine learning, was used to generalize rules that characterize the relationship between primary and secondary structure in globular proteins. These rules can be used to predict an unknown secondary structure from a known primary structure. The symbolic induction method used by PROMIS was specifically designed to produce rules that are meaningful in terms of chemical properties of the residues. The rules found were compared with existing knowledge of protein structure: some features of the rules were already recognized (e.g. amphipathic nature of alpha-helices). Other features are not understood, and are under investigation. The rules produced a prediction accuracy for three states (alpha-helix, beta-strand and coil) of 60% for all proteins, 73% for proteins of known alpha domain type, 62% for proteins of known beta domain type and 59% for proteins of known alpha/beta domain type. We conclude that machine learning is a useful tool in the examination of the large databases generated in molecular biology. 相似文献
18.
A primary and a secondary neural network are applied to secondary structure and structural class prediction for a database of 681 non-homologous protein chains. A new method of decoding the outputs of the secondary structure prediction network is used to produce an estimate of the probability of finding each type of secondary structure at every position in the sequence. In addition to providing a reliable estimate of the accuracy of the predictions, this method gives a more accurate Q3 (74.6%) than the cutoff method which is commonly used. Use of these predictions in jury methods improves the Q3 to 74.8%, the best available at present. On a database of 126 proteins commonly used for comparison of prediction methods, the jury predictions are 76.6% accurate. An estimate of the overall Q3 for a given sequence is made by averaging the estimated accuracy of the prediction over all residues in the sequence. As an example, the analysis is applied to the target beta-cryptogein, which was a difficult target for ab initio predictions in the CASP2 study; it shows that the prediction made with the present method (62% of residues correct) is close to the expected accuracy (66%) for this protein. The larger database and use of a new network training protocol also improve structural class prediction accuracy to 86%, relative to 80% obtained previously. Secondary structure content is predicted with accuracy comparable to that obtained with spectroscopic methods, such as vibrational or electronic circular dichroism and Fourier transform infrared spectroscopy. 相似文献
19.
Comparison of probabilistic combination methods for protein secondary structure prediction 总被引:2,自引:0,他引:2
Liu Y Carbonell J Klein-Seetharaman J Gopalakrishnan V 《Bioinformatics (Oxford, England)》2004,20(17):3099-3107
MOTIVATION: Protein secondary structure prediction is an important step towards understanding how proteins fold in three dimensions. Recent analysis by information theory indicates that the correlation between neighboring secondary structures are much stronger than that of neighboring amino acids. In this article, we focus on the combination problem for sequences, i.e. combining the scores or assignments from single or multiple prediction systems under the constraint of a whole sequence, as a target for improvement in protein secondary structure prediction. RESULTS: We apply several graphical chain models to solve the combination problem and show that they are consistently more effective than the traditional window-based methods. In particular, conditional random fields (CRFs) moderately improve the predictions for helices and, more importantly, for beta sheets, which are the major bottleneck for protein secondary structure prediction. 相似文献
20.
A A Adzhubei F Eisenmenger V G Tumanyan M Zinke S Brodzinski N G Esipova 《Journal of biomolecular structure & dynamics》1987,5(3):689-704
A complete classification of types of the protein secondary structure is developed on the basis of computer analysis of the crystallographic structural data deposited in the protein Data Bank. The majority of amino acid residues fall into five conformation types. A conclusion is drawn that the number of sequence variants of torsion angles phi, psi in globular proteins is limited and is essentially less than the number of possible amino acid sequences for this chain length. Along with alpha-helix and beta-structure, the distribution analysis assigning every maximum of distribution of amino acid conformations on Ramachandran map to a certain type of the secondary structure exposed a third type of the secondary structure that was previously neglected. This type of the structure is extended left-handed helical conformation, designated as mobile (M-) conformation. A full set of M-conformation fragments that seems to play a major role in protein globule dynamics has been obtained, a small radius of correlation for the polypeptide chain in M-conformation is demonstrated. It explains a prevalence of short segments of mobile conformation revealed in globular proteins. For secondary structure types, the frequency of occurrence of amino acid residues has been computed. 相似文献