首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The principles and limitations of leaf gas exchange measurementsin portable gas exchange systems are described. Attention isgiven to the design and developments in infrared gas analysersused in portable systems, and the basic structure of singleand dual beam instruments is presented. The significance offlow measurement in these systems and the principles of thermalmass flow measurement are illustrated. Considerations of leafarea measurement, chamber design and choice of materials areoutlined. Two specific developments in field gas exchange systemsare described and their significance in field measurements isillustrated with examples. (1) An integrating sphere leaf chamberfor the determination of the quantum yield of photosynthesis,on the basis of absorbed light, is explained and equations forits use are developed. The significance of this approach isillustrated by a comparison of data for contrasting leaves plottedon an absorbed and incident light basis. This measurement oflight-limited photosynthesis is also critical in understandingthe contribution of shaded leaves to canopy photosynthesis.(2) A system for the measurement of canopy photosynthesis fromarable crops and low stature natural vegetation is described.Results from a season-long study of wheat CO2 exchange are shownto illustrate its application. Key words: Leaf gas exchange, photosynthetic quantum efficiency, infrared gas analysis, canopy photosynthesis, integrating sphere  相似文献   

2.
Measuring leaf gas exchange from canopy leaves is fundamental for our understanding of photosynthesis and for a realistic representation of carbon uptake in vegetation models. Since canopy leaves are often difficult to reach, especially in tropical forests with emergent trees up to 60 m at remote places, canopy access techniques such as canopy cranes or towers have facilitated photosynthetic measurements. These structures are expensive and therefore not very common. As an alternative, branches are often cut to enable leaf gas exchange measurements. The effect of branch excision on leaf gas exchange rates should be minimized and quantified to evaluate possible bias. We compared light-saturated leaf net photosynthetic rates measured on excised and intact branches. We selected branches positioned at three canopy positions, estimated relative to the top of the canopy: upper sunlit foliage, middle canopy foliage, and lower canopy foliage. We studied the variation of the effects of branch excision and transport among branches at these different heights in the canopy. After excision and transport, light-saturated leaf net photosynthetic rates were close to zero for most leaves due to stomatal closure. However, when the branch had acclimated to its new environmental conditions—which took on average 20 min—light-saturated leaf net photosynthetic rates did not significantly differ between the excised and intact branches. We therefore conclude that branch excision does not affect the measurement of light-saturated leaf net photosynthesis, provided that the branch is recut under water and is allowed sufficient time to acclimate to its new environmental conditions.  相似文献   

3.
Models have been formulated for monospecific stands in which canopy photosynthesis is determined by the vertical distribution of leaf area, nitrogen and light. In such stands, resident plants can maximize canopy photosynthesis by distributing their nitrogen parallel to the light gradient, with high contents per unit leaf area at the top of the vegetation and low contents at the bottom. Using principles from game theory, we expanded these models by introducing a second species into the vegetation, with the same vertical distribution of biomass and nitrogen as the resident plants but with the ability to adjust its specific leaf area (SLA, leaf area:leaf mass). The rule of the game is that invaders replace the resident plants if they have a higher plant carbon gain than those of the resident plants. We showed that such invaders induce major changes in the vegetation. By increasing their SLA, invading plants could increase their light interception as well as their photosynthetic nitrogen-use efficiency (PNUE, the rate of photosynthesis per unit organic nitrogen). By comparison with stands in which canopy photosynthesis is maximized, those invaded by species of high SLA have the following characteristics: (1) the leaf area index is higher; (2) the vertical distribution of nitrogen is skewed less; (3) as a result of the supra-optimal leaf area index and the more uniform distribution of nitrogen, total canopy photosynthesis is lower. Thus, in dense canopies we face a classical tragedy of the commons: plants that have a strategy to maximize canopy carbon gain cannot compete with those that maximize their own carbon gain. However, because of this strategy, individual as well as total canopy carbon gain are eventually lower. We showed that it is an evolutionarily stable strategy to increase SLA up to the point where the PNUE of each leaf is maximized.  相似文献   

4.
5.
Water availability is the most limiting factor to global plant productivity, yet photosynthetic responses to seasonal drought cycles are poorly understood, with conflicting reports on which limiting process is the most important during drought. We address the problem using a model‐data synthesis approach to look at canopy level fluxes, integrating twenty years of half hour data gathered by the FLUXNET network across six Mediterranean sites. The measured canopy level, water and carbon fluxes were used, together with an inverse canopy ecophysiological model, to estimate the bulk canopy conductance, bulk mesophyll conductance, and the canopy scale carbon pools in both the intercellular spaces and at the site of carboxylation in the chloroplasts. Thus the roles of stomatal and mesophyll conductance in the regulation of internal carbon pools and photosynthesis could be separated. A quantitative limitation analysis allowed for the relative seasonal responses of stomatal, mesophyll, and biochemical limitations to be gauged. The concentration of carbon in the chloroplast was shown to be a potentially more reliable estimator of assimilation rates than the intercellular carbon concentration. Both stomatal conductance limitations and mesophyll conductance limitations were observed to regulate the response of photosynthesis to water stress in each of the six species studied. The results suggest that mesophyll conductance could bridge the gap between conflicting reports on plant responses to soil water stress, and that the inclusion of mesophyll conductance in biosphere–atmosphere transfer models may improve their performance, in particular their ability to accurately capture the response of terrestrial vegetation productivity to drought.  相似文献   

6.
Using a combination of model simulations and detailed measurements at a hierarchy of scales conducted at a sandhills forest site, the effect of fertilization on net ecosystem exchange (NEE) and its components in 6‐year‐old Pinus taeda stands was quantified. The detailed measurements, collected over a 20‐d period in September and October, included gas exchange and eddy covariance fluxes, sampled for a 10‐d period each at the fertilized stand and at the control stand. Respiration from the forest floor and above‐ground biomass was measured using chambers during the experiment. Fertilization doubled leaf area index (LAI) and increased leaf carboxylation capacity by 20%. However, this increase in total LAI translated into an increase of only 25% in modelled sunlit LAI and in canopy photosynthesis. It is shown that the same climatic and environmental conditions that enhance photosynthesis in the September and October periods also cause an increase in respiration The increases in respiration counterbalanced photosynthesis and resulted in negligible NEE differences between fertilized and control stands. The fact that total biomass of the fertilized stand exceeded 2·5 times that of the control, suggests that the counteracting effects cannot persist throughout the year. In fact, modelled annual carbon balance showed that gross primary productivity (GPP) increased by about 50% and that the largest enhancement in NEE occurred in the spring and autumn, during which cooler temperatures reduced respiration more than photosynthesis. The modelled difference in annual NEE between fertilized and control stands (approximately 200 1;g 2;C 3;m?2 y?1) suggest that the effect of fertilization was sufficiently large to transform the stand from a net terrestrial carbon source to a net sink.  相似文献   

7.
Aims Understanding of the ecophysiological dynamics of forest canopy photosynthesis and its spatial and temporal scaling is crucial for revealing ecological response to climate change. Combined observations and analyses of plant ecophysiology and optical remote sensing would enable us to achieve these studies. In order to examine the utility of spectral vegetation indices (VIs) for assessing ecosystem-level photosynthesis, we investigated the relationships between canopy-scale photosynthetic productivity and canopy spectral reflectance over seasons for 5 years in a cool, temperate deciduous broadleaf forest at 'Takayama' super site in central Japan.Methods Daily photosynthetic capacity was assessed by in situ canopy leaf area index (LAI), (LAI × V cmax [single-leaf photosynthetic capacity]), and the daily maximum rate of gross primary production (GPP max) was estimated by an ecosystem carbon cycle model. We examined five VIs: normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), green–red vegetation index (GRVI), chlorophyll index (CI) and canopy chlorophyll index (CCI), which were obtained by the in situ measurements of canopy spectral reflectance.Important findings Our in situ observation of leaf and canopy characteristics, which were analyzed by an ecosystem carbon cycling model, revealed that their phenological changes are responsible for seasonal and interannual variations in canopy photosynthesis. Significant correlations were found between the five VIs and canopy photosynthetic capacity over the seasons and years; four of the VIs showed hysteresis-type relationships and only CCI showed rather linear relationship. Among the VIs examined, we applied EVI–GPP max relationship to EVI data obtained by Moderate Resolution Imaging Spectroradiometer to estimate the temporal and spatial variation in GPP max over central Japan. Our findings would improve the accuracy of satellite-based estimate of forest photosynthetic productivity in fine spatial and temporal resolutions, which are necessary for detecting any response of terrestrial ecosystem to meteorological fluctuations.  相似文献   

8.
Leaf gas exchange and temperature response were measured to assess temperature acclimation within a tree canopy in climatically contrasting genotypes of Acer rubrum L. Over the course of two 50 d continuous periods, growth temperature was controlled within tree crowns and the steady-state rate of leaf gas exchange was measured. Data were then modelled to calculate the influence of genotype variation and vertical distribution of physiological activity on carbon uptake. The maximal rate of Rubisco carboxylation (V(cmax)), the maximum rate of electron transport (J(max)), leaf dark respiration rate (R(d)), maximum photosynthesis (A(max)), and the CO(2) compensation point (Gamma) increased with temperature during both (i) a constant long-term (50 d) daytime temperature or (ii) ambient daytime temperature with short-term temperature control (25-38 degrees C). In addition, within-crown variation in the temperature response of photosynthesis and R(d) was influenced by acclimation to local microclimate temperature gradients. Results indicated that carbon uptake estimates could be overestimated by 22-25% if the vertical distribution of temperature gradients is disregarded. Temperature is a major factor driving photosynthetic acclimation and within-crown gas exchange variation. Thus, this study established the importance of including spatial acclimation to temperature- and provenance-, ecotype-, and/or genotype-specific parameter sets into carbon uptake models.  相似文献   

9.
We developed and applied an ecosystem-scale model that calculated leaf CO2 assimilation, stomatal conductance, chloroplast CO2 concentration and the carbon isotope composition of carbohydrate formed during photosynthesis separately for sunlit and shaded leaves within multiple canopy layers. The ecosystem photosynthesis model was validated by comparison to leaf-level gas exchange measurements and estimates of ecosystem-scale photosynthesis from eddy covariance measurements made in a coastal Douglas-fir forest on Vancouver Island. A good agreement was also observed between modelled and measured δ 13C values of ecosystem-respired CO2 ( δ R). The modelled δ R values showed strong responses to variation in photosynthetic photon flux density (PPFD), air temperature, vapour pressure deficit (VPD) and available soil moisture in a manner consistent with leaf-level studies of photosynthetic 13C discrimination. Sensitivity tests were conducted to evaluate the effect of (1) changes in the lag between the time of CO2 fixation and the conversion of organic matter back to CO2; (2) shifts in the proportion of autotrophic and heterotrophic respiration; (3) isotope fractionation during respiration; and (4) environmentally induced changes in mesophyll conductance, on modelled δ R values. Our results indicated that δ R is a good proxy for canopy-level C c/ C a and 13C discrimination during photosynthetic gas exchange, and therefore has several applications in ecosystem physiology.  相似文献   

10.
The high-arctic terrestrial environment is generally recognized as one of the world's most sensitive areas with regard to global warming. In this study, we examined the influence of an isolated warm period on net ecosystem carbon dioxide (CO2) exchange at high latitude during autumn. Using the Free Air Temperature Increase (FATI) technique, we manipulated air, soil, and vegetation temperatures in late August in a tundra site at Zackenberg in the National Park of North and East Greenland (74°N 21°W). The consequences for gross canopy photosynthesis, canopy respiration, and belowground respiration of increasing these temperatures by approximately 2.5°C were determined with closed dynamic CO2 exchange systems. Under current temperatures, the ecosystem acted as a net CO2 source, releasing 19 g CO2-C m−2 over the 14-day study period. Warm soils and senescing vegetation in autumn were unequivocally responsible for this efflux. Heating enhanced CO2 efflux to 29 g CO2-C m−2. This effect was attributed to a 39% increase in belowground respiration, which was the main component of the carbon (C) budget. Gross photosynthesis, on the other hand, was not affected significantly by the simulated warming. Although the aftereffects of an isolated warm period on the C balance in early winter could be significant, simulations with a simple C budget model suggest that soil carbon pools are not affected to a great extent by such a climatic disturbance. The influence on atmospheric carbon, however, appears to be significant. Received 9 June 2000; accepted 20 December 2000.  相似文献   

11.
Severe drought can cause lagged effects on tree physiology that negatively impact forest functioning for years. These “drought legacy effects” have been widely documented in tree‐ring records and could have important implications for our understanding of broader scale forest carbon cycling. However, legacy effects in tree‐ring increments may be decoupled from ecosystem fluxes due to (a) postdrought alterations in carbon allocation patterns; (b) temporal asynchrony between radial growth and carbon uptake; and (c) dendrochronological sampling biases. In order to link legacy effects from tree rings to whole forests, we leveraged a rich dataset from a Midwestern US forest that was severely impacted by a drought in 2012. At this site, we compiled tree‐ring records, leaf‐level gas exchange, eddy flux measurements, dendrometer band data, and satellite remote sensing estimates of greenness and leaf area before, during, and after the 2012 drought. After accounting for the relative abundance of tree species in the stand, we estimate that legacy effects led to ~10% reductions in tree‐ring width increments in the year following the severe drought. Despite this stand‐scale reduction in radial growth, we found that leaf‐level photosynthesis, gross primary productivity (GPP), and vegetation greenness were not suppressed in the year following the 2012 drought. Neither temporal asynchrony between radial growth and carbon uptake nor sampling biases could explain our observations of legacy effects in tree rings but not in GPP. Instead, elevated leaf‐level photosynthesis co‐occurred with reduced leaf area in early 2013, indicating that resources may have been allocated away from radial growth in conjunction with postdrought upregulation of photosynthesis and repair of canopy damage. Collectively, our results indicate that tree‐ring legacy effects were not observed in other canopy processes, and that postdrought canopy allocation could be an important mechanism that decouples tree‐ring signals from GPP.  相似文献   

12.
We used a modelling approach to assess past landscape openness in mid-Holocene natural vegetation. Two simple landscape scenarios were modelled: a first landscape was based on the “Vera cycle” hypothesis for western Europe, including different phases of herbivore-induced vegetation change and regeneration, while a second landscape was created based on views how a mid-Holocene natural vegetation may have looked like on the Swiss Plateau according to the closed canopy theory. These simulated landscapes were used to produce pollen assemblages by means of a pollen dispersal and deposition model. The resulting modelled pollen assemblages were then compared to a typical mid-Holocene pollen record from the Swiss Plateau. Our results indicated that the mid-Holocene pollen record is likely to be the result of a closed beech forest. However, the vegetation cover on the Swiss Plateau had components from both the closed woodland and the wood pasture landscape designs, with the latter likely at frequently disturbed or naturally open habitats.  相似文献   

13.
Summary Mediterranean sclerophyll shrubs respond to seasonal drought by adjusting the amount of leaf area exposed and by reducing gas exchange via stomatal closure mechanisms. The degree to which each of these modifications can influence plant carbon and water balances under typical mediterranean-type climate conditions is examined. Leaf area changes are assessed in the context of a canopy structure and light microclimate model. Shifts in physiological response are examined with a mechanistically-based model of C3 leaf gas exchange that simulates progressive reduction of maximum photosynthesis and transpiration rates and increasingly strong midday stomatal closure over the course of drought. The results demonstrate that midday stomatal closure may effectively contribute to drought avoidance, increase water use efficiency, and strongly alter physiological efficiency in the conversion of intercepted light energy to photoproducts. Physiological adjustments lead to larger reductions in water use than occur when comparing leaf area index 3.5 to 1.5, extremes found for natural stands of sclerophyll shrubs in the California chaparral. Reductions in leaf area have the strongest effect on resource capture and use during non-water-stressed periods and the least effect under extreme drought conditions, while shifts in physiological response lead to large savings of water and efficient water use under extreme stress. An important model parameter termed GFAC (proportionality factor expressing the relation of conductance [g] to net photosynthesis rate) is utilized, which changes in response to the integrated water stress experimence of shrubs and alters the degree to which stomata may open for a given rate of carbon fixation. We attempt to interpret this parameter in terms of physiological mechanisms known to modify control of leaf gas exchange during drought. The analysis helps visualize means by which canopy gas exchange behavior may be coupled to physiological changes occurring in the root environment during soil drying.  相似文献   

14.
The Lund–Potsdam–Jena Dynamic Global Vegetation Model (LPJ) combines process‐based, large‐scale representations of terrestrial vegetation dynamics and land‐atmosphere carbon and water exchanges in a modular framework. Features include feedback through canopy conductance between photosynthesis and transpiration and interactive coupling between these ‘fast’ processes and other ecosystem processes including resource competition, tissue turnover, population dynamics, soil organic matter and litter dynamics and fire disturbance. Ten plants functional types (PFTs) are differentiated by physiological, morphological, phenological, bioclimatic and fire‐response attributes. Resource competition and differential responses to fire between PFTs influence their relative fractional cover from year to year. Photosynthesis, evapotranspiration and soil water dynamics are modelled on a daily time step, while vegetation structure and PFT population densities are updated annually. Simulations have been made over the industrial period both for specific sites where field measurements were available for model evaluation, and globally on a 0.5°° × 0.5°° grid. Modelled vegetation patterns are consistent with observations, including remotely sensed vegetation structure and phenology. Seasonal cycles of net ecosystem exchange and soil moisture compare well with local measurements. Global carbon exchange fields used as input to an atmospheric tracer transport model (TM2) provided a good fit to observed seasonal cycles of CO2 concentration at all latitudes. Simulated inter‐annual variability of the global terrestrial carbon balance is in phase with and comparable in amplitude to observed variability in the growth rate of atmospheric CO2. Global terrestrial carbon and water cycle parameters (pool sizes and fluxes) lie within their accepted ranges. The model is being used to study past, present and future terrestrial ecosystem dynamics, biochemical and biophysical interactions between ecosystems and the atmosphere, and as a component of coupled Earth system models.  相似文献   

15.
Although the processes governing photosynthesis are well understood, scaling from shoot to canopy in coniferous forests is complex. Development of different sap-flow techniques has made it possible to measure transpiration of whole trees and thereby also of whole canopies. There is a strong link between photosynthesis and transpiration, for which reason it would be interesting to test whether measurements of canopy transpiration could also be used to estimate canopy photosynthesis. As a first step towards this, water-use efficiency (WUE) was studied at branch and canopy scales on the basis of branch gas-exchange measurements, with half-hourly and daily temporal resolution. Half-hourly and daily WUE at both branch and canopy scales showed a strong dependency on vapour-pressure deficit ('e). Branch photosynthesis modelled from branch transpiration and 'e mimicked well measured branch photosynthesis. Also, modelled photosynthesis, scaled to canopy and compared to net forest CO2 exchange measured by the eddy-covariance technique, occasionally showed good agreement. In spite of these seemingly promising results, there was a difference in the response to 'e between branches and between years, which needs to be better understood.  相似文献   

16.
Common empirical models of stomatal conductivity often incorporate a sensitivity of stomata to the rate of leaf photosynthesis. Such a sensitivity has been predicted on theoretical terms by Cowan and Farquhar, who postulated that stomata should adjust dynamically to maximize photosynthesis for a given water loss.
In this study, we implemented the Cowan and Farquhar hypothesis of optimal stomatal conductivity into a canopy gas exchange model, and predicted the diurnal and daily variability of transpiration for a savanna site in the wet–dry tropics of northern Australia. The predicted transpiration dynamics were then compared with observations at the site using the eddy covariance technique. The observations were also used to evaluate two alternative approaches: constant conductivity and a tuned empirical model.
The model based on the optimal water-use hypothesis performed better than the one based on constant stomatal conductivity, and at least as well as the tuned empirical model. This suggests that the optimal water-use hypothesis is useful for modelling canopy gas exchange, and that it can reduce the need for model parameterization.  相似文献   

17.
Despite its importance for carbon storage and other ecosystem functions, the variation in vegetation canopy height is not yet well understood. We examined the relationship between this community attribute and environmental heterogeneity in a tropical dry forest of southern Mexico. We sampled vegetation in 15 sites along a 100‐km coastal stretch of Oaxaca State, and measured the heights of all woody plants (excluding lianas). The majority of the ca. 4000 individuals recorded concentrated in the 4–8 m height range. We defined three plant sets to describe overall community canopy height at each site: a set including all plants, a set made up by the tallest plants representing 10 percent of all individuals, and a set comprising the 10 tallest plants. For each site we computed maximum height and the mean and median heights of the three sets. Significant collinearity was observed between the seven resulting height variables, but null distributions constructed through bootstrap revealed their different behaviors as functions of species richness and density of individuals. Through linear modeling and a model selection procedure, we identified 21 models that best described the variation in canopy height variables. These models pointed out to soil (measured as PC1 of a principal component analysis performed on 10 soil variables), water stress, and elevation as the main drivers of canopy height variation in the region. In the event of increasing water stress resulting from global climate change, the studied tropical dry forests could become shorter and thus decrease their carbon storage potential.  相似文献   

18.
This work is intended as a review of gas exchange processes between the atmosphere and the terrestrial vegetation, which have been known for more than two centuries since the discovery of photosynthesis. The physical and biological mechanisms of exchange of carbon dioxide, water vapour, volatile organic compounds emitted by plants and air pollutants taken up by them, is critically reviewed. The role of stomatal physiology is emphasised, as it controls most of these processes. The techniques used for measurement of gas exchange fluxes between the atmosphere and vegetation are outlined.  相似文献   

19.
Soil and vegetative groundcovers reflect light heterogeneously in habitats lacking a continuous overhead canopy, however the effects of reflected light on vegetation in these habitats has received little attention. We test the hypothesis that reflected light flux affects leaf optical properties, anatomy, and photosynthesis of Ipomoea pes-caprae (Convolvulacae), a common sand dune vine with functionally symmetric leaves, by comparing leaves growing over patches of high and low reflected light flux. Patches of high reflected light were found directly over sand and reflected 26.0 ± 0.9% (mean ± 1 SE) of incident photosynthetically active radiation (PAR) while patches of low reflected light were found over vegetation and reflected 6.1 ± 0.7% of incident PAR. Using a novel in situ method to simultaneously illuminate and measure gas exchange of one leaf surface at a time, we show that abaxial surface photosynthetic maxima and palisade parenchyma in sand patches were, respectively, 2.6 times greater and 20% thicker than those found over vegetation patches. Our results suggest that reflected light strongly influences leaf anatomy and gas exchange of I. pes-caprae, demonstrating that reflected light can be an important component of the light environment for vegetation of habitats characterized by high-albedo substrates.  相似文献   

20.
Plant water‐use efficiency (WUE, the carbon gained through photosynthesis per unit of water lost through transpiration) is a tracer of the plant physiological controls on the exchange of water and carbon dioxide between terrestrial ecosystems and the atmosphere. At the leaf level, rising CO2 concentrations tend to increase carbon uptake (in the absence of other limitations) and to reduce stomatal conductance, both effects leading to an increase in leaf WUE. At the ecosystem level, indirect effects (e.g. increased leaf area index, soil water savings) may amplify or dampen the direct effect of CO2. Thus, the extent to which changes in leaf WUE translate to changes at the ecosystem scale remains unclear. The differences in the magnitude of increase in leaf versus ecosystem WUE as reported by several studies are much larger than would be expected with current understanding of tree physiology and scaling, indicating unresolved issues. Moreover, current vegetation models produce inconsistent and often unrealistic magnitudes and patterns of variability in leaf and ecosystem WUE, calling for a better assessment of the underlying approaches. Here, we review the causes of variations in observed and modelled historical trends in WUE over the continuum of scales from leaf to ecosystem, including methodological issues, with the aim of elucidating the reasons for discrepancies observed within and across spatial scales. We emphasize that even though physiological responses to changing environmental drivers should be interpreted differently depending on the observational scale, there are large uncertainties in each data set which are often underestimated. Assumptions made by the vegetation models about the main processes influencing WUE strongly impact the modelled historical trends. We provide recommendations for improving long‐term observation‐based estimates of WUE that will better inform the representation of WUE in vegetation models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号