首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In this study, we elucidate signaling pathways induced by photodynamic therapy (PDT) with hypericin. We show that PDT rapidly activates JNK1 while irreversibly inhibiting ERK2 in several cancer cell lines. In HeLa cells, sustained PDT-induced JNK1 and p38 mitogen-activated protein kinase (MAPK) activations overlap the activation of a DEVD-directed caspase activity, poly(ADP-ribose) polymerase (PARP) cleavage, and the onset of apoptosis. The caspase inhibitors benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD-fmk) and benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethylketone (zDEVD-fmk) protect cells against apoptosis and inhibit DEVD-specific caspase activity and PARP cleavage without affecting JNK1 and p38 MAPK activations. Conversely, stable overexpression of CrmA, the serpin-like inhibitor of caspase-1 and caspase-8, has no effect on PDT-induced PARP cleavage, apoptosis, or JNK1/p38 activations. Cell transfection with the dominant negative inhibitors of the c-Jun N-terminal kinase (JNK) pathway, SEK-AL and TAM-67, or pretreatment with the p38 MAPK inhibitor PD169316 enhances PDT-induced apoptosis. A similar increase in PDT-induced apoptosis was observed by expression of the dual specificity phosphatase MKP-1. The simultaneous inhibition of both stress kinases by pretreating cells with PD169316 after transfection with either TAM-67 or SEK-AL produces a more pronounced sensitizing effect. Cell pretreatment with the p38 inhibitor PD169316 causes faster kinetics of DEVD-caspase activation and PARP cleavage and strongly oversensitizes the cells to apoptosis following PDT. These observations indicate that the JNK1 and p38 MAPK pathways play an important role in cellular resistance against PDT-induced apoptosis with hypericin.  相似文献   

2.
3.
Prolonged exposure to hyperoxia induces pulmonary epithelial cell death and acute lung injury. Although both apoptotic and nonapoptotic morphologies are observed in hyperoxic animal lungs, nonapoptotic cell death had only been recorded in transformed lung epithelium cultured in hyperoxia. To test whether the nonapoptotic characteristics in hyperoxic animal lungs are direct effects of hyperoxia, the mode of cell death was determined both morphologically and biochemically in human primary lung epithelium exposed to 95% O(2). In contrast to characteristics observed in apoptotic cells, hyperoxia induced swelling of nuclei and an increase in cell size, with no evidence for any augmentation in the levels of either caspase-3 activity or annexin V incorporation. These data suggest that hyperoxia can directly induce nonapoptotic cell death in primary lung epithelium. Although hyperoxia-induced nonapoptotic cell death was associated with NF-kappaB activation, it is unknown whether NF-kappaB activation plays any causal role in nonapoptotic cell death. This study shows that inhibition of NF-kappaB activation can accelerate hyperoxia-induced epithelial cell death in both primary and transformed lung epithelium. Corresponding to the reduced cell survival in hyperoxia, the levels of MnSOD were also low in NF-kappaB-deficient cells. These results demonstrate that NF-kappaB protects lung epithelial cells from hyperoxia-induced nonapoptotic cell death.  相似文献   

4.
Nanomolar concentrations of human amylin promote death of RINm5F cells in a time- and concentrationdependent manner. Morphological changes of chromatin integrity suggest that cells are predominantly undergoing apoptosis. Human amylin induces significant activation of caspase-3 and strong and sustained phosphorylation of stress-activated protein kinases, c-Jun N-terminal kinase (JNK) and p38, that precedes cell death. Extracellular signal-regulated kinase (ERK) activation was not concomitant with JNK and/or p38 activation. Activation of caspase-3 and mitogen-activated protein kinases (MAPKs) was detected by Western blot analysis. Addition of the MEK1 inhibitor PD 98059 had no effect on amylin-induced apoptosis, suggesting that ERK activation does not play a role in this apoptotic scenario. A correlative inhibition of JNK activation by the immunosuppressive drug FK506, as well as a selective inhibition of p38 MAPK activation by SB 203580, significantly suppressed procaspase-3 processing and the extent of amylin-induced cell death. Moreover, simultaneous pretreatment with both FK506 and SB 203580, or with the caspase-3 inhibitor Ac-DEVD-CHO alone, almost completely abolished procaspase-3 processing and cell death. Thus, our results suggest that amylin-induced apoptosis proceeds through sustained activation of JNK and p38 MAPK followed by caspase-3 activation.  相似文献   

5.
Anandamide is a neuroimmunoregulatory molecule that triggers apoptosis in a number of cell types including PC12 cells. Here, we investigated the molecular mechanisms underlying anandamide-induced cell death in PC12 cells. Anandamide treatment resulted in the activation of p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), and p44/42 MAPK in apoptosing cells. A selective p38 MAPK inhibitor, SB203580, or dn-JNK, JNK1(A-F) or SAPKbeta(K-R), blocked anandamide-induced cell death, whereas a specific inhibitor of MEK-1/2, U0126, had no effect, indicating that activation of p38 MAPK and JNK is critical in anandamide-induced cell death. An important role for apoptosis signal-regulating kinase 1 (ASK1) in this event was also demonstrated by the inhibition of p38 MAPK/JNK activation and death in cells overexpressing dn-ASK1, ASK1 (K709M). Conversely, the constitutively active ASK1, ASK1DeltaN, caused prolonged p38 MAPK/JNK activation and increased cell death. These indicate that ASK1 mediates anandamide-induced cell death via p38 MAPK and JNK activation. Here, we also found that activation of p38 MAPK/JNK is accompanied by cytochrome c release from the mitochondria and caspase activation (which can be inhibited by SB203580), suggesting that anandamide triggers a mitochondrial dependent apoptotic pathway. The caspase inhibitor, zVAD, and the mitochondrial pore opening inhibitor, cyclosporine A, blocked anandamide-induced cell death but not p38 MAPK/JNK activation, suggesting that activation of these kinases may occur upstream of mitochondrial associated events.  相似文献   

6.
7.
Exposure to bleomycin in rodents induces lung injury and fibrosis. Alveolar epithelial cell death has been hypothesized as an initiating mechanism underlying bleomycin-induced lung injury and fibrosis. In the present study we evaluated the contribution of mitochondrial and receptor-meditated death pathways in bleomycin-induced death of mouse alveolar epithelial cells (MLE-12 cells) and primary rat alveolar type II cells. Control MLE-12 cells and primary rat alveolar type II cells died after 48 h of exposure to bleomycin. Both MLE-12 cells and rat alveolar type II cells overexpressing Bcl-X(L) did not undergo cell death in response to bleomycin. Dominant negative Fas-associating protein with a death domain failed to prevent bleomycin-induced cell death in MLE-12 cells. Caspase-8 inhibitor CrmA did not prevent bleomycin-induced cell death in primary rat alveolar type II cells. Furthermore, fibroblast cells deficient in Bax and Bak, but not Bid, were resistant to bleomycin-induced cell death. To determine whether the stress kinase JNK was an upstream regulator of Bax activation, MLE-12 cells were exposed to bleomycin in the presence of an adenovirus encoding a dominant negative JNK. Bleomycin-induced Bax activation was prevented by the expression of a dominant negative JNK in MLE-12 cells. Dominant negative JNK prevented cell death in MLE-12 cells and in primary rat alveolar type II cells exposed to bleomycin. These data indicate that bleomycin induces cell death through a JNK-dependent mitochondrial death pathway in alveolar epithelial cells.  相似文献   

8.
Both prolonged exposure to hyperoxia and large tidal volume mechanical ventilation can each independently cause lung injury. However, the combined impact of these insults is poorly understood. We recently reported that preexposure to hyperoxia for 12 h, followed by ventilation with large tidal volumes, induced significant lung injury and epithelial cell apoptosis compared with either stimulus alone (Makena et al. Am J Physiol Lung Cell Mol Physiol 299: L711-L719, 2010). The upstream mechanisms of this lung injury and apoptosis have not been clearly elucidated. We hypothesized that lung injury in this model was dependent on oxidative signaling via the c-Jun NH(2)-terminal kinases (JNK). We, therefore, evaluated lung injury and apoptosis in the presence of N-acetyl-cysteine (NAC) in both mouse and cell culture models, and we provide evidence that NAC significantly inhibited lung injury and apoptosis by reducing the production of ROS, activation of JNK, and apoptosis. To confirm JNK involvement in apoptosis, cells treated with a specific JNK inhibitor, SP600125, and subjected to preexposure to hyperoxia, followed by mechanical stretch, exhibited significantly reduced evidence of apoptosis. In conclusion, lung injury and apoptosis caused by preexposure to hyperoxia, followed by high tidal volume mechanical ventilation, induces ROS-mediated activation of JNK and mitochondrial-mediated apoptosis. NAC protects lung injury and apoptosis by inhibiting ROS-mediated activation of JNK and downstream proapoptotic signaling.  相似文献   

9.
We have previously shown that lovastatin, an HMG-CoA reductase inhibitor, induces apoptosis in rat brain neuroblasts. c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) are implicated in regulation of neuronal apoptosis. In this work, we investigated the role of JNK and p38 MAPK in neuroblast apoptosis induced by lovastatin. We found that lovastatin induced the activation of JNK, but not p38 MAPK. It also induced c-Jun phosphorylation with a subsequent increase in activator protein-1 (AP-1) binding, AP-1-mediated gene expression and BimEL protein levels. The effects of lovastatin were prevented by mevalonate. Pre-treatment with iJNK-I (a selective JNK inhibitor) prevented the effect of lovastatin on both neuroblast apoptosis and the activation of the JNK cascade. Furthermore, we found that the activation of the JNK signalling pathway triggered by lovastatin is accompanied by caspase-3 activation which is also inhibited by iJNK-I pre-treatment. Finally, a specific inhibitor of p38 MAPK, SB203580, had no effect on lovastatin-induced neuroblast apoptosis. Taken together, our data suggest that the activation of the JNK/c-Jun/BimEL signalling pathway plays a crucial role in lovastatin-induced neuroblast apoptosis. Our findings may also contribute to elucidate the intracellular mechanisms involved in the central nervous system side effects associated with statin therapy.  相似文献   

10.
Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, is associated with a broad range of biological properties including antitumor activity. However, the effect of DHA on gastric cancer has not been clearly clarified. The aim of this study was to investigate the role and mechanism of DHA in human gastric cancer cell line BGC-823. Cell viability was assessed by MTT assay. Cell apoptosis was analyzed with flow cytometry. The expressions of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38 MAPK) and their phosphorylated forms as well as apoptosis related proteins were examined by western blot analysis. The results demonstrated that DHA inhibited cell viability of BGC-823 cells in a dose- and time-dependent manner. DHA treatment upregulated the expression of Bax, cleaved caspase-3 and -9, and degraded form of PARP, and downregulated the Bcl-2 expression and Bcl-2/Bax ratio. Meanwhile, DHA increased the phosphorylation of ERK1/2, JNK1/2 and p38 MAPK. Synthetic inhibitors of JNK1/2 or p38 MAPK kinase activity, but not inhibitor of ERK1/2, significantly abolished the DHA-induced activation of caspase-3 and -9. In vivo tumor-suppression assay further indicated that DHA displayed significant inhibitory effect on BGC-823 xenografts in tumor growth. These results indicate that DHA induces apoptosis of BGC-823 cells through JNK1/2 and p38 MAPK signaling pathways and DHA could serve as a potential additional chemotherapeutic agent for treatment of gastric cancer.  相似文献   

11.
Vitamin D-binding protein-macrophage-activating factor (DBP-maf) is derived from serum vitamin D binding protein (DBP) by selective deglycosylation during inflammation. In the present study, we investigated the effect of DBP-maf on RAW 264.7 macrophages and the underlying intracellular signal transduction pathways. DBP-maf increased proapoptotic caspase-3, -8, and -9 activities and induced apoptosis in RAW 264.7 cells. However, DBP, the precursor to DBP-maf did not induce apoptosis in these cells. Cell cycle analysis of DBP-maf-treated RAW 264.7 cells revealed growth arrest with accumulation of cells in sub-G(0)/G(1) phase. We also investigated the role of mitogen-activated protein kinase (MAPK) pathways in the DBP-maf-induced apoptosis of RAW264.7 cells. DBP-maf increased the phosphorylation of p38 and JNK1/2, while it decreased the ERK1/2 phosphorylation. Treatment with the p38 MAPK inhibitor, SB202190, attenuated DBP-maf-induced apoptosis. PD98059, a MEK specific inhibitor, did not show a significant inhibition of apoptosis induced by DBP-maf. Taken together, these results suggest that the p38 MAPK pathway plays a crucial role in DBP-maf-mediated apoptosis of macrophages. Our studies indicate that, during inflammation DBP-maf may function positively by causing death of the macrophages when activated macrophages are no longer needed at the site of inflammation. In summary, we report for the first time that DBP-maf induces apoptosis in macrophages via p38 and JNK1/2 pathway.  相似文献   

12.
Continuous endoplasmic reticulum (ER) stress, such as the accumulation of unfolded proteins, results in cell death and relates to the pathogenesis of some neurodegenerative diseases. Treatment of brefeldin A, an inhibitor of transport between the ER and Golgi complex, induced cell death during 24 h, which accompanied activation of caspase-2, caspase-3 and caspase-9, starting at 12 h and increasing time-dependently up to 28 h. Caspase-2 was expressed and activated in not only mitochondria and cytosol, but also in the microsomal fraction containing ER and Golgi. Of note is that overexpression of Bcl-x(L) or Bcl-2 in PC12 cells markedly suppressed brefeldin A-induced activation of caspases and resulting cell death. Delivery of anti-Bcl-2 antibody into the Bcl-2-overexpressed cells again recovered apoptosis. While the brefeldin A-treatment induced the phosphorylation of both c-Jun N-terminal kinase (JNK) and p38 MAPK, overexpression of Bcl-x(L) or Bcl-2 reduced the prolonged phosphorylation of JNK, but not of p38 MAPK. Pretreatment with a JNK inhibitor, SP600125, suppressed the brefeldin A-induced caspase-2 activation and cell death significantly. Thus, our results suggest that protective effects of Bcl-x(L) and Bcl-2 against brefeldin A-induced cell death appear to be dependent on the regulation of JNK activation.  相似文献   

13.
Cepharanthine (CEP), a biscoclaurine alkaloid, has been reported to induce cell death, however, the molecular mechanism of this phenomenon remains unclear. We herein report that CEP induced apoptosis in HuH-7 cells through nuclear fragmentation, DNA ladder formation, cytochrome c release, caspase-3 activation and poly-(ADP-ribose)-polymerase cleavage. CEP triggered the generation of reactive oxygen intermediates, the activation of mitogen activated protein kinase (MAPK) p38, JNK1/2 and p44/42, and the downregulation of protein kinase B/Akt. Antioxidants and SP600125, an inhibitor of JNK1/2, but not inhibitors of p38 MAPK and MEK1/2, significantly prevented cell death, thus implying that reactive oxygen species and JNK1/2 play crucial roles in the CEP-induced apoptosis of HuH-7 cells.  相似文献   

14.
15.
MAPK-dependent activation of AP-1 protein c-Jun is involved in PC12 cell differentiation and apoptosis. However, the role of other AP-1 proteins and their connection to MAPKs during growth, differentiation and apoptosis has remained elusive. Here we studied the activation of AP-1 proteins in response to ERK, JNK, and p38 signaling upon NGF, EGF and anisomycin exposures. All treatments caused different kinetics and strength of MAPK and AP-1 activities. NGF induced persistent ERK and AP-1 activities, whereas upon EGF and anisomycin exposures, their activities were only weakly and transiently induced. The sustained AP-1 activity was associated with concomitant c-Fos and c-Jun expression and phoshorylation, which were JNK and ERK dependent. While inhibition of the ERK, JNK, and p38 activities partially prevented AP-1 activity and suppressed differentiation, none of them was required for anisomycin-induced apoptosis. The importance of c-Fos and c-Jun as mediators of differentiation was demonstrated by the findings that the corresponding siRNAs suppressed NGF-induced neurite outgrowth. However, the capacity of c-Fos to promote differentiation required cooperation with Jun proteins. In contrast, Fra-2 expression was not required for the differentiation response. Together, the results show that sustained c-Jun and c-Fos activities mediate MAPK signaling and are essential for differentiation of PC12 cells.  相似文献   

16.
Escherichia coli (E. coli) infections play an important and growing role in the clinic. In the present study, we investigated the involvement of members of the mitogen-activated protein kinase (MAPK) superfamily, including extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK) and p38 MAPK, and caspase-3 and 9 activity in E. coli-induced apoptosis in human U937 cells. We found that E. coli induces apoptosis in U937 cell lines in a dose- and time-dependent manner, p38 MAPK and JNK were activated after 10 min of infection with E. coli. In contrast, ERK1/2 was down-regulated in a time-dependent manner. The levels of total (phosphorylation state-independent) p38 MAPK, JNK and ERK1/2 did not change in E. coli-infected U937 cells at all times examined. Moreover, exposure of U937 cells to E. coli led to caspase-3 and 9 activity. For the evaluation of the role of MAPKs, PD98059, SB203580 and SP600125 were used as MAPKs inhibitors for ERK1/2, p38 MAPK and JNK. Inhibition of ERK1/2 with PD98059 caused further enhancement in apoptosis and caspase-3 and 9 activity, while a selective p38 MAPK inhibitor, SB203580 and JNK inhibitor, SP600125 significantly inhibited E. coli-induced apoptosis and caspase-3 and 9 activity in U937 cells. The results were further confirmed by the observation that the caspase inhibitors Z-DEVD-FMK and Z-LEHD-FMK blocked E. coli-induced U937 apoptosis. Taken together, we have shown that E. coli increase p38 MAPK and JNK and decrease ERK1/2 phosphorylation and increase caspase-3 and 9 activity in U937 cells.  相似文献   

17.
Alveolar epithelial apoptosis is an important feature of hyperoxia-induced lung injury in vivo and has been described in the early stages of bronchopulmonary dysplasia (chronic lung disease of preterm newborn). Molecular regulation of hyperoxia-induced alveolar epithelial cell death remains incompletely understood. In view of functional involvement of Fas/FasL system in physiological postcanalicular type II cell apoptosis, we speculated this system may also be a critical regulator of hyperoxia-induced apoptosis. The aim of this study was to investigate the effects of hyperoxia on apoptosis and apoptotic gene expression in alveolar epithelial cells. Apoptosis was studied by TUNEL, electron microscopy, DNA size analysis, and caspase assays. Fas/FasL expression was determined by Western blot analysis and RPA. We determined that in MLE-12 cells exposed to hyperoxia, caspase-mediated apoptosis was the first morphologically and biochemically recognizable mode of cell death, followed by necrosis of residual adherent cells. The apoptotic stage was associated with a threefold upregulation of Fas mRNA and protein expression and increased susceptibility to direct Fas receptor activation, concomitant with a threefold increase of FasL protein levels. Fas gene silencing by siRNAs significantly reduced hyperoxia-induced apoptosis. In murine fetal type II cells, hyperoxia similarly induced markedly increased Fas/FasL protein expression, confirming validity of results obtained in transformed MLE-12 cells. Our findings implicate the Fas/FasL system as an important regulator of hyperoxia-induced type II cell apoptosis. Elucidation of regulation of hyperoxia-induced lung apoptosis may lead to alternative therapeutic strategies for perinatal or adult pulmonary diseases characterized by dysregulated type II cell apoptosis.  相似文献   

18.
The hierarchy of events accompanying induction of apoptosis by the proteasome inhibitor Bortezomib was investigated in Jurkat lymphoblastic and U937 myelomonocytic leukemia cells. Treatment of Jurkat or U937 cells with Bortezomib resulted in activation of c-Jun-N-terminal kinase (JNK) and p38 MAPK (mitogen-activated protein kinase), inactivation of extracellular signal-regulating kinase 1/2 (ERK1/2), cytochrome c release, caspase-9, -3, and -8 activation, and apoptosis. Bortezomib-mediated cytochrome c release and caspase activation were blocked by the pharmacologic JNK inhibitor SP600125, but lethality was not diminished by the p38 MAPK inhibitor SB203580. Inducible expression of a constitutively active MEK1 construct blocked Bortezomib-mediated ERK1/2 inactivation, significantly attenuated Bortezomib lethality, and unexpectedly prevented JNK activation. Conversely, pharmacologic MEK/ERK1/2 inhibition promoted Bortezomib-mediated JNK activation and apoptosis. Lastly, the antioxidant N-acetyl-l-cysteine (LNAC) attenuated Bortezomib-mediated reactive oxygen species (ROS) generation, ERK inactivation, JNK activation, mitochondrial dysfunction, and apoptosis. In contrast, enforced MEK1 and ERK1/2 activation or JNK inhibition did not modify Bortezomib-induced ROS production. Together, these findings suggest that in human leukemia cells, Bortezomib-induced oxidative injury operates at a proximal point in the cell death cascade to antagonize cytoprotective ERK1/2 signaling, promote activation of the stress-related JNK pathway, and to trigger mitochondrial dysfunction, caspase activation, and apoptosis. They also suggest the presence of a feedback loop wherein Bortezomib-mediated ERK1/2 inactivation contributes to JNK activation, thereby amplifying the cell death process.  相似文献   

19.
Although c-Jun NH(2)-terminal kinase (JNK) has been implicated in the pathogenesis of transplantation-induced ischemia/reperfusion (I/R) injury in various organs, its significance in lung transplantation has not been conclusively elucidated. We therefore attempted to measure the transitional changes in JNK and AP-1 activities in I/R-injured lungs. Subsequently, we assessed the effects of JNK inhibition by the three agents including SP600125 on the degree of lung injury assessed by means of various biological markers in bronchoalveolar lavage fluid and histological examination including detection of apoptosis. In addition, we evaluated the changes in p38, extracellular signal-regulated kinase, and NF-kappaB-DNA binding activity. I/R injury was established in the isolated rat lung preserved in modified Euro-Collins solution at 4 degrees C for 4 h followed by reperfusion at 37 degrees C for 3 h. We found that AP-1 was transiently activated during ischemia but showed sustained activation during reperfusion, leading to significant lung injury and apoptosis. The change in AP-1 was generally in parallel with that of JNK, which was activated in epithelial cells (bronchial and alveolar), alveolar macrophages, and smooth muscle cells (bronchial and vascular) on immunohistochemical examination. The change in NF-kappaB qualitatively differed from that of AP-1. Protein leakage, release of lactate dehydrogenase and TNF-alpha into bronchoalveolar lavage fluid, and lung injury were improved, and apoptosis was suppressed by JNK inhibition. In conclusion, JNK plays a pivotal role in mediating lung injury caused by I/R. Therefore, inhibition of JNK activity has potential as an effective therapeutic strategy for preventing I/R injury during lung transplantation.  相似文献   

20.
Increasing evidence suggests a role for apoptosis in the maintenance of the alveolar epithelium under normal and pathological conditions. However, the signaling pathways modulating alveolar type II (ATII) cell apoptosis remain poorly defined. Here we investigated the role of MAPKs as modulators of oxidant-mediated ATII cell apoptosis using in vitro models of H(2)O(2)-stress. H(2)O(2), delivered either as a bolus or as a flux, lead to time- and concentration-dependent increases in ATII cells apoptosis. Increased apoptosis in primary rat ATII cells was detected at H(2)O(2) concentrations and production rates in the physiological range (1 microM) and peaked at 100 microM H(2)O(2). Immortalized rat lung epithelial cells (RLE), in contrast, required millimolar concentration of H(2)O(2) for maximal responses. H(2)O(2)-induced apoptosis was preceded by rapid activation of all three classes of mitogen-activated protein kinases (MAPKs): ERK, JNK, and p38. Specific inhibition of JNK using antisense oligonucleotides and ERK and p38 using PD98059 or SB202190, respectively, indicated a pro-apoptotic role for JNK pathway and an anti-apoptotic role for ERK- and p38-initiated signaling events. Our data show that the balance between the activation of JNK, ERK, and p38 is a critical determinant of cell fate, suggesting that pharmacological interventions on the MAPK pathways may be useful in the treatment of oxidant-related lung injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号