首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human beta-defensin-4 (hBD4) is a cationic 50-amino acid antimicrobial peptide with three conserved cysteine disulfide bonds. It exhibits a broad antimicrobial spectrum. This study describes the synthesis of hBD4 gene, the heterologous fusion expression of the peptide in Escherichia coli, and the bioactive assay of released hBD4. A PCR-based gene SOEing (splicing by overlap extension) synthesis method was used in the synthesis of the hBD4 gene with optimized codons. By constructing the expression plasmid (pET32-smhBD4), high concentration of soluble hBD4 fusion protein (1.9 g/l) can be obtained in E. coli. Further optimization studies showed that the expression system was very efficient to produce soluble target protein, and the solubility of the target protein could attain more than 99% even when the culture temperature was as high as 37°C. The highest productivity (2.68 g/l) of the hBD4 fusion protein was achieved by cultivating the E. coli (pET32-smhBD4) in MBL medium at 34°C, inducing the culture at the mid-exponential phase with 0.4-mM isopropyl β-d-galactopyranoside (IPTG), and collecting the broth after 6-h expression. The soluble target protein accounted for 64.6% of the total soluble proteins, and the mature hBD4 expression level was stoichiometrically estimated to be 0.689 g/l. This fusion protein was then purified and cleaved to get the mature hBD4 peptide that showed antimicrobial activity against E. coli and Pseudomonas aeruginosa.  相似文献   

2.
cDNA clones encoding frutalin, the α-d-galactose-binding lectin expressed in breadfruit seeds (Artocarpus incisa), were isolated and sequenced. The deduced amino acid sequences indicated that frutalin may be encoded by a family of genes. The NCBI database searches revealed that the frutalin sequence is highly homologous with jacalin and mornigaG sequences. Frutalin cDNA was re-amplified and cloned into the commercial expression vector pET-25b(+) for frutalin production in Escherichia coli. An experimental factorial design was employed to maximise the soluble expression of the recombinant lectin. The results indicated that temperature, time of induction, concentration of IPTG and the interaction between the concentration of IPTG and the time of induction had the most significant effects on the soluble expression level of recombinant frutalin. The optimal culture conditions were as follows: induction with 1 mM IPTG at 22°C for 20 h, yielding 16 mg/l of soluble recombinant frutalin. SDS-PAGE and Western blot analysis revealed that recombinant frutalin was successfully expressed by bacteria with the expected molecular weight (17 kDa). These analyses also showed that recombinant frutalin was mainly produced as insoluble protein. Recombinant frutalin produced by bacteria revealed agglutination properties and carbohydrate-binding specificity similar to the native breadfruit lectin.  相似文献   

3.
High throughput screenings of single chain Fv (scFv) antibody phage display libraries are currently done as soluble scFvs produced in E.coli. Due to endotoxin contaminations from bacterial cells these preparations cannot be reliably used in mammalian cell based assays. The monovalent nature and lack of Fc in soluble scFvs prevent functional assays that are dependent on target cross linking and/or Fc functions. A convenient approach is to convert scFvs into scFv.Fc fusion proteins and express them in mammalian cell lines for screening. This approach is low throughput and is only taken after primary screening of monovalent scFvs that are expressed in bacteria. There is no platform at present that combines the benefits of both bacterial and mammalian expression system for screening phage library output. We have, therefore, developed a novel dual expression vector, called pSplice, which can be used to express scFv.Fc fusion proteins both in E.coli and mammalian cell lines. The hallmark of the vector is an engineered intron which houses the bacterial promoter and signal peptide for expression and secretion of scFv.Fc in E.coli. When the vector is transfected into a mammalian cell line, the intron is efficiently spliced out resulting in a functional operon for expression and secretion of the scFv.Fc fusion protein into the culture medium. By applying basic knowledge of mammalian introns and splisosome, we designed this vector to enable screening of phage libraries in a product like format. Like IgG, the scFv.Fc fusion protein is bi-valent for the antigen and possesses Fc effector functions. Expression in E.coli maintains the speed of the bacterial expression platform and is used to triage clones based on binding and other assays that are not sensitive to endotoxin. Triaged clones are then expressed in a mammalian cell line without the need for any additional cloning steps. Conditioned media from the mammalian cell line containing the fusion proteins are then used for different types of cell based assays. Thus this system retains the speed of the current screening system for phage libraries and adds additional functionality to it.  相似文献   

4.
Microcystis viridis lectin (MVL), a sugar-binding protein originally isolated from freshwater blue-green algae Microcystis viridis, has been reported to have potent anti-HIV activity. In this paper, we described the expression and purification of recombinant-MVL (R-MVL) gene in E. coli. The results demonstrated that the R-MVL in shake flask cultures was primarily expressed either in the form of inclusion bodies at 37°C or in the soluble fraction at 23 °C. Secondly, a one-step purification based on nickel-affinity chromatography was employed and 15 mg of highly purified (>95%) R-MVL from 1 l of cell cultures was yielded. The purified R-MVL was then subjected to MALDI-TOF–MS analysis for protein identification. In conclusion, for the first time, the R-MVL was successfully cloned and expressed in E. coli, which is useful for further study and large-scale cost-effective production of MVL protein.  相似文献   

5.
The genes encoding an alcohol dehydrogenase, Baeyer–Villiger monooxygenase and an esterase from P. fluorescens DSM 50106, which seemed to be metabolically connected based on the sequence of the corresponding open reading frames, were cloned into one vector (pABE) and functionally expressed in Escherichia coli. Overall expression levels were quite low, however, using whole cells of E. coli JM109 pABE expressing the three recombinant enzymes, conversion of secondary alcohols (Cn) to the corresponding primary alcohols (Cn−2) and acetic acid via ketone and ester was possible. In this way, 2-decanol was almost completely converted within 20 h at 30°C. Thus, it could be shown that the three enzymes are metabolically connected and that they are most probably involved in alkane degradation via sub-terminal oxidation of the acyclic aliphatic hydrocarbons.  相似文献   

6.
The Bacillus subtilis subtilisin E gene was cloned into an expression vector of the extreme thermophile, Thermus thermophilus. Active subtilisin E was produced in E. coli, indicating that the Thermus promoter functions in E. coli. When the plasmid was further introduced into T. thermophilus, the subtilisin E gene was expressed and the gene product accumulated as an inactive pro-form, because the autoprocessing of the wild-type enzyme to the active-form did not occur at 50°C or above. Received 17 March 1999/ Accepted in revised form 28 June 1999  相似文献   

7.
8.
A plant-specific biogenic amine, serotonin, was produced by heterologous expression of two key biosynthetic genes, tryptophan decarboxylase (TDC) and tryptamine 5-hydroxylase (T5H), in Escherichia coli. The native T5H, a cytochrome P450 enzyme, was unable to be functionally expressed in E. coli. Through a series of N-terminal deletions or additions of tagging proteins, we generated a functional T5H enzyme construct (GST∆37T5H) in which glutathione S transferase (GST) was translationally fused with the N-terminal 37 amino acid deleted T5H. Dual expression of GST∆37T5H and TDC using a pCOLADuet-1 E. coli vector produced serotonin at concentrations of approximately 24 mg l−1 in the culture medium and 4 mg l−1 in the cells. An optimum temperature of approximately 20°C was required to achieve peak serotonin production in E. coli because the low induction temperature gave rise to the highest soluble expression of GST∆37T5H.  相似文献   

9.
A two-parameter statistical model was used to predict the solubility of 96 putative virulence-associated proteins of Flavobacterium psychrophilum (CSF259-93) upon over expression in Escherichia coli. This analysis indicated that 88.5% of the F. psychrophilum proteins would be expressed as insoluble aggregates (inclusion bodies). These solubility predictions were verified experimentally by colony filtration blot for six different F. psychrophilum proteins. A comprehensive analysis of codon usage identified over a dozen codons that are used frequently in F. psychrophilum, but that are rarely used in E. coli. Expression of F. psychrophilum proteins in E. coli was often associated with production of minor molecular weight products, presumably because of the codon usage bias between these two organisms. Expression of recombinant protein in the presence of rare tRNA genes resulted in marginal improvements in the expressed products. Consequently, Vibrio parahaemolyticus was developed as an alternative expression host because its codon usage is similar to F. psychrophilum. A full-length recombinant F. psychrophilum hemolysin was successfully expressed and purified from V. parahaemolyticus in soluble form, whereas this protein was insoluble upon expression in E. coli. We show that V. parahaemolyticus can be used as an alternate heterologous expression system that can remedy challenges associated with expression and production of F. psychrophilum recombinant proteins.  相似文献   

10.
It was previously demonstrated that while lysogenic development of bacteriophage λ in Escherichia coli proceeds normally at low temperature (20–25° C), lytic development is blocked under these conditions owing to the increased stability of the phage CII protein. This effect was proposed to be responsible for the increased stimulation of the p E promoter, which interferes with expression of the replication genes, leading to inhibition of phage DNA synthesis. Here we demonstrate that the burst size of phage λcIb2, which is incapable of lysogenic development, increases gradually over the temperature range from 20 to 37° C, while no phage progeny are observed at 20° C. Contrary to previous reports, it is possible to demonstrate that p E promoter activation by CII may be more efficient at lower temperature. Using density-shift experiments, we found that phage DNA replication is completely blocked at 20° C. Phage growth was also inhibited in cells overexpressing cII, which confirms that CII is responsible for inhibition of phage DNA replication. Unexpectedly, we found that replication of plasmids derived from bacteriophage λ is neither inhibited at 20° C nor in cells overexpressing cII. We propose a model to explanation the differences in replication observed between λ phage and λ plasmid DNA at low temperature. Received: 30 December 1997 / Accepted: 25 February 1998  相似文献   

11.

Background  

The green fluorescent protein has revolutionized many areas of cell biology and biotechnology since it is widely used in determining gene expression and for localization of protein expression. Expression of recombinant GFP in E. coli K12 host from pBAD24M-GFP construct upon arabinose induction was significantly lower than that seen in E. coli B cells with higher expression at 30°C as compared to 37°C in E. coli K12 hosts. Since OmpT levels are higher at 37°C than at 30°C, it prompted us to modify the OmpT proteolytic sites of GFP and examine such an effect on GFP expression and fluorescence. Upon modification of one of the two putative OmpT cleavage sites of GFP, we observed several folds enhanced fluorescence of GFP as compared to unmodified GFPuv (Wild Type-WT). The western blot studies of the WT and the SDM II GFP mutant using anti-GFP antibody showed prominent degradation of GFP with negligible degradation in case of SDM II GFP mutant while no such degradation of GFP was seen for both the clones when expressed in BL21 cells. The SDM II GFP mutant also showed enhanced GFP fluorescence in other E. coli K12 OmpT hosts like E. coli JM109 and LE 392 in comparison to WT GFPuv. Inclusion of an OmpT inhibitor, like zinc with WT GFP lysate expressed from an E. coli K12 host was found to reduce degradation of GFP fluorescence by two fold.  相似文献   

12.
Salmonella enteritidis is a major foodborne microbial pathogen that can grow and survive at low temperatures for a considerable period of time. Increased survival was evidenced from a frozen S. enteritidis culture when treated at 10°C prior to freezing. Western blot analysis with Escherichia coli CspA antibody and analysis of radiolabeled proteins from S. enteritidis cultures after cold shock at 10°C and 5°C showed increased expression of a 7.4-kDa major cold shock protein, CS7.4, similar in size to that reported for E. coli. Cloning followed by nucleotide sequence analysis of the cspA gene from S. enteritidis showed a 100% nucleotide sequence identity in the promoter elements (−35 and −10) and the amino acid sequence encoded by the open reading frame (ORF) with the E. coli cspA gene. However, the differences in the nucleotide sequences between E. coli and S. enteritidis cspA genes in the putative repressor protein binding domain, the fragment 7, and in various segments throughout the upstream 0.642-kbp DNA may contribute to the expression of CS7.4 at less stringent temperatures in S. enteritidis. As in E. coli, the actual role of CS7.4 in protecting S. enteritidis from the damaging effects of cold or freezing temperatures is not yet understood. Received: 14 March 1997 / Accepted: 10 July 1997  相似文献   

13.
An OmpA family protein (FopA) previously reported as one of the major outer membrane proteins of an acidophilic iron-oxidizing bacterium Acidithiobacillus ferrooxidans was characterized with emphasis on the modification by heat and the interaction with peptidoglycan. A 30-kDa band corresponding to the FopA protein was detected in outer membrane proteins extracted at 75°C or heated to 100°C for 10 min prior to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). However, the band was not detected in outer membrane proteins extracted at ≤40°C and without boiling prior to electrophoresis. By Western blot analysis using the polyclonal antibody against the recombinant FopA, FopA was detected as bands with apparent molecular masses of 30 and 90 kDa, suggesting that FopA existed as an oligomeric form in the outer membrane of A. ferrooxidans. Although the fopA gene with a sequence encoding the signal peptide was successfully expressed in the outer membrane of Escherichia coli, the recombinant FopA existed as a monomer in the outer membrane of E. coli. FopA was detected in peptidoglycan-associated proteins from A. ferrooxidans. The recombinant FopA also showed the peptidoglycan-binding activity.  相似文献   

14.
The Gram‐negative bacterium Escherichia coli is routinely used as the chassis for a variety of biotechnology and synthetic biology applications. Identification and analysis of reliable chromosomal integration and expression target loci is crucial for E. coli engineering. Chromosomal loci differ significantly in their ability to support integration and expression of the integrated genetic circuits. In this study, we investigate E. coli K12 MG1655 flagellar regions 2 and 3b. Integration of the genetic circuit into seven and nine highly conserved genes of the flagellar regions 2 (motA, motB, flhD, flhE, cheW, cheY and cheZ) and 3b (fliE, F, G, J, K, L, M, P, R), respectively, showed significant variation in their ability to support chromosomal integration and expression of the integrated genetic circuit. While not reducing the growth of the engineered strains, the integrations into all 16 target sites led to the loss of motility. In addition to high expression, the flagellar region 3b supports the highest efficiency of integration of all E. coli K12 MG1655 flagellar regions and is therefore potentially the most suitable for the integration of synthetic genetic circuits.  相似文献   

15.
In the present study, Escherichia coli O157:H7 and Salmonella enterica serovar Enteritidis were transferred into Luria–Bertani medium without NaCl (LBWS) and adjusted to various pHs (4, 5, 6 and 7) with lactic acid containing 0·75, 5, 10 and 30% NaCl, and stored at 25°C until the bacterial populations reached below detectable levels on tryptic soy agar (TSA). Although Ecoli O157:H7 and S. Enteritidis did not grow on TSA when incubated in LBWS with 30% NaCl for 35 and 7 days, more than 60 and 70% of the bacterial cells were shown to be viable via fluorescent staining with SYTO9 and propidium iodide (PI), respectively, suggesting that a number of cells could be induced into the viable but nonculturable (VBNC) state. These bacteria that were induced into a VBNC state were transferred to a newly prepared tryptic soy broth (TSB) and then incubated at 37°C for several days. After more than 7 days, Ecoli O157:H7 and S. Enteritidis regained their culturability. We, therefore, suggest that Ecoli O157:H7 and S. Enteritidis entered the VBNC state under the adverse condition of higher salt concentrations and were revived when these conditions were reversed.  相似文献   

16.
The positive strand 20S RNA narnavirus persistently infects Saccharomyces cerevisiae. The 20S RNA genome has a single gene that encodes the RNA‐dependent RNA polymerase (p91). 20S RNA forms ribonucleoprotein resting complexes (RNPs) with p91 and resides in the cytoplasm. Here we found no host proteins stoichiometrically associated with the RNP by pull‐down experiments. Furthermore, 20S RNA, when expressed from a vector in Escherichia coli, formed RNPs with p91 in the absence of yeast proteins. This interaction required the 3′ cis signal for complex formation. Moreover, when 23S RNA, the genome of another narnavirus, was expressed in E. coli, it also formed RNPs with its RNA polymerase p104. Finally, when both RNAs were expressed in the same E. coli cell, they formed RNPs only with their cognate RNA polymerases. These results altogether indicate that narnaviruses RNPs consist of only the viral genomes and their cognate RNA polymerases. Because the copy number of the RNPs can be induced almost equivalent to those of rRNAs in some yeast strains, the absence of host proteins may alleviate the burden on the host by not sequestering proteins into the RNPs. It may also contribute to the persistent infection of narnaviruses by decreasing their visibility.  相似文献   

17.
Carboxylesterases (CEs) are enzymes responsible for the detoxification of insecticides in insects. In the Cydia pomonella, CEs are involved in synthetic pyrethroid, neonicotinoid, carbamate, and organophosphate detoxification. However, functional overexpression of CEs proteins in Escherichia coli systems often results in insoluble proteins. In this study, we expressed the fusion protein CpCE-1 in E. coli BL21 (DE3). This recombinant protein was overexpressed as inclusion bodies at 37 °C whereas it produced a higher percentage of soluble protein at lower growth temperatures. Production of soluble proteins and enzyme activity increased in the presence of sorbitol in the growth medium. The fusion protein was purified from the lysate supernatant using a Ni2+-NTA agarose gel column. The enzyme exhibited a higher affinity and substrate specificity for α-naphthyl acetate (α-NA), with k cat/K m of 100 s?1 μM?1 for α-NA, and the value is 29.78 s?1 μM?1 for β-naphthyl acetate. The V max and K m were also determined to be 12.9 μmol/min/mg protein and 13.4 μM using substrate α-NA. The optimum pH was 7.0 and temperature was 25 °C. An enzyme inhibition assay shows that PMSF and DEPC strongly inhibit the enzyme activity, while the metal ions Cu2+ and Mg2+ significantly activated the activity. More importantly, cypermethrin, methomyl, and acephate were found to suppress enzyme activity. The data demonstrated here provide information for heterologous expression of soluble protein and further study on insecticide metabolism in C. pomonella in vitro. This is the first report of the characterization of CEs protein from C. pomonella.  相似文献   

18.
Liu D  Lu Z  Mao Z  Liu S 《Current microbiology》2009,58(2):129-133
A gene encoding the rice (Oryza sativa L.) 90-kDa heat shock protein (OsHsp90) was introduced into Escherichia coli using the pGEX-6p-3 expression vector with a glutathione-S-transferase (GST) tag to analyze the possible function of this protein under heat stress for the first time. We compared the survivability of E. coli (BL21) cells transformed with a recombinant plasmid containing GST-OsHsp90 fusion protein with control E. coli cells transformed with the plasmid containing GST and the wild type BL21 under heat shock after isopropyl β-d-thiogalactopyranoside induction. Cells expressing GST-OsHsp90 demonstrated thermotolerance at 42, 50, and 70°C, treatments that were more harmful to cells expressing GST and the wild type. Further studies were carried out to analyze the heat-induced characteristics of OsHsp90 at 42, 50, and 70°C in vitro. When cell lysates from E. coli transformants were heated at these heat stresses, expressed GST-OsHsp90 prevented the denaturation of bacterial proteins treated with 42°C heat shocks, and partially prevented that of proteins treated at 50 and 70°C; meanwhile, cells expressing GST-OsHsp90 withstood the duration at 50°C. These results indicate that OsHsp90 functioned as a chaperone, binding to a subset of substrates, and maintained E. coli growth well at high temperatures.  相似文献   

19.
Brazzein is an intensely sweet-tasting plant protein with good stability, which makes it an attractive alternative to sucrose. A brazzein gene has been designed, synthesized, and expressed in Escherichia coli at 30 °C to yield brazzein in a soluble form and in considerable quantity. Antibodies have been produced using brazzein fused to His-tag. Brazzein without the tag was sweet and resembled closely the taste of its native counterpart. The brazzein gene was also expressed in Lactococcus lactis, using a nisin-controlled expression system, to produce sweet-tasting lactic acid bacteria. The low level of expression was detected with anti-brazzein antibodies. Secretion of brazzein into the medium has not led to significant yield increase. Surprisingly, optimizing the codon usage for Lactococcus lactis led to a decrease in the yield of brazzein.  相似文献   

20.
[目的]分离喜马拉雅旱獭肠内容物样本中的噬菌体,并研究其生物学特性和基因组特征。[方法]以大肠杆菌为宿主菌,利用双层琼脂平板法从喜马拉雅旱獭肠内容物样本中分离噬菌体;用透射电镜观察形态特征;测定其最佳感染复数、一步生长曲线、酸碱耐受度及宿主裂解谱等生物学特性,并进行全基因组测序。[结果]从喜马拉雅旱獭肠内容物样本中分离得到一株裂解性大肠杆菌噬菌体,命名为vB_EcoM_TH18,其噬菌斑呈无晕环的透亮圆形,透射电镜观察发现该噬菌体头部直径为(90±5) nm,尾部长度为(115±5) nm;最佳感染复数为1;一步生长曲线显示其潜伏期为10 min,110 min后进入平台期,平均裂解量为15 PFU/mL;在pH 4.5-9.5的范围内具有稳定活性;可裂解多种致病型和血清型大肠杆菌和宋内志贺氏菌,无法裂解沙门氏菌、屎肠球菌、金黄色葡萄球菌、肺炎克雷伯杆菌及鲍曼不动杆菌;基因组测序结果表明,其基因组长度为133 882 bp,GC含量为39.95%。基因组共注释到210个编码序列(CDS)和13个tRNAs,不含毒力基因及耐药基因。BLASTn比对结果表明该基因组与Avunavirus属噬菌体Av-05同源性为95.17%。基于噬菌体全基因组、主要衣壳蛋白和终止酶大亚基分别构建系统进化树,结果表明vB_EcoM_TH18是一株肌尾噬菌体科(Myoviridae) Avunavirus属的新型噬菌体。[结论]从喜马拉雅旱獭肠内容物中成功分离并鉴定了一株新型宽谱大肠杆菌噬菌体vB_EcoM_TH18,可裂解多种致病型和血清型的大肠杆菌及宋内志贺菌。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号