首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three fractions of phosphodiesterase activity capable of hydrolysing cyclic 3′,5′-AMP and cyclic 3′,5′-GMP were purified from Portulaca callus. Hydrolysing bis-(p-nitrophenyl)-phosphate, two fractions showed linear Lineweaver-Burk plots. One fraction showed positive cooperativity. This fraction can be activated competitively by blue dextran, indicating a possible allosteric regulation by nucleotides, demonstrated by changing from being positively cooperative, to following Michaelis-Menten kinetics by cGMP and papaverin. cGMP triggers an enzyme highly active against 3′,5′cAMP and 3′5′cGMP, and papaverin triggers high activity against 2′,3′cAMP, demonstrated by two separate enzyme fractions.  相似文献   

2.
The germination of spores of Mucor rouxii into hyphae was inhibited by 2 mm dibutyryl cyclic adenosine 3′,5′-monophosphate or 7 mm cyclic adenosine 3′,5′-monophosphate; under these conditions spores developed into budding spherical cells instead of filaments, provided that glucose was present in the culture medium. Removal of the cyclic nucleotides resulted in the conversion of yeast cells into hyphae. Dibutyryl cyclic adenosine 3′,5′-monophosphate (2 mm) also inhibited the transformation of yeast to mycelia after exposure of yeast culture to air.Since in all living systems so far studied adenylate cyclase and cyclic adenosine 3′,5′-monophosphate phosphodiesterase are involved in maintaining the intracellular cyclic adenosine monophosphate level, the activity of both enzymes and the intracellular concentration of cyclic adenosine monophosphate were investigated in yeast and mycelium extracts. Cyclic adenosine monophosphate phosphodiesterase and adenylate cyclase activities could be demonstrated in extracts of M. rouxii. The specific activity of adenylate cyclase did not vary appreciably with the fungus morphology. On the contrary, cyclic adenosine monophosphate phosphodiesterase activity was four- to sixfold higher in mycelial extracts than in yeast extracts and reflected quite accurately the observed changes in intracellular cyclic adenosine monophosphate levels; these were three to four times higher in yeast cells than in mycelium.  相似文献   

3.
Infrared spectra of neutral aqueous solutions of nucleoside 3′,5′-cyclic monophosphates indicate an increase in the antisymmetric phosphoryl stretching frequency to 1236 cm?1 from 1215 cm?1 in trimethylene cyclic phosphates. A further increase to 1242 cm?1 accompanies esterification of the 2′-ribose hydroxyl. The O2′-esterified and 2′-deoxy cyclic nucleotides examined display both reduced kinase binding and altered phosphoryl stretching frequencies, suggesting that modification of the phosphate ring represents a common feature in decreased kinase activation. Reversible inhibition of mitosis in thymidine-synchronized human lymphocytes by 2 mmN6,O2′-dibutyryladenosine 3′,5′-cyclic monophosphate and N6-monobutyryladenosine 3′,5′-cyclic monophosphate was observed. However, adenosine 3′,5′-cyclic monophosphate, O2′-monobutyryladenosine 3′,5′-cyclic monophosphate, butyric acid, and ethyl butyrate had no effect on mitosis when present at 2 mm concentrations during S and G2. These results are consistent with hydrolysis of O2′-monobutyryladenosine 3′,5′-cyclic monophosphate and adenosine 3′,5′-cyclic monophosphate by esterase and phosphodiesterase enzymes and suggest that modification of the N6 amino group is necessary for the antimitotic activity of N6,O2′-dibutyryladenosine 3′, 5′-cyclic monophosphate.  相似文献   

4.
This paper deals with the specificity of the anti 3′,5′-cyclic AMP antibodies which can be obtained with 2′-O-succinyl cyclic AMP-albumin as an immunogen. The binding of the hapten and its analogs was measured by equilibrium dialysis. Rat and rabbit antibodies were compared. In both cases the best ligands for the anti-hapten antibodies are 2′-O-acylated derivatives of cyclic AMP: the dissociation constants are below 10?10m. Cyclic AMP itself and its 6 N, 2′-O-diacylated derivatives are recognized less efficiently; their dissociation constants lie around 10?8m, similar to that of natural cyclic AMP binding proteins. Other nucleotides lacking either adenine or the 3′,5′-phosphate ring are not recognized. Three different populations of antibodies were detected by a more detailed analysis of the equilibrium curves.  相似文献   

5.
The molecular structures of 3′-azido-2′,3′-dideoxyribosylthymine 5′-triphosphate (AZTTP), 2′,3′-dideoxyribosylinosine 5′-triphosphate (ddITP), 3′-azido-2′,3′-dideoxyribosylthymine 5′-monophosphate (AZTMP) and 2′,3′-dideoxyribosyladenine 5′-monophosphate (ddAMP) have been studied by NMR to understand their anti-HIV activity. For ddAMP and ddITP, conformations are almost identical with their nucleoside analogues with sugar ring pucker equilibriating between C3′-endo (∼75%) and C2′-endo (∼25%). AZTMP and AZTTP on the other hand show significant variations in the conformational behaviour compared with 3′-azido-2′,3′-dideoxyribo-sylthymine (AZT). The sugar rings for these nucleotides have a much larger population of C2′-endo (∼75%) conformers, like those observed for natural 2′-deoxynucleosides and nucleotides. The major conformers around C5′-O5′, C4′-C5′ and the glycosidic bonds are the βt, γ+ and anti, respectively.  相似文献   

6.
The cytokinin activities of adenosine 3′,5′-monophosphate, N6,O2″-dibutyryladenosine 3′,5−'monophosphate, 8-bromoadenosine 3′,5′-monophosphate, N6-(Δ2-isopentenyl)adenosine 3′,5′-monophosphate, and N6-benzyladenosine 3′,5′-monophosphate were determined in the tobacco bioassay and compared with the activities of the corresponding non-cyclic nucleotides, nucleosides and bases of the N6-isopentenyl-substituted, N6-benzyl-substituted, 8-bromo-substituted, and unsubstituted adenine series. In each of these series the cytokinin activities in decreasing order were: bases ⪢ nucleosides ⪖ nucleotides > cyclic nucleotides. All members of the N6-isopentenyl- substituted and N6-benzyl-substituted series were highly active cytokinins, reaching maximum activity at concentrations of 1 μM or less, whereas, as expected, all members of the unmodified adenine series were inactive in the tested concentration ranges of up to 180 and 200 μM for adenosine and adenine, and 40 μM for the adenine nucleotides. Members of the 8-bromo-substituted adenine series were much weaker cytokinins than the N6-substituted adenine derivatives but showed activity in the same sequence starting at a concentration of about 5 μM. Thus, in the cases of 8-bromoadenosine 3′,5′-monophosphate and N6,O2′-dibutyryl-adenosine 3′,5′-monophosphate, both of which have been reported to promote cell division and growth of plant tissues, the cytokinin activity is related to the 8-bromo substituent and to the N6-butyryl substituent, respectively, rather than to the 3′,5′-cyclic monophosphate moiety.  相似文献   

7.
《Phytochemistry》1986,25(7):1545-1551
The extraction, partial purification and properties of a 3′,5′-cyclic nucleotide phosphodiesterase from lettuce cotyledons is described. Purification involved fractional precipation with (NH4)2SO4, chromatography on Sephadex G-200, affinity chromatography on Affi-Gel Blue and non-denaturing polyacrylamide gel electrophoresis. The behaviour of the final enzyme preparation on SDS-polyacrylamide gel electrophoresis was examined and inidcated an M, of ca 62 000. The enzyme from 3′,5′-cyclic nucleotide phosphodiesterases previously isolated from plant tissues in that it exhibits activity towards pyrimidine as well as purine cyclic nucleotides. Furthermore, it hydrolyses cyclic CMP at a comparable rate to that with which it hydrolyses cyclic AMP and cyclic GMP. Both 3′- and 5′-AMP were released, with the 5′-nucleotide being the major product. Whereas the Km with all three substrates remained constant during the purification procedure, Vmax with cyclic AMP was lower than that for cyclic CMP but increased as purification proceeded. The effects were examined of a range of di- and trivalent metal ions on the enzyme activity. Fe3+ significantly stimulated the activity, more so when cyclic GMP was the substrate. Cu2+ inhibited the activity.  相似文献   

8.
The furanose and the phosphate rings of cyclic 3′,5′-nucleotides are locked in the 4T3 and chair conformations respectively. The only variable which shows major conformational flexibility in these molecules is the rotation about the glycosyl bond which describes the orientation of the base relative to the sugar-phosphate bicyclic system. The glycosyl torsion angle has been analyzed for cyclic nucleotides with different purine and pyrimidine bases by use of conformational energy calculations. The results indicate that all the pyrimidine bases, U, T and C show a very strong energetic preference for the anti range of conformations. The calculations predict that among cyclic 3′,5′-purine nucleotides cyclic GMP and cyclic IMP favor the syn conformation to the anti by 95:5 and 70:30 respectively, while cyclic AMP shows a preference for the anti conformation to syn by 70:30. Thus the purines show a greater probability for the syn conformation than the pyrimidines in cyclic 3′,5′-nucleotides.  相似文献   

9.
Nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) represents the main subtype of the NPP family of nucleotide hydrolyzing enzymes. The ecto-enzyme hydrolyzes structurally diverse substrates and has recently been proposed as a drug target for immuno-oncology. To get more insights into the nature of the promiscuity of NPP1, we investigated its substrate preferences employing a broad range of natural nucleotides including ATP, UTP, diadenosine tetraphosphate (AP4A), cAMP, and cyclic guanosine-(2′,5′)-monophosphate-adenosine-(3″,5″)-monophosphate (2′,3″-cGAMP), as well as the artificial substrate p-nitrophenyl 5′-thymidine monophosphate (p-Nph-5′-TMP). Despite their diverse structures, all substrates were converted to nucleoside 5′-monophosphates; 2′,3″-cGAMP yielded exclusively the nucleoside 5′-monophosphates AMP and GMP. In contrast, 3′,3″-bridged cyclic dinucleotides were not hydrolyzed. ATP was the most efficiently hydrolyzed substrate of NPP1, followed by AP4A and 2′,3″-cGAMP. UTP, cAMP and p-Nph-5′-TMP were much poorer substrates. A homology model of the human NPP1 was built based on the X-ray structure of its mouse orthologue. Docking studies were performed based on previously published mutagenesis data to rationalize the interactions of the different substrates and to explain the enzyme's preferences. The results provide an improved understanding of the interactions of NPP1 with its diverse substrates and will contribute to the validation of NPP1 as a drug target.  相似文献   

10.
The effect of several inhibitors of the enzyme cyclic 3′,5′-AMP phosphodiesterase as chemoattractants in Physarum polycephalum was examined. Of the compounds tested, 4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (Roche 20-1724/001) and 1-ethyl-4-(isopropylidinehydrazino)-1H-pyrazolo-(3,4-b)-pyridine-5-carboxylic acid ethyl ester, hydrochloride (Squibb 20009) were the most potent attractants. 3-Isobutyl-1-methyl xanthine, theophylline, and morin (a flavanoid) were moderate attractants and sometimes gave negative chemotaxis at high concentrations. Cyclic 3′,5′-AMP was an effective, but not potent attractant. A repellent effect following the positive chemotactic action was sometimes observed with cyclic 3′,5′-AMP at concentrations as high as 1 · 10?2 M. Dibutyryl cyclic AMP appeared to be a somewhat more potent attractant than cyclic 3′,5′-AMP. The 8-thiomethyl and 8-bromoderivatives of cyclic AMP, which are poorly hydrolyzed by the phosphodiesterase, were not attractants in Physarum. Possible participation of cyclic 3′,5′-AMP in the directional movement in P. polycephalum is discussed.  相似文献   

11.
An unidentified substance(s) in a commercial guanosine 3′,5′-cyclic monophosphoric acid (cyclic 3′,5′-GMP) preparation is effective in attracting the aggregating amoebae of the cellular slime mold, Polysphondylium pallidum. Bacterial extracts (Escherichia coli) and amoeba extracts (P. pallidum) attract both vegetative and aggregating amoebae. A crude enzyme preparation from amoebae is capable of reducing the chemotactic activity of the extracts on aggregating amoebae and eliminating the activity of the unknown substance in the commercial cyclic 3′,5′-GMP preparation. As only the extracts were shown to contain folic acid, and since the enzyme does not reduce folic acid activity, it is suggested that the extracts contain a factor (possibly folic acid) primarily active on vegetative amoebae and an acrasin. The commercial cyclic 3′,5′-GMP preparation contains only an acrasin. The acrasin is heat stable and nondialyzable.  相似文献   

12.
The kinetics and concentration effect on the relationship of thyrotropin (TSH) action on cyclic 3′,5′-AMP concentration has been studied in dog thyroid slices in vitro. TSH markedly increased cyclic 3′,5′-AMP level after 5 min, the effect reached a plateau after 10–60 min and slowly declined afterwards. TSH enhanced in parallel the cyclic 3′,5′-AMP level and the binding of iodide to proteins. For this latter effect of TSH, the four criteria of the validity of the Sutherland model for a hormonal action are therefore fulfilled. The effect of TSH on cyclic 3′,5′-AMP concentration in thyroid did not require the presence of a methylxanthine inhibitor of cyclic 3′,5′-AMP phosphodiesterase in the medium. Prostaglandin E1 increased cyclic 3′,5′-AMP levels in control and stimulated slices. The omission of Ca2+ in the incubation medium decreased the action of TSH but partial replacement of Na+ by K+ had little effect. Iodide, 1 μM to 100 μM, inhibited the action of TSH. This inhibitory effect was relieved by NaClO4, methimazole and propylthiouracil (1 mM). The possible role of this inhibitory effect in an intracellular regulatory mechanism is discussed.  相似文献   

13.
Cyclic adenosine 3′,5′-monophosphate and N6-2′-O-dibutyryl cyclic adenosine 3′,5′-monophosphate increase the accumulation of α-methyl-d-glucoside by cortical slices from rat, rabbit, dog and human kidney. The characteristics of the effect have been studied in rat tissue. At least 90 min of exposure of the tissue to cyclic nucleotide prior to onset of glucoside accumulation is required as well as presence of the cyclic nucleotide during the accumulation phase. Inhibition of protein synthesis does not abolish the effect of N6-2′-O-dibutyryl cyclic adenosine 3′,5′-monophosphate. The cyclic nucleotide causes an increase in the initial entry rate of α-methyl-d-glucoside into cells and an increase in the intracellular steady state concentration. The cyclic nucleotide does not affect the apparent Km of the glucoside entry process but increases the maximum velocity of accumulation.  相似文献   

14.
Our laboratories analyze the synthetic reactions leading from formamide, NH2COH to prebiotically relevant compounds in the presence of catalysts. We have described the formation of all the biological nucleic bases of carboxylic acids of two aminoacids, and of condensing agents in the presence of catalysts of terrestrial origin (Saladino et al., 2012) and of one meteorite. Heat-dependent synthetic reactions from NH2COH lead to the synthesis of acyclonucleosides, not (yet?) to that of nucleosides [hurdle # 1]. Nucleosides are phosphorylated in the presence of NH2COH and a phosphate source yielding cyclic nucleotides as well. (Costanzo et al., 2007). 3′,5′-cyclic GMP nonenzymatically polymerizes up to at least 25mers, as shown by PAGE, MALDI ToF, 31P-NMR, specific RNAse and inhibitors analyses (Costanzo et al., 2012).The reaction is stimulated by 1,8-diazabicycloundec-7-ene and dimethylformamide. 3′,5′-cUMP does not polymerize spontaneously [hurdle # 2], 3′,5′-cAMP polymerizes very poorly [hurdle # 3]. We will discuss data on the polymerization of 3′,5′-cCMP and on a ribozyme activity exerted by oligomers neosynthesized from cyclic nucleotides. This approach finds its larger perspective in the evolutionary scenario depicted by Trifonov (2009).  相似文献   

15.
Changes in the levels of adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP) during development were studied in the Dipterous Ceratitis capitata. The developmental patterns were different to each other. Cyclic AMP showed a sharp maximum in the larval stage to decrease afterwards during adult development. Changes of cyclic GMP exhibited an opposite pattern, although its levels were always higher than those of cyclic AMP.  相似文献   

16.
A method is described for separating purine bases and nucleosides from cyclic 3′,5′-nucleotides on aluminum oxide columns. Purine bases and nucleosides were found to pass through columns equilibrated with ammonium acetate buffer at pH 4.0 while the cyclic nucleotides were retarded enough to permit separation. Optimal conditions and factors affecting separation are described. The method was shown to be applicable in the isotopic assay of cyclic 3′,5′-nucleotide phosphodiesterase activity over a broad range of substrate concentrations. The advantages of this method and its possible use in a simultaneous cyclase-phosphodiesterase assay are described.  相似文献   

17.
A detailed 1H 220-MHz n.m.r. study of 9-(β-d-xylofuranosyl)adenine 3′,5′-cyclic monophosphate (3′,5′-xylo-cAMP, 1) and 9-(?-d-arabinofuranosyl)adenine 2′,5′-cyclic monophosphate (2′,5′-ara-cAMP, 2) in D2O solution is described. The sugar-ring conformations in 1 and 2 are shown to be 3E and 2E, respectively, and the phosphate rings are in a chair form. An unusual 4JP,H coupling of 2.4 Hz is observed between H-4′ and phosphorus in 1 and a vicinal JP,H of 30.8 Hz between H-5′ and phosphorus in 2. This latter coupling verifies a similar value found previously in the ara-cytidine analog of 2. A comparison of the conformational properties of cyclic nucleotides having fused phosphate and sugar rings has been made, together with an assessment of the use of the Karplus constants in such ring-systems.  相似文献   

18.
The catalytic cycloalumination of 2′-methylidene-2′,3′-ethano-(5α)-cholestane with Et3Al catalyzed by Cp2ZrCl2 was performed for the first time to give spiro[2′,3′-ethano-(5α)-cholestane-2′,3″-aluminacyclopentane] in a ~75% yield and with high stereoselectivity (>98%). The obtained cyclic organoaluminum compound was transformed in situ into heterocyclic spiran derivatives of 2′,3′-ethano-(5α)-cholestane.  相似文献   

19.
The effects of glucagon, 3′,5′-AMP, 3′,5′-GMP and dexamethasone on ion fluxes and transmembrane-potential changes were compared in perfused livers from normal and adrenalectomized rats. Glucagon and cyclic nucleotide administration resulted in a similar redistribution of Na+ and K+ and membrane hyperpolarization in both groups. Dexamethasone at a dose which restores the gluconeogenic response after adrenalectomy, had no effect on either the ion movements or membrane potential and did not alter the responses to cyclic nucleotides or glucagon in either normal or adrenalectomized rat livers. These results suggest that the permissive effect of glucacorticoids on gluconeogenesis might be related to an event following ion movement.  相似文献   

20.
Adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP) metabolism in rat renal cortex was examined. Athough the cyclic AMP and cyclic GMP phosphodiesterases are similarly distributed between the soluble and particulate fractions following differential centrifugation, their susceptibility to inhibition by theophylline, dl-4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (Ro 20-1724), and 1-methyl-3-isobutylxanthine (MIX) are quite different. Ro 20-1724 selectively inhibited both renal cortical-soluble and particulate cyclic AMP degradation, but had little effect on cyclic GMP hydrolysis. Theophylline and MIX effectively inhibited degradation of both cyclic nucleotides, with MIX the more potent inhibitor. Effects of these agents on the cyclic AMP and cyclic GMP content of cortical slices corresponded to their relative potency in broken cell preparations. Thus, in cortical slices, Ro 20-1724 (2 mm) had the least effect on basal (without agonist), carbamylcholine, and NaN3-stimulated cyclic GMP accumulation, but markedly increased basal and (parathyroid hormone) PTH-mediated cyclic AMP accumulation, MIX (2 mm) which was as effective as Ro 20-1724 in potentiating basal and PTH-stimulated increases in cyclic AMP also mediated the greatest augmentation of basal, carbamylcholine, and NaN3-stimulated accumulation of cyclic GMP. By contrast, theophylline (10 mm) which was only 12% as effective as Ro 20-1724 in increasing the total slice cyclic AMP content in the presence of PTH was much more effective than Ro 20-1724 in potentiating carbamylcholine and NaN3-mediated increases in cyclic GMP. These results demonstrate selective inhibition of cyclic nucleotide phosphodiesterase activities in the rat renal cortex and support the possibility of multiple cyclic nucleotide phosphodiesterases in this tissue. Furthermore, both cyclic nucleotides appear to be rapidly degraded in the renal cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号