首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Living processes may be defined as the self-sustained chemical reactions based on the special chemical machinery of nucleic acid-directed protein synthesis. Its genesis may be traced to the molecular interaction between nucleotides and amino acids leading to a primitive adaptor-mediated ordered synthesis of polypeptides. A primitive decoding system is described and its characteristics are shown to imitate, in a primitive manner, the present-day elaborate machinery of protein synthesis. This molecular interaction theory may be rightly considered as the missing link between the Protochemical and biological Evolution. The origin of chiral specificity observed in living organisms is also traced to this specific molecular interaction in the protobiological milieu.  相似文献   

2.
We have earlier (Origins of Life 10 (1980), 15-30) proposed a conformational theory for the origin of nucleic acid-directed adaptor-mediated ordered and proliferative synthesis of proteins and hence origin of life. Conjunction of L-amino acids and beta-D-ribonucleotides emerges as a natural consequence of a template fitting interaction in this theory of the origin of the genetic decoding apparatus. Here we propose an interesting new concept for the origin of chiral specificity, by showing that two autonomously developing systems of protein-synthesizing machinery, one manufacturing L-peptides (L-system) and the other, D-peptides (D-system) could have arisen and during early stages of evolution L-system could have developed a killer enzyme to destroy the D-system, causing the presently existing chiral specificity in all the evolved organisms on Earth. It would be interesting to look for such 'killer enzymes' in the present-day organisms. Of course, the existence of D-amino acid-containing antibiotics gives some credence to this theory.  相似文献   

3.
The ability of the principle of parsimony to accurately reconstruct molecular evolutionary pathways from an analysis of amino acid or nucleic acid sequences from extant organisms is tested by direct comparison with a known pathway. Topological errors occur under specified conditions. Importantly, given no errors in the topology, and error-free experimental sequences, the ancestral sequences inferred by the parsimony principle err significantly, the magnitude of the error increasing with the distance of the nodal sequence from the present. These errors are irreducible as an inherent consequence of any evolutionary process in which chance processes operate within the constraints imposed by Darwinian selection. Formulae are derived which predict the errors in the ancestral sequences from a knowledge of only the internodal distances. The parsimony solution is not a reliably good solution. It is necessary to develop a detailed understanding of the interaction between chance processes and natural selection to further advance our understanding of molecular change in proteins and nucleic acids.  相似文献   

4.
We report conformational energy calculations on our proposal of a molecular interaction theory for the origin of the nucleic acid-directed, adaptor-mediated synthesis of proteins that links the phenomena of chemical and biological evolution. A particular conformation of a pentanucleotide turns out to be a double-sided template for a primitive decoding system. It is able to neatly nestle an amino acid via hydrogen bonds, and this complex is found to be an energetically favourable conformation. The total potential energy of the complex is calculated using semi-empirical potential energy functions. A local-minimum conformation is obtained and its features are reported. The template conformation of the pentanucleotide is found to have an energy value far lower than a regular helical conformation. When the amino acid is nestled in the cleft of the template-conformation through specific hydrogen bonds, the energy is further lowered. A D-amino acid nestled into the PIT (Primitive tRNA) is found to be less stable than its L counterpart, as revealed by energy calculations.  相似文献   

5.
Tight recognition of codon–anticodon pairings by the ribosome ensures the accuracy and fidelity of protein synthesis. In eubacteria, translational surveillance and ribosome rescue are performed by the ‘tmRNA–SmpB’ system (transfer messenger RNA–small protein B). Remarkably, entry and accommodation of aminoacylated‐tmRNA into stalled ribosomes occur without a codon–anticodon interaction but in the presence of SmpB. Here, we show that within a stalled ribosome, SmpB interacts with the three universally conserved bases G530, A1492 and A1493 that form the 30S subunit decoding centre, in which canonical codon–anticodon pairing occurs. The footprints at positions A1492 and A1493 of a small decoding centre, as well as on a set of conserved SmpB amino acids, were identified by nuclear magnetic resonance. Mutants at these residues display the same growth defects as for ΔsmpB strains. The SmpB protein has functional and structural similarities with initiation factor 1, and is proposed to be a functional mimic of the pairing between a codon and an anticodon.  相似文献   

6.
Our present knowledge of the cell structure, which is largely based on electron microscopy, is compared with what was known a few decades ago, when only light microscopy was available to the cytologist. The importance of cytochemical methods for the detection and localization of macromolecules (nucleic acids, proteins) is stressed. But it is pointed out that further analysis, with biochemical techniques, was required in order to understand the actual mechanisms of macromolecule synthesis in the cell (in particular, the relationships existing between nucleic acids and protein synthesis). The importance of genetical analysis in simple systems such as viruses and bacteria for the development of ‘molecular’ biology is then emphasized: in particular, the work of Avery identifying the ‘transforming principle’ with DNA, of Beadle leading to the ‘one gene, one enzyme’ theory, of the virologists who demonstrated that it is the nucleic acid component of viruses which carries the genetical information, have been of fundamental importance for the development of modern biology. No less important has been the work of the X-ray crystallographers (Crick and Watson, Perutz, Kendrew, etc.) who established the fine structure of nucleic acids and of proteins. A brief review and a schematic representation of present ideas regarding the control exerted by DNA on the synthesis of specific proteins are then given: the main characteristics of the different kinds of RNA's, their interactions for the formation of polysomes, the role of the latter in protein synthesis, the main principles of the genetic codes, are briefly summarized. But cells are, in many respects, more complicated than bacteria. The concepts of molecular biology cannot be applied to cell differentiation without a recognition of the greater complexity of animal and plant cells. They represent, however, a most useful and powerful guide for research in that area: for instance, many aspects of morphogenesis in the unicellular alga Acetabularia and in amphibian eggs can be explained on the assumption that messenger RNA's are produced by the nucleus and stored, in a stabilized form, in the cytoplasm during days or even weeks. This stability of messenger RNA's in eggs and algae is at variance with their short life in bacteria. The behaviour of non-nucleate fragments of Acetabularia is surprising in many respects: they are the site, not only of the synthesis of specific proteins, but even of RNA and DNA net synthesis. Such a synthesis of macromolecules, in the absence of the nucleus is probably linked to the presence of the chloroplasts in this alga: they contain DNA, can synthesize RNA and proteins, and can even increase in number in the absence of the nucleus. The presence of large amounts of DNA in the cytoplasm of many animal eggs raises a number of questions and might account for the extremely important role of the cytoplasm in the very early stages of embryonic development. It is concluded that none of the great problems of cell biology will be solved without the help of the techniques and the theoretical ideas which have been so fruitful for the simpler systems used by the molecular biologists.  相似文献   

7.
The physical basis for the natural evolution of a primitive decoding system is presented using the concepts of molecular interactions. Oligoribonucleotides of five residues havingU at the 5-end, a purine at the 3-end and any combination of three bases in the middle is taken as a primitive tRNA (PIT). From conformational considerations PIT is expected to haveU-turn conformation wherein, N3–H3 of baseU hydrogen-bonds with phosphate, three residues ahead leaving triplet bases called primitive anticodons (PAC) into a helical conformation, and this creates a cleft betweenU and PAC. An amino acid can be comfortably nestled into the cleft with the amide hydrogens and carboxyl oxygen hydrogen-bonded to the last purine and the first uridine, while the side-chain can interact with the cleft side of PAC. The other side of PAC is free to base-pair with triplet codons on a longer RNA. Also two PACs can recognize consecutive triplet codons, and this leads to a dynamic interaction in which the amino and carboxyl ends are brought into proximity, making the formation of peptide bond feasible.The cleft formed by different anticodon triplets, broadly speaking, shows preferences for the corresponding amino acids of the presently known codon assignment.Thus the nucleicacid-directed protein synthesis, which is a unique feature of all living organisms is shown to be a natural consequence of a particular way of favourable interaction between nucleic acids and amino acids, and our model provides the missing link between the chemical evolution of small organic molecules and biological evolution through the process of mutations in nucleicacids and nucleicacid-directed protein synthesis.Contribution No. 507 from this department.  相似文献   

8.
Despite the prevalence and importance of carbohydrate polymers, the molecular details of their biosynthesis remain elusive. Many enzymes responsible for the synthesis of carbohydrate polymers require a ‘primer’ or ‘initiator’ carbohydrate sequence. One example of such an enzyme is the mycobacterial galactofuranosyltransferase GlfT2 (Rv3808c), which generates an essential cell wall building block. We recently demonstrated that recombinant GlfT2 is capable of producing a polymer composed of alternating β-(1,5) and β-(1,6)-linked galactofuranose (Galf) residues. Intriguingly, the length of the polymers produced from a synthetic glycosyl acceptor is consistent with those found in the cell wall. To probe the mechanism by which polymer length is controlled, a collection of initiator substrates has been assembled. The central feature of the synthetic route is a ruthenium-catalyzed cross-metathesis as the penultimate transformation. Access to synthetic substrates has led us to postulate a new mechanism for length control in this template-independent polymerization. Moreover, our investigations indicate that lipids possessing but a single galactofuranose residue can act as substrates for GlfT2.  相似文献   

9.
We have used synthetic peptides to study a conserved RNA binding motif in yeast poly(A)-binding protein. Two peptides, 45 and 44 amino acids in length, corresponding to amino and carboxyl halves of a 90-amino acid RNA-binding domain in the protein were synthesized. While the amino-terminal peptide had no significant affinity for nucleic acids, the carboxyl-terminal peptide-bound nucleic acids with similar characteristics to that for the entire 577 residue yeast poly(A)-binding protein. In 100 mM NaCl, the latter peptide retained over 50% of the intrinsic binding free energy of the protein, as well as, similar RNA versus DNA binding specificity. However, shuffling of the sequence of this 44 residue peptide had surprisingly little effect on its nucleic acid binding properties suggesting the overriding importance of amino acid composition as opposed to primary sequence. Deletion studies on the 44 residue peptide with the "correct" sequence succeeded in identifying amino acids important for conferring RNA specificity and for increasing our understanding of the molecular basis for nucleic acid binding by synthetic peptides. The shuffled peptide study, however, clearly indicates that considerable caution must be exercised before extrapolating results of structure/function studies on synthetic peptide analogues to the parent protein.  相似文献   

10.
Alanyl-peptide nucleic acid (alanyl-PNA)/DNA chimeras are oligomers envisaged to be beneficial in efficient DNA diagnostics based on an improved molecular beacon concept. A synthesis of alanyl-PNA/DNA chimera can be based on the solid phase assembly of the oligomer with mixed oligonucleotide/peptide backbone under DNA synthesis conditions, in which the nucleotides are introduced as phosphoramidites, whereas the nucleo amino acids make use of the acid labile monomethoxytrityl (MMT) group for temporary protection of the α-amino groups and acyl protecting groups for the exocyclic amino functions of the nucleobases. In this work, we realized for the first time the synthesis of all four MMT/acyl-protected nucleo alanines, achieved by deprotection/reprotection of the newly synthesized Boc/acyl intermediates, useful monomers for the obtainment of (alanyl-PNA)/DNA chimeras by conditions fully compatible with the standard phosphoramidite DNA synthesis strategy.  相似文献   

11.
A prominent target of monoclonal antibodies as targeted therapies for cancer is the epidermal growth factor receptor, which is overexpressed on the surface of various cancer cell types. Its natural binder, the epidermal growth factor (EGF), is a 53 amino acid polypeptide. Anticancer synthetic targeted immune system engagers (ISErs) comprising two ‘binder’ peptides, which are attached to a scaffold conveying immune stimulating ‘effector’ properties, via monodisperse polyethylene glycol chains. So far, preparation of ISErs has been limited to the use of small peptides (8–20 amino acids) as binding functionalities, and they have been entirely synthesized by solid phase peptide synthesis. Here, we describe a synthetic and a semisynthetic approach for the preparation of an ISEr bearing two murine EGF molecules as binding entities (ISEr‐EGF2). EGF was either synthesized in segments by solid phase peptide synthesis or expressed recombinantly and ligated to the scaffold by native chemical ligation. We report the successful generation of synthetic and semisynthetic ISEr‐EGF2 as well as several challenges encountered during the synthesis and ligations. We demonstrate the application of native chemical ligation for the design of larger ISEr constructs, facilitating new objectives for the coupling of small binder peptides and larger proteins to multivalent ISEr scaffolds. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
L. Pogliani 《Amino acids》1995,9(3):217-228
Summary The linear combinations of connectivity indices method (LCCI) is here employed to model the water solubility and activity of 19 natural amino acids. Starting with the molecular connectivity indices, reciprocal and supra molecular connectivity indices are designed to model the solubility and activity spaces of the natural amino acids. The reciprocal and supra molecular reciprocal connectivity indices have been obtained following the variability of the connectivity indices along solubility space of the natural amino acids. A linear combination of the reciprocals of the connectivity indices (LCRCI) showed a satisfactory modelling of the solubility and activity space while a model based on the LCRCI together with the introduction of supra reciprocal molecular connectivity indices for Pro, Ser and Arg achieved an optimal modelling of the solubility and activity space of the natural amino acids. Because the properties are a consequence of the structure (Kier and Hall, 1986)  相似文献   

13.
The biosynthesis of the cyclic octadecapeptide, alamethicin, in a cell-free system of Trichoderma viride has been investigated. It was shown that nucleic acid- and ribo-some-free extracts of Trichoderma viride could catalyze alamethicin biosynthesis. Puromycin, erythromycin and RNAse did not inhibit this synthesis. The Sephadex G 200 filtrate contains a fraction (Kav=0.1) that catalyzes the biosynthesis of alamethicin and shows an ATP-32PPi exchange with 6 of the 8 constituent amino acids of alamethicin. The activated amino acids are bound to the enzyme as aminoacyl adenylates and as thiolesters in a proportion of 1 : 1. About 50% of each bound amino acid could be split off with 7% TCA. The TCA-stable bound amino acid could be split by mercury acetate, hydroxylamine and performic acid. N-ethylmaleimide blocked the binding of 50% of the amino acids to the enzyme, proving that some of the amino acids first bound as aminoacyl adenylates are then transferred into a thiolester bond.  相似文献   

14.
Amino acid nitrogen isotopic analysis is a relatively new method for estimating trophic position. It uses the isotopic difference between an individual’s ‘trophic’ and ‘source’ amino acids to determine its trophic position. So far, there is no accepted explanation for the mechanism by which the isotopic signals in ‘trophic’ and ‘source’ amino acids arise. Yet without a metabolic understanding, the utility of nitrogen isotopic analyses as a method for probing trophic relations, at either bulk tissue or amino acid level, is limited. I draw on isotopic tracer studies of protein metabolism, together with a consideration of amino acid metabolic pathways, to suggest that the ‘trophic’/‘source’ groupings have a fundamental metabolic origin, to do with the cycling of amino-nitrogen between amino acids. ‘Trophic’ amino acids are those whose amino-nitrogens are interchangeable, part of a metabolic amino-nitrogen pool, and ‘source’ amino acids are those whose amino-nitrogens are not interchangeable with the metabolic pool. Nitrogen isotopic values of ‘trophic’ amino acids will reflect an averaged isotopic signal of all such dietary amino acids, offset by the integrated effect of isotopic fractionation from nitrogen cycling, and modulated by metabolic and physiological effects. Isotopic values of ‘source’ amino acids will be more closely linked to those of equivalent dietary amino acids, but also modulated by metabolism and physiology. The complexity of nitrogen cycling suggests that a single identifiable value for ‘trophic discrimination factors’ is unlikely to exist. Greater consideration of physiology and metabolism should help in better understanding observed patterns in nitrogen isotopic values.  相似文献   

15.
Conformational similarity among amino acid residues, a property derived by analysing (φ, ψ)-probability distributions of 20 proteinous amino acids from 38 different globular proteins, is used to arrive at a set of six ‘obligatory’ amino acids of primitive proteins. The amino acids Ser, Val, Leu, Asp, Gly and Pro have been argued to be ‘obligatory’ and to represent, conformationally, the remaining amino acids. The reasons for consideration of these six residues as ‘obligatory’ are discussed. Methods to check the validity of our proposition are suggested.  相似文献   

16.
Some of the chemistry of amino acids going on in our laboratory (Laboratoire des Amino acides Peptides et Protéines) is described as well as some mass spectrometry methodology for their characterization particularly on solid supports. Several aspects are presented including: (i) the stereoselective synthesis of natural and unnatural amino acids using 2-hydroxypinan-3-one as chiral auxiliary; (ii) the stereoselective synthesis of natural and unnatural amino acids by deracemization of alpha-amino acids via their ketene derivatives; (iii) the synthesis of alpha-aryl-alpha-amino acids via reaction of organometallics with a glycine cation; (iv) the diastereoselective synthesis of glycosyl-alpha-amino acids; (v) the synthesis of beta-amino acids using alpha-aminopyrrolidinopiperazinediones as chiral templates; (vi) the reactivity of urethane-N-protected N-carboxyanhydrides. To characterize natural and non natural amino acids through their immonium ions by mass spectrometry, some methodology is also described.  相似文献   

17.
The glycan code of glycoproteins can be conceptually defined at molecular level by the sequence of well characterized glycans attached to evolutionarily predetermined amino acids along the polypeptide chain. Functional consequences of protein glycosylation are numerous, and include a hierarchy of properties from general physicochemical characteristics such as solubility, stability and protection of the polypeptide from the environment up to specific glycan interactions. Definition of the glycan code for glycoproteins has been so far hampered by the lack of chemically defined glycoprotein glycoforms that proved to be extremely difficult to purify from natural sources, and the total chemical synthesis of which has been hitherto possible only for very small molecular species. This review summarizes the recent progress in chemical and chemoenzymatic synthesis of complex glycans and their protein conjugates. Progress in our understanding of the ways in which a particular glycoprotein glycoform gives rise to a unique set of functional properties is now having far reaching implications for the biotechnology of important glycodrugs such as therapeutical monoclonal antibodies, glycoprotein hormones, carbohydrate conjugates used for vaccination and other practically important protein–carbohydrate conjugates.  相似文献   

18.
Detailed calculations of the conformational characteristics of a primitive decoding system are presented. A penta-nucleotide serves as the primitive tRNA (PIT) with a triplet of primitive anticodon (PAC) in a helical conformation. This molecular moiety has a cleft in the middle. An amino acid can comfortably nestle into the cleft. The conformation of this molecular association is stabilised by a few hydrogen bonds. The stereochemistry of the moiety restricts the conformational possibilities and the sidechain of the amino acid gets oriented at a proper position and in the correct direction to interact intimately with the PAC in the middle of the PIT. The model favours L-amino acids for beta-D-ribonucleotides. The location of the sidechain of the amino acid in the PIT gives a raison d'être for the important features of the organisation of nucleotide triplets for amino acids in the Genetic Code. The interaction of a few key amino acids with the different combinations of bases as PAC sequences has been studied and the stereochemical basis for the selection of the anticodons for amino acids is elucidated.  相似文献   

19.
shCherbak VI 《Bio Systems》2003,70(3):187-209
The first information system emerged on the earth as primordial version of the genetic code and genetic texts. The natural appearance of arithmetic power in such a linguistic milieu is theoretically possible and practical for producing information systems of extremely high efficiency. In this case, the arithmetic symbols should be incorporated into an alphabet, i.e. the genetic code. A number is the fundamental arithmetic symbol produced by the system of numeration. If the system of numeration were detected inside the genetic code, it would be natural to expect that its purpose is arithmetic calculation e.g., for the sake of control, safety, and precise alteration of the genetic texts. The nucleons of amino acids and the bases of nucleic acids seem most suitable for embodiments of digits. These assumptions were used for the analyzing the genetic code.

The compressed, life-size, and split representation of the Escherichia coli and Euplotes octocarinatus code versions were considered simultaneously. An exact equilibration of the nucleon sums of the amino acid standard blocks and/or side chains was found repeatedly within specified sets of the genetic code. Moreover, the digital notations of the balanced sums acquired, in decimal representation, the unique form 111, 222, …, 999. This form is a consequence of the criterion of divisibility by 037. The criterion could simplify some computing mechanism of a cell if any and facilitate its computational procedure. The cooperative symmetry of the genetic code demonstrates that possibly a zero was invented and used by this mechanism. Such organization of the genetic code could be explained by activities of some hypothetical molecular organelles working as natural biocomputers of digital genetic texts.

It is well known that if mutation replaces an amino acid, the change of hydrophobicity is generally weak, while that of size is strong. The antisymmetrical correlation between the amino acid size and the degeneracy number is known as well. It is shown that these and some other familiar properties may be a physicochemical effect of arithmetic inside the genetic code.

The “frozen accident” model, giving unlimited freedom to the mapping function, could optimally support the appearance of both arithmetic symbols and physicochemical protection inside the genetic code.  相似文献   


20.
We propose the new approach to the synthesis of 5'-triphosphate derivatives of natural and modified dinucleotides with expanded functionality. Our strategy includes the combination of the solution phase synthesis of necessary dimers using the wide range of nucleic acids chemistry methods and the subsequent introduction of the triphosphate residue. A number of the new potential substrates for the template dependent synthesis of nucleic acids with expanded functionality are obtained, namely, 5'-triphosphates of dinucleotides containing the functionally active groups in heterocyclic bases, in carbohydrate-phosphate backbone, and the groups mimicking the residues of natural amino acids. The abilities of the proposed synthetic route are also demonstrated by the synthesis of 5'-triphosphates of dinucleotides with modified carbohydrate-phosphate backbone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号