首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The footpad skin and the lumbosacral dorsal root ganglia were removed from inbred guinea pigs at different times after subcutaneous infection with herpes simplex virus type 2 (HSV-2) in both hind footpads. These tissues, shown by our previous study to harbor latent HSV, were dispersed into single cells. The presence of virus-specific thymidine kinase (TK) in these cells was assayed by the uptake and phosphorylation of [125I]deoxycytidine in culture. [125I]deoxycytidine was shown to be a specific substrate for the HSV-coded TK. The method could detect herpes TK activity in a culture of 10(6) cells with less than 0.1% of the cells being virally infected. The enzyme was readily detected in footpad cells of acutely (24 h) but not of latently (14 days to 1 year) infected guinea pigs. No herpes TK was found either in the sensory ganglionic cells of guinea pigs during the early and late phases of latent infection. It is concluded that HSV-2, while residing in the footpads and the lumbosacral ganglia of the guinea pig during latent infection, does not express any viral TK function.  相似文献   

2.
A new assay method for the measurement of thymidine kinase (TK) is described. Cytosols were prepared from TK- and TK+ cells and evaluated for TK activity using an assay which is based on the phosphorylation of [125I]-iododeoxyuridine, [125I]-iododeoxycytidine, or [3H]thymidine and the precipitation of the monophosphates of these nucleosides by lanthanum chloride. The specificity, reproducibility, sensitivity, and convenience of this assay are demonstrated.  相似文献   

3.
4.

Background

Bacteria can be selectively imaged in experimentally-infected animals using exogenously administered 1-(2′deoxy-2′-fluoro-β-D-arabinofuranosyl)-5-[125I]-iodouracil ([125I]-FIAU), a nucleoside analog substrate for bacterial thymidine kinase (TK). Our goal was to use this reporter and develop non-invasive methods to detect and localize Mycobacterium tuberculosis.

Methodology/Principal Findings

We engineered a M. tuberculosis strain with chromosomally integrated bacterial TK under the control of hsp60 - a strong constitutive mycobacterial promoter. [125I]FIAU uptake, antimicrobial susceptibilities and in vivo growth characteristics were evaluated for this strain. Using single photon emission computed tomography (SPECT), M. tuberculosis Phsp60 TK strain was evaluated in experimentally-infected BALB/c and C3HeB/FeJ mice using the thigh inoculation or low-dose aerosol infection models. M. tuberculosis Phsp60 TK strain actively accumulated [125I]FIAU in vitro. Growth characteristics of the TK strain and susceptibility to common anti-tuberculous drugs were similar to the wild-type parent strain. M. tuberculosis Phsp60 TK strain was stable in vivo and SPECT imaging could detect and localize this strain in both animal models tested.

Conclusion

We have developed a novel tool for non-invasive assessment of M. tuberculosis in live experimentally-infected animals. This tool will allow real-time pathogenesis studies in animal models of TB and has the potential to simplify preclinical studies and accelerate TB research.  相似文献   

5.
Endothelin-1 (ET-1)[1-31] is a novel hypertensive peptide that mimics many of the vascular effects of the classic 21 amino acid peptide ET-1[1-21]. However, at variance with ET-1[1-21] that enhances aldosterone secretion from cultured rat zona glomerulosa (ZG) cells by acting via ETB receptors, ET-1[1-31] did not elicit such effect. Both ET-1[1-21] and ET-1[1-31] raised the proliferation rate of cultured ZG cells, the maximal effective concentration being 10(-8) M. This effect was blocked by the ETA-receptor antagonist BQ-123 and unaffected by the ETB-receptor antagonist BQ-788. Quantitative autoradiography showed that ET-1[1-21] displaced both [(125)I]PD-151242 binding to ETA receptors and [(125)I]BQ-3020 binding to ETB receptors in both rat ZG and adrenal medulla, while ET-1[1-31] displaced only [(125)I]BQ-3020 binding. The tyrosine kinase (TK) inhibitor tyrphostin-23 and the p42/p44 mitogen-activated protein kinase (MAPK) inhibitor PD-98059 abolished the proliferogenic effect of ET-1[1-31], while the protein kinase-C (PKC) inhibitor calphostin-C significantly reduced it. ET-1[1-31] (10(-8) M) stimulated TK and MAPK activity of dispersed ZG cells, an effect that was blocked by BQ-123. The stimulatory action of ET-1[1-31] on TK activity was annulled by tyrphostin-23, while that on MAPK activity was reduced by calphostin-C and abolished by either tyrphostin-23 and PD-98059. These data suggest that ET-1[1-31] is a selective agonist of the ETA-receptor subtype, and enhances proliferation of cultured rat ZG cells through the PKC- and TK-dependent activation of p42/p44 MAPK cascade.  相似文献   

6.
The thymidine kinase gene encoded by herpesvirus of turkeys has been identified and characterized. A viral mutant (ATR0) resistant to 1-beta-D-arabinofuranosylthymine was isolated. This mutant was also resistant to 1-(2-fluoro-2-deoxy-beta-D-arabinofuronosyl)-5-methyluracil and was unable to incorporate [125I]deoxycytidine into DNA. The mutant phenotype was rescued by a cloned region of the turkey herpesvirus genome whose DNA sequence was found to contain an open reading frame similar to that for known thymidine kinases from other viruses. When expressed in Escherichia coli, this open reading frame complemented a thymidine kinase-deficient strain and resulted in thymidine kinase activity in extracts assayed in vitro.  相似文献   

7.
In eukaryotic cells deoxyribonucleoside kinases belonging to three phylogenetic sub-families have been found: (i) thymidine kinase 1 (TK1)-like enzymes, which are strictly pyrimidine deoxyribonucleoside-specific kinases; (ii) TK2-like enzymes, which include pyrimidine deoxyribonucleoside kinases and a single multisubstrate kinase from Drosophila melanogaster (Dm-dNK); and (iii) deoxycytidine/deoxyguanosine kinase (dCK/dGK)-like enzymes, which are deoxycytidine and/or purine deoxyribonucleoside-specific kinases. We cloned and characterized two new deoxyribonucleoside kinases belonging to the TK2-like group from the insect Bombyx mori and the amphibian Xenopus laevis. The deoxyribonucleoside kinase from B. mori (Bm-dNK) turned out to be a multisubstrate kinase like Dm-dNK. But uniquely for a deoxyribonucleoside kinase, Bm-dNK displayed positive cooperativity with all four natural deoxyribonucleoside substrates. The deoxyribonucleoside kinase from X. laevis (Xen-PyK) resembled closely the human and mouse TK2 enzymes displaying their characteristic Michaelis-Menten kinetic with deoxycytidine and negative cooperativity with its second natural substrate thymidine. Bm-dNK, Dm-dNK and Xen-PyK were shown to be homodimers. Significant differences in the feedback inhibition by deoxyribonucleoside triphosphates between these three enzymes were found. The insect multisubstrate deoxyribonucleoside kinases Bm-dNK and Dm-dNK were only inhibited by thymidine triphosphate, while Xen-PyK was inhibited by thymidine and deoxycytidine triphosphate in a complex pattern depending on the deoxyribonucleoside substrate. The broad substrate specificity and different feedback regulation of the multisubstrate insect deoxyribonucleoside kinases may indicate that these enzymes have a different functional role than the other members of the TK2-like group.  相似文献   

8.
Here bicyclo[3.1.0]hexane locked deoxycytidine (S-MCdC, N-MCdC), and deoxyadenosine analogs (S-MCdA and N-MCdA) were examined as substrates for purified preparations of human deoxynucleoside kinases: dCK, dGK, TK2, TK1, the ribonucleoside kinase UCK2, two NMP kinases (CMPK1, TMPK) and a NDP kinase.

dCK can be important for the first step of phosphorylation of S-MCdC in cells, but S-MCdCMP was not a substrate for CMPK1, TMPK, or NDPK.

dCK and dGK had a preference for the S-MCdA whereas N-MCdA was not a substrate for dCK, TK1, UCK2, TK2, dGK nucleoside kinases. The cell growth experiments suggested that N-MCdC and S-MCdA could be activated in cells by cellular kinases so that a triphosphate metabolite was formed.

List of abbreviations: ddC, 2′, 3′-didioxycytosine, Zalcitabine; 3TC, β-L-(-)-2′,3′-dideoxy-3′-thiacytidine, Lamivudine; CdA, 2-cloro-2′-deoxyadenosine, Cladribine; AraA, 9-β-D-arabinofuranosyladenine; hCNT 1–3, human Concentrative Nucleoside Transporter type 1, 2 and 3; hENT 1–4, human Equilibrative Nucleoside Transporter type 1, 2, 3, and 4.  相似文献   

9.
Deoxynucleoside kinases catalyze the 5'-phosphorylation of 2'-deoxyribonucleosides with nucleoside triphosphates as phosphate donors. One of the cellular kinases, deoxycytidine kinase (dCK), has been shown to phosphorylate several L-nucleosides that are efficient antiviral agents. In this study we investigated the potentials of stereoisomers of the natural deoxyribonucleoside to serve as substrates for the recombinant cellular deoxynucleoside kinases. The cytosolic thymidine kinase exhibited a strict selectivity and phosphorylated only beta-D-Thd, while the mitochondrial thymidine kinase (TK2) and deoxyguanosine kinase (dGK) as well as dCK all had broad substrate specificities. TK2 phosphorylated Thd and dCyd stereoisomers in the order: beta-D- > or = beta-L- > alpha-D- > or = alpha-L-isomer. dCK activated both enantiomers of beta-dCyd, beta-dGuo, and beta-dAdo with similar efficiencies, and alpha-D-dCyd also served as a substrate. dGK phosphorylated the beta-dGuo enantiomers with no preference for the ribose configuration; alpha-L-dGuo was also phosphorylated, and beta-L-dAdo and beta-L-dCyd were substrates but showed reduced efficiencies. The anomers of the 2',3'-dideoxy-D-nucleosides (ddNs) were tested, and TK2 and dCK retained their low selectivities. Unexpectedly, alpha-dideoxycytidine (ddC) was a 3-fold better substrate for dCK than beta-ddC. Similarly, alpha-dideoxythymidine (ddT) was a better substrate for TK2 than beta-ddT. dGK did not accept any D-ddNs. Thus, TK2, dCK, and dGK, similar to herpes simplex virus type 1 thymidine kinase (HSV-1 TK), showed relaxed stereoselectivities, and these results substantiate the functional similarities within this enzyme family. Docking simulations with the Thd isomers and the active site of HSV-1 TK showed that the viral enzyme may in some respects serve as a model for studying the substrate specificities of the cellular enzymes.  相似文献   

10.
Human cells salvage pyrimidine deoxyribonucleosides via 5'-phosphorylation which is also the route of activation of many chemotherapeutically used nucleoside analogs. Key enzymes in this metabolism are the cytosolic thymidine kinase (TK1), the mitochondrial thymidine kinase (TK2) and the cytosolic deoxycytidine kinase (dCK). These enzymes are expressed differently in different tissues and cell cycle phases, and they display overlapping substrate specificities. Thymidine is phosphorylated by both thymidine kinases, and deoxycytidine is phosphorylated by both dCK and TK2. The enzymes also phosphorylate nucleoside analogs with very different efficiencies. Here we present specific radiochemical assays for the three kinase activities utilizing analogs as substrates that are by more than 90 percent phosphorylated solely by one of the kinases; i.e. 3'-azido-2',3'-dideoxythymidine (AZT) as substrate for TK1, 1-beta-D-arabinofuranosylthymidine (AraT) for TK2 and 2-chlorodeoxyadenosine (CdA) for dCK. We determined the fraction of the total deoxycytidine and thymidine phosphorylating activity that was provided by each of the three enzymes in different human cells and tissues, such as resting and proliferating lymphocytes, lymphocytic cells of leukemia patients (chronic lymphocytic, chronic myeloic and hairy cell leukemia), muscle, brain and gastrointestinal tissue. The detailed knowledge of the pyrimidine deoxyribonucleoside kinase activities and substrate specificities are of importance for studies on chemotherapeutically active nucleoside analogs, and the assays and data presented here should be valuable tools in that research.  相似文献   

11.
Nucleoside analogues with modified sugar moieties have been examined for their substrate/inhibitor specificities towards highly purified deoxycytidine kinase (dCK) and thymidine kinases (tetrameric high-affinity form of TK1, and TK2) from human leukemic spleen. In particular, the analogues included the mono- and di-O'-methyl derivatives of dC, dU and dA, syntheses of which are described. In general, purine nucleosides with modified sugar rings were feebler substrates than the corresponding cytosine analogues. Sugar-modified analogues of dU were also relatively poor substrates of TK1 and TK2, but were reasonably good inhibitors, with generally lower Ki values vs TK2 than TK1. An excellent discriminator between TK1 and TK2 was 3'-hexanoylamino-2',3'-dideoxythymidine, with a Ki of approximately 600 microM for TK1 and approximately 0.1 microM for TK2. 3'-OMe-dC was a superior inhibitor of dCK to its 5'-O-methyl congener, consistent with possible participation of the oxygen of the (3')-OH or (3')-OMe as proton acceptor in hydrogen bonding with the enzyme. Surprisingly alpha-dT was a good substrate of both TK1 and TK2, with Ki values of 120 and 30 microM for TK1 and TK2, respectively; and a 3'-branched alpha-L-deoxycytidine analogue proved to be as good a substrate as its alpha-D-counterpart. Several 5'-substituted analogues of dC were good non-substrate inhibitors of dCK and, to a lesser extent, of TK2. Finally, some ribonucleosides are substrates of the foregoing enzymes; in particular C is a good substrate of dCK, and 2'-OMe-C is an even better substrate than dC.  相似文献   

12.
The accumulation of deoxycytidine by rabbit and mouse brain was studied in vitro. Brain slices from brain stem, cerebellum, and forebrain of rabbits of various ages (1 day to 2.5 years) and forebrain from adult mice were incubated for various times in artificial CSF containing 6 nM [3H]deoxycytidine at 37 degrees C under 95% O2/5% CO2. Rabbit and mouse brain slices of all ages accumulated [3H]deoxycytidine by a saturable system (IC50 = 4 microM) and converted it to [3H]deoxycytidine phosphates and [3H]DNA. When slices from all brain regions of 1-day-old rabbits were incubated in 6 nM [3H]deoxycytidine for 30 min, tissue-to-medium ratios of 3H were between 1.2 and 2.5 and declined with age, except in cortex; the percentages of total 3H in perchloric acid homogenates of brain slices as [3H]DNA were 10-24% and declined to low levels in middle age. However, at all ages and in all regions tested, 30-85% of the [3H]deoxycytidine within the slices was phosphorylated. After homogenization and subcellular fractionation of the brain slices incubated in [3H]deoxycytidine for 30 min, the highest percentage of [3H]deoxycytidine phosphates plus [3H]DNA was present in the nuclear and mitochondrial fractions of all brain regions. Deoxycytidine phosphates were synthesized from deoxycytidine in all brain regions tested into middle age.  相似文献   

13.
N-acetylglucosaminyltransferase V (GnT-V) is one of the most relevant glycosyltransferases to tumor invasion and metastasis. Based on previous findings of molecular recognition between GnT-V and synthetic substrates, we designed and synthesized a p-iodophenyl-derivatized trisaccharide, 2-(4-iodophenyl)ethyl 6-O-[2-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-α-d-mannopyranosyl]-β-D-glucopyranoside (IPGMG, 1) and its radiolabeled form, [(125)I]IPGMG ([(125)I]1), for use in assays of GnT-V activity in vitro. The tributyltin derivative, 2-[4-(n-tributylstannyl)phenyl]ethyl 6-O-[2-O-(3,4,6-tri-O-acetyl-2-acetamido-2-deoxy-β-D-glucopyranosyl)-3,4,6-tri-O-acetyl-α-D-mannopyranosyl]-2,3,4-tri-O-acetyl-β-D-glucopyranoside (21), was synthesized as a precursor for the preparation of [(125)I]1. The iododestannylation of 21 using hydrogen peroxide as an oxidant followed by deacetylation yielded [(125)I]1. When [(125)I]1 was incubated in GnT-V-expressing cells with a UDP-GlcNAc donor, the production of β1-6GlcNAc-bearing IPGMG (IPGGMG, 2) was confirmed by radio-HPLC. In kinetic analysis, 1 was found to be a good substrate with a K(m) of 23.7 μM and a V(max) of 159 pmol/h. μg protein. [(125)I]1 would therefore be a useful synthetic substrate for the quantitative determination of GnT-V activity.  相似文献   

14.
The thymidine mimics isocarbostyril nucleosides and difluorophenyl nucleosides were tested as deoxynucleoside kinase substrates using recombinant human cytosolic thymidine kinase (TK1) and deoxycytidine kinase (dCK), and mitochondrial thymidine kinase (TK2) and deoxyguanosine kinase (dGK). The isocarbostyril nucleoside compound 1-(2-deoxy-beta-D-ribofuranosyl)-isocarbostyril (EN1) was a poor substrate with all the enzymes. The phosphorylation rates of EN1 with TK1 and TK2 were <1% relative to Thd, where as the phosphorylation rates for EN1 were 1.4% and 1.1% with dCK and dGK relative to dCyd and dGuo, respectively. The analogue 1-(2-deoxy-beta-D-ribofuranosyl)-7-iodoisocarbostyril (EN2) showed poor relative-phosphorylation efficiencies (kcat/Km) with both TK1 and dGK, but not with TK2. The kcat/Km value for EN2 with TK2 was 12.6% relative to that for Thd. Of the difluorophenyl nucleosides, 5-(1'-(2'-deoxy-beta-D-ribofuranosyl))-2,4-difluorotoluene (JW1) and 1-(1'-(2'-deoxy-beta-D-ribofuranosyl))-2,4-difluoro-5-iodobenzene (JW2) were substrates for TK1 with phosphorylation efficiencies of about 5% relative to that for Thd. Both analogues were considerably more efficient substrates for TK2, with kcat/Km values of 45% relative to that for Thd. 2,5-Difluoro-4-[1-(2-deoxy-beta-L-ribofuranosyl)]-aniline (JW5), a L-nucleoside mimic, was phosphorylated up to 15% as efficiently as deoxycytidine by dCK. These data provide a possible explanation for the previously reported lack of cytotoxicity of the isocarbostyril- and difluorophenyl nucleosides, but potential mitochondrial effects of EN2, JW1 and JW2 should be further investigated.  相似文献   

15.
The nucleoside analogue, 1-(2-deoxy-2-fluoro-1-d-arabinofuranosyl)-5-iodouracil (FIAU) is a substrate for thymidine kinase (TK), which is commonly expressed in bacteria. It is currently being investigated in clinical studies as an in vivo bacterial infection detection agent. In developing countries where imaging facilities are not readily available, deploying such technology can be a big hurdle. However, a portable ex vivo system might provide a good alternative. In an in vitro system, [125I]-FIAU incubated with bacteria is phosphorylated by TK, and is trapped within the bacteria, which can be detected by radioscintography. The suitability of this agent to be utilized as part of an ex vivo bacterial detection system was evaluated. In the first part of this report, the optimization of the incubation and detection condition using E. coli as a test case is described. Samples were incubated in a growth promoting medium containing the label, then after filtering and washing, the amount of radioactivity trapped on the filter was quantitated by a scintillation counter. As a proof of concept demonstration, blinded urine samples from urinary tract infection (UTI) patients and normal donors were tested in the FIAU system. Of the 13 UTI positive and 15 normal urine samples tested, there were 2 false negatives and 1 false positive, respectively. Potential explanations for the false positive and negatives as well as the commercialization possibility of this system will be discussed.  相似文献   

16.
The biological synthesis and purification of 5-[125I]iododeoxyuridine monophosphate (IdUMP) are described. The specificity of IdUMP as substrate in the thymidylate monophosphate kinase (TMPK) assay is demonstrated, and a 100-fold gain in sensitivity as compared to the conventional TMPK assay is shown. TMPK measurements of isozymes derived from herpes simplex virus (HSV)-infected cells, uninfected cells, and tumor biopsies were performed. The results showed a significant difference in dependence of phosphate donor concentration present for TMPK activity from HSV-infected cells compared to the corresponding activity from uninfected cells, while only a minor difference in pH optima was observed for these enzyme activities. The increased sensitivity made it possible to detect and quantify HSV TMPK-blocking antibodies (ab) present in human sera. Sera from HSV ab-positive individuals were found to block the two HSV TMPKs to varying degrees and with different specificities. The immunological relationship between the TMPK and thymidine kinase (TK) induced by HSV-1 and HSV-2, respectively, was studied by comparing the capacities of different sera to block the two enzymatic activities. The results showed that the capacity to block HSV-1 TK and TMPK was proportional for all of the sera studied, while sera that preferentially blocked only the HSV-2 TMPK or HSV-2 TK were found. It was concluded that the HSV-2 TMPK and TK activities are less related than the corresponding activities for HSV-1 and that the HSV-2 enzyme activities are mediated by different catalytic sites.  相似文献   

17.
Abstract

Nucleoside analogues with modified sugar moieties have been examined for their substrate/inhibitor specificities towards highly purified deoxycytidine kinase (dCK) and thymidine kinases (tetrameric high-affinity form of TK1, and TK2) from human leukemic spleen. In particular, the analogues included the mono-and di-O′-methyl derivatives of dC, dU and dA, syntheses of which are described. In general, purine nucleosides with modified sugar rings were feebler substrates than the corresponding cytosine analogues. Sugar-modified analogues of dU were also relatively poor substrates of TK1 and TK2, but were reasonably good inhibitors, with generally lower Ki values vs TK2 than TK1. An excellent discriminator between TK1 and TK2 was 3′-hexanoylamino-2′,3′-dideoxythymidine, with a Ki of ~600 μM for TK1 and ~0.1 μM for TK2. 3′-OMe-dC was a superior inhibitor of dCK to its 5′-O-methyl congener, consistent with possible participation of the oxygen of the (3′)-OH or (3′)-OMe as proton acceptor in hydrogen bonding with the enzyme. Surprisingly α-dT was a good substrate of both TK1 and TK2, with Ki values of 120 and 30 μM for TK1 and TK2, respectively; and a 3′-branched α-L-deoxycytidine analogue proved to be as good a substrate as its α-D-counterpart. Several 5 ′-substituted analogues of dC were  相似文献   

18.
The regulation of growth hormone gene expression by thyroid hormone in cultured GH1 cells is mediated by a chromatin-associated receptor. We have previously described a photoaffinity label derivative of 3,5,3'-triiodo-L-thyronine (L-T3) in which the alanine side chain was modified to form N-2-diazo-3,3,3-trifluoropropionyl-L-T3 (L-[125I]T3-PAL). On exposure to 254 nm UV light, L-[125I]T3-PAL generates a carbene which covalently modifies two thyroid hormone receptor forms in intact GH1 cells; an abundant 47,000 Mr species and a less abundant 57,000 Mr form. We have now synthesized similar photoaffinity label derivatives of 3,5,3',5'-tetraiodo-L-thyronine (L-T4) and 3,3',5'-triiodo-L-thyronine (L-rT3). Both compounds identify the same receptor forms in intact cells and in nuclear extracts in vitro as L-[125I]T3-PAL. Labeling by L-[125I]rT3-PAL was low and consistent with the very low occupancy of receptor by L-rT3. Underivatized L-[125I]T3 and L-[125I]T4 labeled the same receptor forms at 254 nm but at a markedly lower efficiency than their PAL derivatives. In contrast, N-bromoacetyl-L-[125I]T3, a chemical affinity labeling agent, did not derivatize either receptor form in vitro. The relative efficiency of coupling to receptor at 254 nm was L-[125I]T4-PAL greater than L-[125I]T3-PAL greater than L-[125I]T4 greater than L-[125I]T3. Although L-[125I]T4-PAL has a lower affinity for receptor than L-[125I]T3-PAL, its coupling efficiency was 5-10-fold higher. This suggests that the alanine side chain of L-[125I]T4-PAL is positioned in the ligand binding region near a residue which is efficiently modified by photoactivation. With L-[125I]T4-PAL we were able to identify three different molecular weight receptor species in human fibroblast nuclei.  相似文献   

19.
Cultured monkey hepatocarcinoma cells were incubated with [3',5'-125I] diiodo-L--thyronine and with [3,5-125I] diiodo-L-thyronine. In both instances monodeiodination as well as sulfoconjugation took place. [3.-125I] iodothyronine and [3',5'-125I] diiodothyronine were identified as metabolites of [3'-5'-125I]-L-thyroxine in the cells, but neither [3-125I]-iodothyronine nor [3,5-125I] diiodothyronine was detected after incubation of the cells with ]3,5-125I]-L-thyroxine. No products of diphenyl ether splitting were observed in the medium after incubation of the cells with either [3,5-125I] diiodo-L-thyronine or [3,5-125I]-L-thyroxine.  相似文献   

20.
VPg unlinkase is an unusual eukaryotic enzyme that catalyzes hydrolysis of the phosphodiester bond between residues of the unique tyrosine of VPg (viral protein genome-linked) and the 5"-terminal uridylic acid of picornavirus RNA. Cellular targets of the VPg unlinking enzyme are yet unknown. To determine an essential nucleic part of the covalent linkage unit that is necessary for the VPg unlinkase reaction, the following derivatives of the encephalomyocarditis virus (EMCV) VPg–RNA complex were used: [125I]Kp–pUpUpGp, [125I]Kp–pUp, and [125I]Kp–pU (Kp is residual peptides bound to RNA after proteinase K treatment of VPg–RNA). [125I]K-peptides were unlinked from [125I]Kp–pUpUpGp and [125I]Kp–RNA with similar velocity, but [125I]Kp–pUp was split much slower. Under the same conditions [125I]Kp–pU was not dissociated at all. Thus, pUp is a minimal part of picornavirus RNA that is necessary for VPg unlinkase. We speculate that cellular substrates of the enzyme are phosphodiesters of oligo(poly)ribonucleotides and tyrosine or tyrosine peptides. In no case [125I]VPg–pU, [125I]VPg–pUp, and [125I]VPg–pUpUpGp were hydrolyzed by VPg unlinkase, in contrast with [125I]VPg–RNA and [125I]VPg–pUpUpGpApApApGp. We conclude that the whole VPg, when bound to trinucleotide (but not to heptanucleotide), protects the inter-polymeric phosphodiester bond against hydrolysis of the covalent linkage unit. We speculate that VPg unlinkase might repair covalent complexes of RNA and topoisomerases and trigger degradation process of the picornavirus RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号