首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent investigations on the molecular mechanisms by which our immune system recognizes infections and initiates defense against those infections have led to the proposition of two models explaining the way our innate immunity system functions; the self-nonself model and the Danger model. In this review, the roles of galectin-3 in innate immunity against infections—host-pathogen interactions—will be discussed. We will shed light on the potential contribution of a β-galactoside binding mammalian lectin, galectin-3 as a molecule implicated in innate immunity from the angle of both the self-nonself model and the Danger model. Published in 2004.  相似文献   

2.
Trichomoniasis is the most common non-viral sexually transmitted infection caused by the vaginotropic extracellular protozoan parasite Trichomonas vaginalis. The infection is recurrent, with no lasting immunity, often asymptomatic, and linked to pregnancy complications and risk of viral infection. The molecular mechanisms of immune evasion by the parasite are poorly understood. We demonstrate that galectin-1 and -3 are expressed by the human cervical and vaginal epithelial cells and act as pathogen-recognition receptors for the ceramide phosphoinositol glycan core (CPI-GC) of the dominant surface protozoan lipophosphoglycan (LPG). We used an in vitro model with siRNA galectin knockdown epithelial clones, recombinant galectins, clinical Trichomonas isolates, and mutant protozoan derivatives to dissect the function of galectin-1 and -3 in the context of Trichomonas infection. Galectin-1 suppressed chemokines that facilitate recruitment of phagocytes, which can eliminate extracellular protozoa (IL-8) or bridge innate to adaptive immunity (MIP-3α and RANTES (regulated on activation normal T cell expressed and secreted)). Silencing galectin-1 increased and adding exogenous galectin-1 suppressed chemokine responses to Trichomonas or CPI-GC/LPG. In contrast, silencing galectin-3 reduced IL-8 response to LPG. Live Trichomonas depleted the extracellular levels of galectin-3. Clinical isolates and mutant Trichomonas CPI-GC that had reduced affinity to galectin-3 but maintained affinity to galectin-1 suppressed chemokine expression. Thus via CPI-GC binding, Trichomonas is capable of regulating galectin bioavailability and function to the benefit of its parasitic survival. These findings suggest novel approaches to control trichomoniasis and warrant further studies of galectin-binding diversity among clinical isolates as a possible source for symptom disparity in parasitic infections.  相似文献   

3.
The immune system is often said to function by "self-nonself" discrimination. Recently, some have argued that it actually detects "danger" or "strangers". There are problems with all of these points of view. Given that the immune system has been cobbled together throughout evolution and uses a diverse array of innate and adaptive defense mechanisms, it may not be possible to account for immunity within one "paradigm" or another.  相似文献   

4.
Recruitment of neutrophils from blood vessels to sites of infection represents one of the most important elements of innate immunity. Movement of neutrophils across blood vessel walls to the site of infection first requires that the migrating cells firmly attach to the endothelial wall. Generally, neutrophil extravasation is mediated at least in part by two classes of adhesion molecules, beta(2) integrins and selectins. However, in the case of streptococcal pneumonia, recent studies have revealed that a significant proportion of neutrophil diapedesis is not mediated by the beta(2) integrin/selectin paradigm. Galectin-3 is a beta-galactoside-binding lectin implicated in inflammatory responses as well as in cell adhesion. Using an in vivo streptococcal pneumonia mouse model, we found that accumulation of galectin-3 in the alveolar space of streptococcus-infected lungs correlates closely with the onset of neutrophil extravasation. Furthermore, immunohistological analysis of infected lung tissue revealed the presence of galectin-3 in the lung tissue areas composed of epithelial and endothelial cell layers as well as of interstitial spaces. In vitro, galectin-3 was able to promote neutrophil adhesion to endothelial cells. Promotion of neutrophil adhesion by galectin-3 appeared to result from direct cross-linking of neutrophils to the endothelium and was dependent on galectin-3 oligomerization. Together, these results suggest that galectin-3 acts as an adhesion molecule that can mediate neutrophil adhesion to endothelial cells. However, accumulation of galectin-3 in lung was not observed during neutrophil emigration into alveoli induced by Escherichia coli infection, where the majority of neutrophil emigration is known to be beta(2) integrin dependent. Thus, based on our results, we propose that galectin-3 plays a role in beta(2) integrin-independent neutrophil extravasation, which occurs during alveolar infection with Streptococcus pneumoniae.  相似文献   

5.
In order to gain a deeper understanding of the onset and progression of pulmonary infections we present and analyze a low dimensional, phenomenological model of infection and the innate immune response in the lungs. Because pulmonary innate immunity has features unique to itself, general mathematical models of the immune system may not be appropriate. The differential equations model that we propose is based on current knowledge of the biology of pulmonary innate immunity and accurately reproduces known features of the initial phase of the dynamics of pulmonary innate system as exhibited in recent experiments. Further, we propose to use the model as a starting point for interrogation with clinical data from a new noninvasive technique for sampling alveolar lining fluid.  相似文献   

6.
Trained immunity: a memory for innate host defense   总被引:1,自引:0,他引:1  
Immune responses in vertebrates are classically divided into innate and adaptive, with only the latter being able to build up immunological memory. However, although lacking adaptive immune responses, plants and invertebrates are protected against reinfection with pathogens, and invertebrates even display transplant rejection. In mammals, past "forgotten" studies demonstrate cross-protection between infections independently of T and B cells, and more recently memory properties for NK cells and macrophages, prototypical cells of innate immunity, have been described. We now posit that mammalian innate immunity also exhibits an immunological memory of past insults, for which we propose the term "trained immunity." Understanding trained immunity will revolutionize our view of host defense and immunological memory, and could lead to defining a new class of vaccines and immunotherapies.  相似文献   

7.
Bovine viral diarrhea virus (BVDV), together with Classical swine fever virus (CSFV) and Border disease virus (BDV) of sheep, belongs to the genus Pestivirus of the Flaviviridae. BVDV is either cytopathic (cp) or noncytopathic (ncp), as defined by its effect on cultured cells. Infection of pregnant animals with the ncp biotype may lead to the birth of persistently infected calves that are immunotolerant to the infecting viral strain. In addition to evading the adaptive immune system, BVDV evades key mechanisms of innate immunity. Previously, we showed that ncp BVDV inhibits the induction of apoptosis and alpha/beta interferon (IFN-alpha/beta) synthesis by double-stranded RNA (dsRNA). Here, we report that (i) both ncp and cp BVDV block the induction by dsRNA of the Mx protein (which can also be induced in the absence of IFN signaling); (ii) neither biotype blocks the activity of IFN; and (iii) once infection is established, BVDV is largely resistant to the activity of IFN-alpha/beta but (iv) does not interfere with the establishment of an antiviral state induced by IFN-alpha/beta against unrelated viruses. The results of our study suggest that, in persistent infection, BVDV is able to evade a central element of innate immunity directed against itself without generally compromising its activity against unrelated viruses ("nonself") that may replicate in cells infected with ncp BVDV. This highly selective "self" and "nonself" model of evasion of the interferon defense system may be a key element in the success of persistent infection in addition to immunotolerance initiated by the early time point of fetal infection.  相似文献   

8.
Ras-related protein in brain (Rab) GTPases, the subfamily of small GTP-binding proteins superfamily, play a vital role in regulating and controlling vesicles' transport between different membrane-bound organelles. As the first-line defense against invading pathogens, the host's innate immune system recognizes various pathogen-associated molecular patterns through a series of membrane-bound or cytoplasmic pathogen recognition receptors to activate the downstream signaling pathway and induce the type I interferons (IFN-I). Numerous studies have demonstrated that Rab GTPases participate in innate immunity by regulating transmembrane signals' transduction and the transport, adhesion, anchoring, and fusion of vesicles. However, the underlying mechanism of Rab GTPases regulating innate immunity is not entirely understood. A comprehensive understanding of the interplay between the Rab GTPases and innate immunity will help develop novel therapeutics against microbial infections and chronic inflammations.  相似文献   

9.
Galectin-3 is a β-galactoside-binding C-type lectin that plays an important role in innate immunity. The purpose of this study was to determine whether Candida albicans and Candida parapsilosis up-regulate galectin-3 secretion by human gingival epithelial cells and gingival fibroblasts. Ca9-22, a human gingival epithelial cell line, and human gingival fibroblasts were incubated in the presence or absence of C. albicans or C. parapsilosis without serum. Levels of secreted human galectin-3 in culture supernatants were measured by enzyme-linked immunosorbent assay. We also pretreated Ca9-22 cells with cytochalasin D (an actin polymerization inhibitor), ALLN (a calpain inhibitor) and LY294002 [a phosphatidylinositol-3 kinase (PI3K) inhibitor] to determine whether the up-regulation of galectin-3 secretion was mediated by cytoskeletal changes, protease activity, or PI3K signaling. Galectin-3 secretion was significantly and rapidly up-regulated by live C. albicans and C. parapsilosis, as well as heat-killed C. albicans. In addition, cytochalasin D, LY294002 and ALLN did not inhibit the up-regulation in galectin-3 secretion. These results suggest that both live and heat-killed C. albicans and C. parapsilosis may increase the activity of the innate immune system and invasion by other microorganisms via up-regulation of galectin-3 secretion.  相似文献   

10.
ISG20 is an ribonuclease specific for single-stranded RNA and considered to play a role in innate immunity against virus infections. We herein show that both poly IC, an authentic double-stranded RNA, and IFN-gamma induced ISG20 expression in cultured HUVEC. Poly IC-induced ISG20 expression was inhibited by LY294002, an inhibitor of PI3K, or by RNA interference against IFN regulatory factor three. ISG20 expression was not induced by IFN-beta, loxoribine or CpG oligonucleotide. These results suggest that ISG20 induction by poly IC may not be dependent on the IRF-3-mediated type I IFN induction pathway in HUVEC. ISG20 may be involved in innate immunity against viral infection in vascular endothelial cells.  相似文献   

11.
12.
周萍萍  王涛  孙元  仇华吉 《微生物学报》2021,61(7):1882-1895
免疫系统识别病原微生物的主要机制之一是识别其核酸。环磷酸鸟苷-腺苷合成酶(cGAS)是一种胞质DNA感受器,感知病原DNA后激活cGAS-STING通路。该通路不仅介导天然免疫应答以抵抗多种含DNA的病原微生物感染,还能感知肿瘤来源的DNA而产生抗肿瘤免疫应答。然而,自体DNA对cGAS-STING通路的异常激活也会导致自身免疫性和炎症性疾病。本文综述了cGAS-STING信号通路及其在抗病毒天然免疫中的调控作用与功能,阐述了cGAS-STING通路在抗病毒感染和疾病中发挥的作用。  相似文献   

13.
Viruses are obligate parasites which can infect cells of all living organisms. Multiple antiviral defense mechanisms appeared early in the evolution of the immune system. Higher vertebrates possess the most complex antiviral immunity based on both innate and adoptive immune responses. However, a majority of living organisms, including plants and invertebrates, rely exclusively on innate immune mechanisms for protection against viral infections. There are some striking similarities in several components of innate immune recognition in mammals, plants, and insects suggesting that these signaling cascades are highly conserved in the evolution of the immune system. This review summarizes recent advances in the field of innate immune recognition of viruses, with a focus on pattern-recognition receptors.  相似文献   

14.
Innate immunity represents the first line of defense against invading pathogens in the respiratory tract. Innate immune cells such as monocytes, macrophages, dendritic cells, NK cells, and granulocytes contain specific pathogen-recognition molecules which induce the production of cytokines and subsequently activate the adaptive immune response. c-di-GMP is a ubiquitous second messenger that stimulates innate immunity and regulates biofilm formation, motility and virulence in a diverse range of bacterial species with potent immunomodulatory properties. In the present study, c-di-GMP was used to enhance the innate immune response against pertussis, a respiratory infection mainly caused by Bordetella pertussis. Intranasal treatment with c-di-GMP resulted in the induction of robust innate immune responses to infection with B. pertussis characterized by enhanced recruitment of neutrophils, macrophages, natural killer cells and dendritic cells. The immune responses were associated with an earlier and more vigorous expression of Th1-type cytokines, as well as an increase in the induction of nitric oxide in the lungs of treated animals, resulting in significant reduction of bacterial numbers in the lungs of infected mice. These results demonstrate that c-di-GMP is a potent innate immune stimulatory molecule that can be used to enhance protection against bacterial respiratory infections. In addition, our data suggest that priming of the innate immune system by c-di-GMP could further skew the immune response towards a Th1 type phenotype during subsequent infection. Thus, our data suggest that c-di-GMP might be useful as an adjuvant for the next generation of acellular pertussis vaccine to mount a more protective Th1 phenotype immune response, and also in other systems where a Th1 type immune response is required.  相似文献   

15.
The Plasmodium parasite--a 'new' challenge for insect innate immunity   总被引:4,自引:0,他引:4  
Though lacking adaptive immunity, insects possess a powerful innate immune system, a genome-encoded defence machinery used to confront infections. Studies in the fruit fly Drosophila melanogaster revealed a remarkable capacity of the innate immune system to differentiate between and subsequently respond to different bacteria and fungi. However, hematophagous compared to non-hematophagous insects encounter additional blood-borne infectious agents, such as parasites and viruses, during their lifetime. Anopheles mosquitoes become infected with the malaria parasite Plasmodium during feeding on infected human hosts and may then transmit the parasite to new hosts during subsequent bites. Whether Anopheles has developed mechanisms to confront these infections is the subject of this review. Initially, we review our current understanding of innate immune reactions and give an overview of the Anopheles immune system as revealed through comparative genomic analyses. Then, we examine and discuss the capacity of mosquitoes to recognize and respond to infections, especially to Plasmodium, and finally, we explore approaches to investigate and potentially utilize the vector immune competence to prevent pathogen transmission. Such approaches constitute a new challenge for insect immunity research, a challenge for global health.  相似文献   

16.
Innate immunity has evolved as a first line defense against invading pathogens. Cellular and humoral elements of the innate immune system detect infectious parasites, initiate inflammatory resistance reactions and finally contribute to the elimination of the invaders. Repeated attacks by pathogenic agents induce adaptive responses of the innate immune system. Typically, reapplication of pathogens provokes tolerance of the affected organism. However, also stimulatory effects of primary infections on subsequent innate immune responses have been observed. The present overview touches an undervalued aspect in the innate immune response: Its pronounced dependency on pathogen load. In addition to localization and timing of innate immune responses the pathogen dose dependency might be considered as a “fifth dimension of innate immunity”. Experimental results and literature data are presented proposing a hormetic reaction pattern of innate immune cells depending on the dose of pathogens.  相似文献   

17.
18.
The availability of effective vaccines has had the most profound positive effect on improving the quality of public health by preventing infectious diseases. Despite many successful vaccines, there are still old and new emerging pathogens against which there is no vaccine available. A better understanding of how vaccines work for providing protection will help to improve current vaccines as well as to develop effective vaccines against pathogens for which we do not have a proper means to control. Recent studies have focused on innate immunity as the first line of host defense and its role in inducing adaptive immunity; such studies have been an intense area of research, which will reveal the immunological mechanisms how vaccines work for protection. Toll-like receptors (TLRs), a family of receptors for pathogen-associated molecular patterns on cells of the innate immune system, play a critical role in detecting and responding to microbial infections. Importantly, the innate immune system modulates the quantity and quality of longterm T and B cell memory and protective immune responses to pathogens. Limited studies suggest that vaccines which mimic natural infection and/or the structure of pathogens seem to be effective in inducing long-term protective immunity. A better understanding of the similarities and differences of the molecular and cellular events in host responses to vaccination and pathogen infection would enable the rationale for design of novel preventive measures against many challenging pathogens.  相似文献   

19.
Cryptococcus neoformans, the predominant etiological agent of cryptococcosis, is an encapsulated fungal pathogen that can cause life-threatening infections of the central nervous system in immune compromised individuals resulting in high morbidity and mortality. Consequently, several studies have endeavored to understand those mechanisms that mediate resistance and susceptibility to Cryptococcus infection. In this review, we will examine the contributions of various components of the innate and adaptive immune response toward protection against cryptococcosis. We will focus our discussion on studies presented at the 8th International Conference on Cryptococcus and Cryptococcosis (ICCC). Remarkable progress has been made toward our understanding of host immunity and susceptibility to cryptococcal infection and the potential for vaccine development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号