共查询到20条相似文献,搜索用时 15 毫秒
1.
Ion channels are believed to play an important role in the maintenance of lens transparency. In order to ascribe junctional and nonjunctional permeability properties to specific lens cell types, embryonic chick lenses were enzymatically dissociated into cell clusters, cell pairs and single cells, and both cell-to-cell and single-membrane permeability properties were characterized with the patch-clamp technique. Double patch-clamp experiments and single patch-clamp experiments with Lucifer yellow in the pipette demonstrated that the cells in the dissociated preparation were well coupled, the average conductance between pairs being 42 +/- 27 nS. Double patch-clamp experiments also revealed single cell-to-cell channel events with a predominant unitary conductance of 286 +/- 38 pS. Whole-cell measurements of surface membrane conductance indicate heterogeneity within the population of dissociated embryonic chick lens cells: 63% of the cells have a voltage-independent leak current, 14% of the cells have a potassium-selective inward-rectifier current, and 23% of the cells have a current which turns off with positive voltage on a time scale on the order of seconds. The time constant for this turnoff is voltage dependent. 相似文献
2.
To isolate mouse neural crest stem cells, we have generated a rat monoclonal antibody to murine neurotrophin receptor (p75). We have immortalized p75+ murine neural crest cells by expression of v-myc, and have isolated several clonal cell lines. These lines can be maintained in an undifferentiated state, or induced to differentiate by changing the culture conditions. One of these cell lines, MONC-1, is capable of generating peripheral neurons, glia, and melanocytic cells. Importantly, most individual MONC-1 cells are multipotent when analyzed at clonal density. The neurons that differentiate under standard conditions have an autonomic-like phenotype, but under different conditions can express markers of other peripheral neuronal lineages. These lines therefore exhibit a similar differentiation potential as their normal counterparts. Furthermore, they can be genetically modified or generated from mice of different genetic backgrounds, providing a useful tool for molecular studies of neural crest development. © 1997 John Wiley & Sons, Inc. J Neuroblol 32 : 722–746, 1997 相似文献
3.
In vitro differentiation of human embryonic neural stem cells 总被引:2,自引:1,他引:1
4.
Adult neural stem cells express glucose transporters GLUT1 and GLUT3 and regulate GLUT3 expression 总被引:1,自引:0,他引:1
In the brain, glucose is transported by GLUT1 across the blood-brain barrier and into astrocytes, and by GLUT3 into neurons. In the present study, the expression of GLUT1 and GLUT3 mRNA and protein was determined in adult neural stem cells cultured from the subventricular zone of rats. Both mRNAs and proteins were coexpressed, GLUT1 protein being 5-fold higher than GLUT3. Stress induced by hypoxia and/or hyperglycemia increased the expression of GLUT1 and GLUT3 mRNA and of GLUT3 protein. It is concluded that adult neural stem cells can transport glucose by GLUT1 and GLUT3 and can regulate their glucose transporter densities. 相似文献
5.
Calhoun JD Lambert NA Mitalipova MM Noggle SA Lyons I Condie BG Stice SL 《Biochemical and biophysical research communications》2003,306(1):191-197
Embryonic stem (ES) cells are pluripotent cells capable of differentiating into cell lineages derived from all primary germ layers including neural cells. In this study we describe an efficient method for differentiating rhesus monkey ES cells to neural lineages and the subsequent isolation of an enriched population of Nestin and Musashi positive neural progenitor (NP) cells. Upon differentiation, these cells exhibit electrophysiological characteristics resembling cultured primary neurons. Embryoid bodies (EBs) were formed in ES growth medium supplemented with 50% MEDII. After 7 days in suspension culture, EBs were transferred to adherent culture and either differentiated in serum containing medium or expanded in serum free medium. Immunocytochemistry on differentiating cells derived from EBs revealed large networks of MAP-2 and NF200 positive neurons. DAPI staining showed that the center of the MEDII-treated EBs was filled with rosettes. NPs isolated from adherent EB cultures expanded in serum free medium were passaged and maintained in an undifferentiated state by culture in serum free N2 with 50% MEDII and bFGF. Differentiating neurons derived from NPs fired action potentials in response to depolarizing current injection and expressed functional ionotropic receptors for the neurotransmitters glutamate and gamma-aminobutyric acid (GABA). NPs derived in this way could serve as models for cellular replacement therapy in primate models of neurodegenerative disease, a source of neural cells for toxicity and drug testing, and as a model of the developing primate nervous system. 相似文献
6.
7.
Differentiating embryonic neural progenitor cells induce blood-brain barrier properties 总被引:1,自引:0,他引:1
The blood-brain barrier (BBB) is a multifunctional endothelial interface separating the bloodstream from the brain interior. Although the mature BBB is well characterized, the embryonic development of this complex system remains poorly understood. Embryonic neural progenitor cells (NPC) are a potential inductive cell type populating the developing brain, and their ability to influence BBB properties was therefore examined. When puromycin-purified brain microvascular endothelial cells (BMEC) were co-cultured with embryonic NPC in a two-compartment Transwell system, the BMEC exhibited enhanced barrier properties in the form of increased transendothelial electrical resistance (TEER) and decreased permeability to the small molecule tracer, sodium fluorescein. These changes required the presence of NPC in the early stages of differentiation and were accompanied by alterations in the fidelity of BMEC tight junctions as indicated by occludin, claudin 5, and zonula occluden-1 redistribution at cell-cell borders. In contrast to the findings with NPC, post-natal astrocytes elicited a delayed, but longer duration response in BMEC TEER. BMEC co-culture also suppressed neuronal differentiation of NPC indicating a reciprocal signaling between the two cell populations. This study demonstrates that NPC-BMEC interactions are prevalent and for the first time demonstrates that NPC are capable of inducing BBB properties. 相似文献
8.
Properties of a fetal multipotent neural stem cell (NEP cell) 总被引:20,自引:0,他引:20
Cai J Wu Y Mirua T Pierce JL Lucero MT Albertine KH Spangrude GJ Rao MS 《Developmental biology》2002,251(2):221-240
Multipotent neural stem cells (NSCs) present in the developing neural tube (E10.5, neuroepithelial cells; NEP) were examined for the expression of candidate stem cell markers, and the expression of these markers was compared with later appearing precursor cells (E14.5) that can be distinguished by the expression of embryonic neural cell adhesion molecule (E-NCAM) and A2B5. NEP cells possess gap junctions, express connexins, and appear to lack long cilia. Most candidate markers, including Nestin, Presenilin, Notch, and Numb, were expressed by both NEP cells as well as other cell populations. Fibroblast growth factor receptor 4 (FGFR4), Frizzled 9 (Fz9), and SRY box-containing gene 2 (Sox2) as assessed by immunocytochemistry and in situ hybridization are markers that appear to distinguish NSCs from other precursor cells. Neither Hoechst 33342 nor rhodamine-123 staining, telomerase (Tert) expression, telomerase activity, or breakpoint cluster region protein 1 (Bcrp1) transporter expression could be used to distinguish NEP stem cells from other dividing cells. NEP cells, however, lacked expression of several lineage markers that are expressed by later appearing cells. These included absence of expression of CD44, E-NCAM, A2B5, epidermal growth factor receptor (EGFR), and platelet-derived growth factor receptor-alpha (PDGFR alpha), suggesting that negative selection using cell surface epitopes could be used to isolate stem cell populations from mixed cultures of cells. Using mixed cultures of cells isolated from E14.5 stage embryos, we show that NEP cells can be enriched by depleting differentiating cells that express E-NCAM or A2B5 immunoreactivity. Overall, our results show that a spectrum of markers used in combination can reliably distinguish multipotent NSCs from other precursor cells as well as differentiated cells present in the CNS. 相似文献
9.
Summary Individual cells and cell pairs were isolated from frog lens epithelium. Individual cells were whole cell voltage clamped and the current-voltage relationship was determined. The cells had a mean resting voltage of –54.3 mV and a mean input resistance of 1.4 G. The current-voltage relationship was linear near the cell resting voltage, but showed decreased resistance with large depolarization or hyperpolarization. Junctional currents between pairs of cells were recorded using the dual whole cell voltage-clamp technique. The corrected junctional resistance was 15.5 M (64.5 nS). The junctional current-voltage relationship was linear. A combination of ATP and cAMP, in the electodes, stabilized junctional resistance. Currents recorded when uncoupling was nearly complete, showed evidence of single connexon gating events. A single-channel conductance of about 100 pS was prominent. Dye spread between isolated cell pairs was demonstrated using Lucifer Yellow CH in a whole cell configuration. Photodamage to the cells due to the dye was apparent. Dye loaded cells, in the presence of exciting light, showed decreased resting voltages, decreased input resistances and morphological changes. Glutathione (20mm) delayed this damage. 相似文献
10.
Summary We used the double whole-cell voltage-clamp technique on ventricle cell pairs isolated from 7-day chick heart to measure the conductance of their gap junctions (G
j) and junctional channels (
j) with a steady-state voltage difference (V
j) applied across the junction. Currents were recorded from single gap junction channels (i
j) as symmetrical rectangular signals of equal size and opposite sign in the two cells, and
j was measured from i
j/V
j. We observed channel openings at six reproducible conductance levels with means of 42.6, 80.7, 119.6, 157.7, 200.4 and 240.3 pS. More than half of all openings were to the 80-and 160-pS conductance levels. The probability that a high conductance event (e.g., 160 or 240 pS) results from the random simultaneous opening of several 40-pS channels is small, based on their frequency of occurrence and on the prevalence of shifts between small and large conductance states with no intervening 40-pS steps. Our results are consistent with three models of embryonic cardiac gap junction channel configuration: a homogeneous population of 40-pS channels that can open cooperatively in groups of up to six; a single population of large channels with a maximal conductance near 240 pS and five smaller substates; or several different channel types, each with its own conductance.
G
j was determined from the junctional current (I
j) elicited by rectangular pulses of applied transjunctional voltage as I
j/V
j. It was highest near 0 V
j and was progressively reduced by application of V
j between 20 and 80 mV or –20 and –80 mV. In response to increases in V
j, G
j decayed in a voltage-and timedependent fashion. After a 6-sec holding period at 0 V
j, the initial conductance (G
init) measured immediately after the onset of an 80-mV step in V
j was nearly the same as that measured by a 10-mV prepulse. However, during 6-sec pulses of V
j>±20 mV, G
j declined over several seconds from G
init to a steady-state value (G
ss). At potentials greater than ±20 mV the current decay could be fit with biexponential curves with the slow decay time constant (
2) 5–20 times longer than
1. For the response to a step to 80 mV V
j, for example,
1=127 msec and
2=2.6 sec. The rate of current decay in response to smaller positive or negative steps in V
j was slower, the magnitude of the decline was smaller, and the ratio
2/
1 decreased. The relationship between G
init and V
j was approximately linear between 0 and 80 mV or –80 mV. whereas the relationship between G
ss and V
j was nonlinear beyond ±20 mV. Upon returning to 0 V
j, G
j recovered with a biexponential time course, reaching its maximal value after several seconds; recovery time constants after a step in V
j from 80 to 0 mV were 225 msec and 1.9 sec. In the resting state, at low junctional voltage, high conductance channel activity (160–240 pS) is favored. Voltage-dependent decline of G
j results in part from a shift from high to lower conductance states.We thank Ms. B.J. Duke for technical assistance and for preparation of the cell cultures and Drs. L.J. DeFelice and D. Eaton for stimulating and helpful discussions of the results. 相似文献
11.
With their capability to undergo unlimited self-renewal and to differentiate into all cell types in the body, human embryonic stem cells (hESCs) hold great promise in human cell therapy. However, there are limited tools for easily identifying and isolating live hESC-derived cells. To track hESC-derived neural progenitor cells (NPCs), we applied homologous recombination to knock-in the mCherry gene into the Nestin locus of hESCs. This facilitated the genetic labeling of Nestin positive neural progenitor cells with mCherry. Our reporter system enables the visualization of neural induction from hESCs both in vitro (embryoid bodies) and in vivo (teratomas). This system also permits the identification of different neural subpopulations based on the intensity of our fluorescent reporter. In this context, a high level of mCherry expression showed enrichment for neural progenitors, while lower mCherry corresponded with more committed neural states. Combination of mCherry high expression with cell surface antigen staining enabled further enrichment of hESC-derived NPCs. These mCherry+NPCs could be expanded in culture and their differentiation resulted in a down-regulation of mCherry consistent with the loss of Nestin expression. Therefore, we have developed a fluorescent reporter system that can be used to trace neural differentiation events of hESCs. 相似文献
12.
Brokhman I Gamarnik-Ziegler L Pomp O Aharonowiz M Reubinoff BE Goldstein RS 《Differentiation; research in biological diversity》2008,76(2):145-155
Abstract Neural precursors have been derived from human embryonic stem cells (hESC) using the bone morphogenetic protein antagonist noggin. These neural precursors can be further differentiated to produce neural cells that express central nervous system (CNS) markers. We have recently shown that naïve hESC can be directed to differentiate into peripheral sensory (PS) neuron-like cells and putative neural crest precursors by co-culturing with PA6 stromal cells. In the present study, we examine whether hESC-derived neural precursors (NPC) can differentiate into the peripheral nervous system, as well as CNS cells. As little as 1 week after co-culture with PA6 cells, cells with the molecular characteristics of PS neurons and neural crest are observed in the cultures. With increased time in culture, more PS-like neurons appear, in parallel with a reduction in the neural crest-like cells. These results provide the first evidence that neural precursors derived from hESC have the potential to develop into PS neurons-like as well as CNS-like neuronal cells. About 10% of the cells in NPC-PA6 co-cultures express PS neuron markers after 3 weeks, compared with <1% of hESC cultured on PA6. This enrichment for peripheral neurons makes this an attractive system for generation of peripheral neurons for pathophysiology study and drug development for diseases of the peripheral nervous system such as Familial Dysautonomia and varicella virus infection. 相似文献
13.
14.
Postovit LM Costa FF Bischof JM Seftor EA Wen B Seftor RE Feinberg AP Soares MB Hendrix MJ 《Journal of cellular biochemistry》2007,101(4):908-917
Aggressive cancer cells and pluripotent stem cells converge in their capacity for self-renewal, proliferation and plasticity. Recent studies have capitalized on these similarities by demonstrating that tumors arise from specific cancer stem cell populations that, in a manner reminiscent of normal stem cells, are able to both self-renew and give rise to a heterogeneous tumor population. This stem cell like function of aggressive cancer cells is likely attributable to the ectopic expression of embryonic factors such as Nodal and Cancer Testis Specific Antigens (CTAs), which maintain a functional plasticity by promoting pluripotency and immortality. During development, the expression of these embryonic factors is tightly regulated by a dynamic array of mediators, including the spatial and temporal expression of inhibitors such as Lefty, and the epigenetic modulation of the genome. In aggressive cancer cells, particularly melanoma, this balance of regulatory mediators is disrupted, leading to the aberrant expression of pluripotency-associated genes. By exposing aggressive cancer cells to embryonic microenvironments, this balance of regulatory mediators is restored, thereby reprogramming tumor cells to a more benign phenotype. These stem cell-derived mediators, as well as the genes they regulate, provide therapeutic targets designed to specifically differentiate and eradicate aggressive cancers. 相似文献
15.
Zhang J Duan X Zhang H Deng Z Zhou Z Wen N Smith AJ Zhao W Jin Y 《Biology of the cell / under the auspices of the European Cell Biology Organization》2006,98(10):567-575
BACKGROUND INFORMATION: Substantial evidence indicates the existence of NCSCs (neural crest-derived stem cells) in embryonic mandibular processes; however, they have not been fully investigated or isolated. The aim of the present study was to isolate stem cells from mandibular process during embryonic development by MACS (magnetic-activated cell sorting). The findings show that the cells are multipotent and self-renewing. RESULTS: LNGFR (low-affinity nerve-growth-factor receptor)+ cells were isolated from rat embryonic mandibular processes by MACS. The cells were grown in clonal culture by limiting dilution to assess their developmental potential. Clone analysis indicated that, first, LNGFR+ cells are multipotent, being able to generate at least neurons and Schwann cells, similar to peripheral neural crest stem cells. Secondly, multipotent LNGFR+ cells generate multipotent progenies, indicating that they are capable of self-renewal and therefore are stem cells. Thirdly, manipulation of the medium supplementation alters the fate of the isolated LNGFR+ cells. CONCLUSIONS: These results indicate that LNGFR antibodies label NCSCs with high specificity and purity, and suggest that positive selection using these antibodies may become the method of choice for obtaining multipotent cells from rat embryonic mandibular processes for tissue engineering or regenerative therapeutic use. 相似文献
16.
对羟基丁酸-羟基己酸共聚酯(PHBHHx)膜进行表面改性,研究神经干细胞(NSCs)在改性后的PHBHHx膜表面的贴附、增殖及分化情况,为开发新型脑组织工程支架材料奠定基础。采用溶剂挥发法制备PHBHHx膜,扫描电镜观察其表面性状;分别通过脂肪酶处理,NaOH处理的方法对PHBHHx膜进行表面改性,测量接触角以检测膜表面亲水性。分离培养孕14.5 d大鼠胚胎大脑皮质NSCs,接种在表面改性后的PHBHHx膜表面进行体外培养,扫描电镜观察膜表面细胞形态,MTT法检测细胞活力,免疫细胞化学染色观察NSCs存活和分化情况。结果显示,与未处理的PHBHHx膜相比,脂肪酶、NaOH处理能够显著提高PHBHHx膜表面亲水性,增加NSCs在PHBHHx膜表面贴附数量;NSCs在改性后的PHBHHx膜表面能够良好地存活并分化为神经元和胶质细胞。结果提示PHBHHx膜表面碱处理通过提高材料表面亲水性和粗糙程度,增加其与NSCs的生物相容性,改性后的PHBHHx材料是一种非常有潜力的新型脑组织工程支架材料,有望在NSCs移植修复脑损伤中发挥作用。 相似文献
17.
目的 探讨人类胚胎干细胞(ESCs)分化为神经细胞的关键性靶基因及分子机制,为临床靶向治疗神经康复患者提供分子理论依据.方法 基于GEO数据平台芯片,采用单细胞测序方法(scRNA-seq),利用R语言从多分子维度(单细胞差异基因、蛋白互作网络和基因通路等)分析人类ESCs分化过程中的关键Marker基因并利用质控和数... 相似文献
18.
19.
20.
Human embryonic stem (hES) cells provide a promising supply of specific cell types for transplantation therapy. We presented
here the method to induce differentiation of purified neural precursors from hES cells. hES cells (Line PKU-1 and Line PKU-2)
were cultured in suspension in bacteriological Petri dishes, which differentiated into cystic embryoid bodies (EBs). The EBs
were then cultured in N2 medium containing bFGF in poly-L-lysine-coated tissue culture dishes for two weeks. The central, small cells with 2–3 short
processes of the spreading outgrowth were isolated mechanically and replated. The resulting neurospheres were cultured in
suspension for 10 days, then dissociated into single cell suspension with a Pasteur pipette and plated. Cells grew vigorously
in an attached way and were passed every 4–5 days. Almost all the cells were proved nestin positive by immunostaining. Following
withdrawal of bFGF, they differentiated into neurons expressing β-tubulin isotypeIII, GABA, serotonin and synaptophysin. Through induction of PDGF-AA, they differentiated into astrocytes expressing GFAP and
oligodendrocytes expressing O4. The results showed that hES cells can differentiate into typical neural precursors expressing the specific marker nestin
and capable of generating all three cell types of the central nervous system (CNS)in vitro. 相似文献